Lecture 17
Sparse Convex Optimization



Compressed sensing



A short introduction to Compressed Sensing

« An imaging perspective

10 Mega Pixels

Scene

Picture
 Image compression

Why do we compress images?




Introduction to Compressed Sensing

* |Images are compressible

 Image compression
— Take an input image u

Because

e Only certain part of information is
important (e.g. objects and their
edges)

e Some information is unwanted
(e.g. noise)

— Pick a good dictionary &
— Find a sparse representation x of u such that |[®x - u||, is small

— Save zx

This is traditional compression.
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This is traditional compression.

100 Kilobytes




Introduction to Compressed Sensing

« An imaging perspective

n: 10 Mega Pixels

This is traditional compression.

k:100 Kilobytes®




Introduction to Compressed Sensing

If only 100 kilobytes are saved, why do we need a 10-megapixel
camera in the first place?

Answer: a traditional compression algorithm needs the complete
image to compute ¢ and z

Can we do better than this?



Introduction to Compressed Sensing

« Let k=||x]|y, n=dim(x)=dim(u).

* In compressed sensing based on [, minimization, the number of
measurements is m=0(k log(n/k)) (Donoho, Candés-Tao)



Introduction to Compressed Sensing

Input Linear Signal Signal Signal
encoding acquisition reconstruction representation

U Bu b= Bu X Px



Introduction to Compressed Sensing

Input Linear Signal Signal Signal
encoding acquisition reconstruction representation

U Bu b= Bu X Px



Introduction to Compressed Sensing

Input: b=Bu=B®x, A=B®
Output: x

In compressed sensing, m=dim(b)<<dim(u)=dim(x)=n
Therefore, Ax = b is an underdetermined system

Approaches for recovering x (hence the image u):
— Solve min ||z]||,, subjectto Ax =
— Solve min ||z||4, subjectto Ax =b
— Other approaches



Difficulties

 Large scales

« Completely dense data: A

However
» Solutions x are expected to be sparse

« The matrices A are often fast transforms



Recovery by using the |,-norm

Sparse signal reconstruction
min ||z||g
s.t. Az =0.

Sparse signal z €« R matrix A € R™*" . n >>m
The system is underdetermined, but if card(x)<m, can recover signal.

The problem is NP-hard in general. Typical relaxation,

min ||z||;

s.t. Ax =0b.



Signal recovery

« Shown by Candes & Tao and Donoho that under certain conditions
on matrix A the sparse signal

min ||x||o
s.t. Ax =0b.

Is recovered exactly by solving the convex relaxation

min ||x||1

s.t. Ax =0.

« The matrix property is called “restricted isometry property”



Restricted Isometry Property

» A vector is said to be s-sparse if it has at most s nonzero entries.

 For agiven s the isometric constant 55 of a matrix A is the smallest
constant such that

(1= ds)llzllz < [|Az])z < (1+6s)|]]3

« forany s-sparse L .

Assume that solution x* to min{||z||o : Ax = b} is s-sparse.

If 925(A) < 1 then z* is the unique solution to min{||z||p : Az = b}.

If §25(A) < V2 — 1 then z* is the solution to min{||z||; : Az = b}



Why ||-|[4 norm?

~

Axr =1b>

o b
61 ball

éz ball




Why ||-|[4 norm?

Axr =1b>




Why ||-|[4 norm?

Axr =1b>




Sparse regularized regression



Least Squares Linear Regression

@
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N



Least squares problem

Standard form of LS problem

min |[Az —b||5 = z=(A"A)"tA"b
TeR"
Includes solution of a system of linear equations Ax=Db.

May be used with additional linear constraints, e.g.

min ||Az — b||5
<xr<u

Ridge regression

Igg% | Az — bl + M|z||3 = 2= (A"TA+1)"tATD

A is the regularization parameter — the trade-off weight.



Robust least squares regression
Assume matrix A is not known exactly, but each column

A, € B(Ag,r) ={A,;: ||A; — Ag” <r}
= AeA=B(A)r)®...® B(AY,r).

min ||Az — b||3 = min max||Ax — b||5
reR™ reR" Ac A

Less straightforward than for SVM but it is possible
to show that the above problem leads to

min ||A%z — b|[3 + 7|z,
reR"™

Another interpretation — feature selection



Lasso and other formulations

Sparse regularized regression or Lasso:

1
min | Az = b[]° + Allz[],

Sparse regressor selection
min
s.t.
Noisy signal recovery
min
S.t.

Ax — b||
CCHl S L.
z|[1

Ax — bl| <e.



Connection between different formulations

min ||[Az —b|| ey min ||Az — 0|
s.t. ||lz|]1 £t s.t. ||lx]]1 <t

1 1
min §||Ax—b||+Ay|x||1AQ min {142 — bl + el

1 min ||Ax — b||
min —||Ax — b|| + )|z

If solution exists

min ||z||;

st. Ax =50
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Example

signal » € R™ with n = 1000, card(x) = 30

m = 200 (random) noisy measurements: y = Ax + v, v ~ N(0,0°1
A ij ™ "'-..F(U 1]

left: original; right: {; reconstruction with v = 107"
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e (5 reconstruction; minimizes ||Az — y||2 + 7||z||2, where v = 1074

e left: original; right: £, reconstruction
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Types of convex problems

min ||z||;
st. Ax=0b>

Variable substituton: x = ' — 2", ' >0, 2" >0

min e (2’ +z”)
s.t. Az’ —z2")=1b
' >0,2" >0

Linear programming problem



Types of convex problems

1
min o |[Az —bl| + Allz|[;

Variable substitution: & = &’ — CE”, x’ > O, x" > 0

1
min §HA($, — ") = b|| + Xe' (' + ")

st. ' >0,2" >0

Convex non-smooth objective with
linear inequality constraints



Types of convex problems

Convex QP with linear inequality constraints

min  ||Az — b||? min ||(Az’ — Az — b||?
st. ||zl <t ‘ st. e (2, 2") <t
:E/,CL’N > ()
SOCP

min ||z||;
s.it. ||Ax —b|| <e.




Optimization approaches



Lasso

Regularized regression or Lasso:

, 1
min §\|A:U — bH2 Allxl|1

1
min §HA$, — Ax” —b||* + Xe' (2 + ")

st. 2',2" >0

Convex QP with nonnegativity constraints



Standard QP formulation

Reformulate as

1 > A\
min §|\Mz—b|\ —|—)\;zi
st. z2>0 M = [A, —A]

1 mn
min §ZTMTMz—bTMz—|—)\;ZZ-
s.t. z>0.

How is it different from SVMs dual QP?



Standard QP formulation

Reformulate as , .
min iHMZ_bH2+)‘;Zi
st. z2>0 M = [A,—A]

1 mn
min §ZTMTMZ—Z)TMZ—|—)\ZZZ'

i=1
s.t. z>0.



Standard QP formulation

Reformulate as , "
min §HMz—b||2—|—)\;zi
st. z2>0 M = [A, —A]

: 1+ 7 T -
min 52 M Mz —b> Mz—l—)\Zzi
1=1
s.t. z>0.
Features of this QP IPM complexity is O
1. Q=M™M, where M is mxn, with n>>m. (m?3) per iteration

2. Forming Q is O(m=?n), factorizing Q+D is O(m?3)
3. There are no upper bound constraints.



Dual Problem

1
min §\|Aaz’ — Az” = b||? + M’ + 2”)

st. 22" >0

1
L(:E,,:E”,S,,SH) _ 5HACE/ — A" — bH2 4+ )\GT(ZC’ —|—£C”) - S/T:C/ . S//TCC//

Vo Lz, 2", s,s8")=A"(Az' — A" —b) + e — s’ =0
Vo L(z', 2", s',8") = —A" (Ax' — Az” —b) + de — 5" =0

/ //
s,s >0



Dual Problem

Using:

(V" AT (Ax' — A" —b)+ X2 =T’ =0
—(:BN)TAT(AZU/ . A:U” - b) + )\TCL‘N o S//Ta?” —0

. / 1 / 1
maxmin L(x', x",s",s") =
S e

1

5(14:17/ — Ax" — b)T(A:)j/ — A" — b) + )\GT(QJ’ 4 :C”) LT T
1

5 (Ae’ — AT (Ad' — Ax") = —%xTATAa:



Lasso

Primal-Dual pair of problems

1
min || Az —b][* + Azl

1
min §xTATAw

st. ||JA"(Az — b) oo < A



Optimality Conditions

(i) x; <0, and (A" (Ax —b)); = ),
(ii) z; > 0, and (A" (Ax —b)); = =\,
(iii) ; =0, and -\ < A" (Az —b); < A



