Lecture 19 — Matrix rank minimization



Semidefinite programming

A reminder



Primal Semidefinite Programming Problem

min trace(CX),

s.t. trace(A;X)=Dh;, i=1,...,m
XeS"X =0
C,A, € S". be R™.

SDP cone K = {x € S": X > 0} - self dual.

Dual Semidefinite Programming Problem

max bTy,
st. Y yidi+S=C
1=1

S = 0.
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* Some users rate some movies they
watched (or didn’ t!)

* Predict the rating (1..5) for each user/
movie pair.

» Use this prediction to recommend users
the movies that they would like



Matrix completion problem, collaborative filtering

Collaborative filtering: famous Netflix challenge

Will user i like movie j?

Complete the matrix based on partially
filled information.
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Linear factor model
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Convex relaxation via nuclear norm

« Given the values for a subset of entries, find the matrix
with these entries and the smallest (or given) rank.

minycgmxn rank(X)
S.1. Xz'j — Mij) (Z,j) cl
 NP-hard problem.

rank(X) = [lo(X)]lo,
where o(X) is the vector of the singular values.

|- 1o, = || - ||1 - the tightest convex relaxation.

Convex relaxation: ||o(X)[|1 = >, 0:(X)



Under suitable randomness hypothesis
ACMRM

@ Recht, Fazel and Parrilo, 2007:
For fixed 0 < 6 < 1, when p = O((m + n)rlog(mn)), with

high probability, A satisfies the Restricted Isometry Property
(RIP):

(1= 8 (A)IXIlF < 4X]l2 < (1 + 5, (A))IX]Ir.

with 8,(.A) < 4 for all matrices X of rank r.

Matrix Completion
o Candes and Recht, 2008: O(n'-?rlog n)
e Candes and Tao, 2009: O(nrpoly log n)



Convex relaxation via nuclear norm

 Given the values for a subset of entries, find the matrix
with these entries and the smallest “nuclear norm”.

minyegmcn [ X
S.T. Xij = Mij) (Z,j) cl
« Convex problem
1X 1 = [lo(X)l1 = 325 0(X)
« Convex Cone

I Xl <2



Trace norm properties

Definition 1. The trace norm' || X ||s. is the sum of the singular values of X .

Lemma 1. || X||yx = minx_—vv: || U] gy |V | 5o = minx —orve 2([|U|[5e + |V 3o)

Lemma 3 ([7, Lemma 1]). For any X € R"*™and t € R: |X|y = t iff there exists
AeR™"and B R™ ™ suchthat* [ §: 5] = 0and tr A +tr B < 2t.

Proof. Note that for any matrix W, |W||g, = trt WW". If [ %] = 0 we can write it as
aproduct [{/] [t v’]. Wehave X = 'V and 1 ”U”Pro + 1V lge) = f(trA+wB) < t.
establishing | X||. < ¢. Conversely, if | X ||‘. < twe can write it as X = UV’ with

tr VU + tr V'V’ < 2t and consider the p.s.d. matrix [0 X, O



Matrix Completion formulation

. ( W, X >
min trace

X" Wy
S.T. X’ij — Mz’ja (Z,]) cl

W, X
(XT W2>EO

X e R,
Wl c Rmey W2 c Ran



Sensor network localization



Sensor network localization




SDP relaxation of sensor network localization problem

« Given partial information on pair-wise distances find all
distances and the exact locations of sensors.

dij = ||lzi — zj]]? = (z; — z;) ' (z; — ;)

Looking for matrix X € R"*%
such that for all pairs (¢, ) Ti
for which d;; 1s known

|z — (1% = fl2l|? + [z — 22 " 2

FindY =XX": Y, =x; 'z,
linear constaints Y;; + Y,; — 2Y;; = d;;, Y-low rank



Convex relaxation via trace

* Given the distances between some elements, find the
matrix with a given rank ( 2 or 3)

rank(Y) = 2 (3)
s.t. Y + Y}j — QYZJ = dz'j, (Z,]) cl
Y =0

* NP-hard problem.

rank(Y) = [|A(Y)llo,
where \(Y) is the vector of eignevalues values of Y.

Convex relaxation: |[A(Y)|1 =>_,_; Mi(Y) = trace(Y)



SDP relaxation for sensor network localization

min trace(Y)

st. Yiu+Yi—2Y, =d, (i,j) €1
Y =0
Y e R"*"



Metric multidimensional scaling

Let us take three points in R*:

L1 = (2, 1

Ly = (4,2

L3 = (6,2
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Preserving the inner products x;x; we preserve distances ||x-x||*



Dimensionality reduction

Principal Component Analysis

Select few largest eigenvectors of Y=XTX/n
—— >

Multidimensional Metric Scaling

Select few largest eigenvectors of Y=XXT



Figure 1. The problem of manifold learning,
illustrated for N = 800 data points sampled
from a “Swiss roll”. (1). A discretized man-
ifold is revealed by connecting each data
point and its £ = 6 nearest neighbors (2).
An unsupervised learning algorithm unfolds
the Swiss roll while preserving the local ge-
ometry of nearby data points (3). Finally, the
data points are projected onto the two dimen-
sional subspace that maximizes their vari-
ance, yielding a faithful embedding of the
original manifold (4).




Nonlinear dimensionality reduction

 Preserve pair-wise distances between neighboring
points.

dij = v — ;||* = (z; — ;) " (xi — 2;), for (i,5) € I

Looking for matrix Z € R™** (for some k)
such that for all pairs (i,7) € I
|2 = 217 = llzill* + ll25]1° — 223 "2

FindY =2Z":Y,; = 2;' 2;
constaints Y;; +Y,; —2Y;; = d;5, Y = 0



SDP formulation for nonlinear dimensionality reduction

max trace(Y)
2 Yij =0
t]

s.t. Y+ Y:ij — QEJ = dz’ja (Z,]) cl
Y =0
Y e R



Distance metric learning



Gaussian Kernel

=y
K(xz;,zj;) =e 20

Euclidean distance ||x; — a:j||2 = (x; — CEj)T(iUz' — ;)



Gaussian Kernel

=y
K(xz;,zj;) =e 20

Euclidean distance ||x; — a:j||2 = (x; — CEj)T(iUz' — ;)



Gaussian Kernel

s —13
_ i
K(zi,xz;) =e 20

Mahalanobis distance ||x; — z||7; = (z; — Cl?j)TM(CBz‘ — ;)



Distance Metric Learning

maXxys Z (mz — ZUJ)TM(J?Z — 33])
(i,5)€D

Ss.t. Z (CEZ — CBJ>TM(£CZ — CE]) <1
(2,5)€S
M >0

S — the set of similarly labeled examples, card(S)~ O(n?)

D — the set of differently labeled examples, card(D)~O(n?)

IPM is too expensive, need a first order method approach



Principal component analysis

Let us take three points in R*:

L1 = (2, 1) °
Lo = (4, 2 . °
L3 = (6, 2)




Principal component analysis

Find direction of largest variance

Let us take three points in R*:
y1 =(2,1) +(0(¢),0(¢))

y2 = (4,2) + (0(¢), O(¢))
ys = (6,3) + (O(e), O(e))
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Sparse principal component analysis

Find a sparse direction of largest variance °

Let us take three points in R*: o

y1 = (2,1)+(0(e),0(¢)) o °
y2 = (4,2) + (0(¢), O(¢))
ys = (6,3) +(O(e),0(¢))

1] 56+0() 2840(¢) | 96| 1 O(e)
A=31 284+ 0(¢) 14+0(e)]"’ [o][l 0“[0()

_ T
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Introduction

Clustering of gene expression data in PCA versus sparse PCA, on 500 genes.

PCA Sparse PCA
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The PCA factors f; on the left are dense and each use all 500 genes.
The sparse factors g1, g2 and g3 on the right involve 6, 4 and 4 genes respectively.

A, d'Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet SIAM Optimization conference, May 2008. 3



Sparse PCA

Given a set Y € R™ x n compute
empirical covariance matrix A = %YTY

Principal component analysis max xTAw
Maximize the variance explained by factor x zeR™

S.t |x]|2 =1
Sparse principal component maX,cRn Q;TA$
analysis
Maximize the variance explained by a S't ‘ CCLT‘d(ZC) — k

factor x with bounded cardinality

|lzfl2 = 1



Semidefinite relaxation

Start from: maximize z! Ax
subject to |[[z|[s =1
Card(z) < k,

where = € R". Let X = 227 and write everything in terms of the matrix X:

maximize Tr(AX)

subject to Tr(X)=1
Card(X) < k?
X = z2T,

Replace X = zz7 by the equivalent X = 0, Rank(X) = 1:
maximize Tr(AX)
subject to Tr(X)=1
Card(X) < k?
X =0, Rank(X) =1,

again, this is the same problem.

A d’Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet SIAM Optimization conference, May 2008.
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Semidefinite relaxation

We have made some progress:

e The objective Tr(AX ) is now linear in X

e [he (non-convex) constraint ||z||s = 1 became a linear constraint Tr(X ) = 1.
But this is still a hard problem:

e The Card(X) < k? is still non-convex.
e So is the constraint Rank(X ) = 1.

We still need to relax the two non-convex constraints above:
e If ue R”, Card(u) = ¢ implies ||ul[; < ,/q||u||2. So we can replace

Card(X) < k° by the weaker (but convex): 17| X1 < k.

e We simply drop the rank constraint

A d’Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet S51AM Optimization conference, May 2008. 11



Semidefinite Programming

Semidefinite relaxation:

naximize 2T Ax maximize Tr(AX)

. becomes subject to Tr(X) =1
subject to |[[z][a =1 ) 1T|{X |)1 <k
Card(z) < k, X0

e This is a semidefinite program in the variable X € S". ..
e Solve small problems (a few hundred variables) using IP solvers, etc.

e Dimensionality reduction apps: solve very large instances.

Solution: use first order algorithm. . .

A. d'Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet SIAM Optimization conference, May 2008.
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