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Compressed sensing 



A short introduction to Compressed Sensing 

•  An imaging perspective 

•  Image compression 
Scene Picture 

10 Mega Pixels 

Why do we compress images? 



Introduction to Compressed Sensing 

•  Images are compressible 

•  Image compression 
–  Take an input image u 

–  Pick a good dictionary © 

–  Find a sparse representation x of u such that ||©x - u||2 is small 
–  Save x 

Because 
•  Only certain part of information is 

important (e.g. objects and their 
edges) 

•  Some information is unwanted 
(e.g. noise) 

This is traditional compression. 



Introduction to Compressed Sensing 

•  An imaging perspective 

This is traditional compression. 

10 Mega Pixels 

100 Kilobytes 



Introduction to Compressed Sensing 

•  An imaging perspective 

This is traditional compression. 

n: 10 Mega Pixels 

k:100 Kilobytes 



Introduction to Compressed Sensing 

•  If only 100 kilobytes are saved, why do we need a 10-megapixel 
camera in the first place? 

•  Answer: a traditional compression algorithm needs the complete 
image to compute © and x 

•  Can we do better than this? 



Introduction to Compressed Sensing 

•  Let k=||x||0, n=dim(x)=dim(u).  

•  In compressed sensing based on l1 minimization, the number of 
measurements is m=O(k log(n/k)) (Donoho, Candés-Tao) 



Introduction to Compressed Sensing 

Input Linear  
encoding 

Signal  
acquisition 
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reconstruction 
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Introduction to Compressed Sensing 

•  Input: b=Bu=B©x, A=B© 

•  Output: x 

•  In compressed sensing, m=dim(b)<<dim(u)=dim(x)=n 

•  Therefore, Ax = b is an underdetermined system 

•  Approaches for recovering x (hence the image u): 
–  Solve  min ||x||0, subject to Ax = b  
–  Solve  min ||x||1, subject to Ax = b  
–  Other approaches 



Difficulties 

•  Large scales 

•  Completely dense data: A 
 
However 

•  Solutions x are expected to be sparse 

•  The matrices A are often fast transforms  



Recovery by using the  l1-norm 

Sparse signal reconstruction 

  
 
Sparse signal                 , matrix  
 
The system is underdetermined, but if card(x)<m, can recover signal. 
 
The problem is NP-hard in general. Typical relaxation,  
 
 
  



Signal recovery 

•  Shown by Candes & Tao and Donoho that under certain conditions 
on matrix A the sparse signal 

is recovered exactly by solving the convex relaxation 

•  The matrix property is called “restricted isometry property” 



Restricted Isometry Property 

•  A vector is said to be s-sparse if it has at most s nonzero entries. 
•  For a given s the isometric constant        of a matrix A is the smallest 

constant such that 

•  for any  s-sparse       . 



Why ||·||1 norm? 

`1 ball

`2 ball

`0 ball

Ax= b



Why ||·||1 norm? 

Ax= b



Why ||·||1 norm? 

Ax= b



Sparse regularized regression 



Least Squares Linear Regression 

  

  

  



Least squares problem 

Standard form of LS problem 

  
Includes solution of a system of linear equations Ax=b. 
 
May be used with additional linear constraints, e.g. 
 
 
 
Ridge regression 
 
 
  
¸ is the regularization parameter – the trade-off weight. 



Robust least squares regression 

Less straightforward than for SVM but it is possible 
to show that the above problem leads to  

Another interpretation – feature selection 



Lasso and other formulations  

Sparse regularized regression or Lasso: 
 
 
 
 
Sparse regressor selection 
 
 
 
 
Noisy signal recovery 



Connection between different formulations  

If solution exists 







Types of convex problems  

 
 
 
 
 
 

Linear programming problem 

Variable substitution:  



Types of convex problems  

 
 
 
 
 
 

Convex non-smooth objective  with 
linear inequality constraints 

Variable substitution:  



Types of convex problems  

Convex QP with linear inequality constraints  
 
 
 
 
 
 
 
SOCP 
 



Optimization approaches 



Lasso 

Regularized regression or Lasso: 
 
 
 
 
 
 
 
 
 
 

Convex QP with nonnegativity constraints 



Standard QP formulation 

Reformulate as 
 
 
 
 
 
 
 
 
 
How is it different from SVMs dual QP?  
 
 
 
 
 
 



Standard QP formulation 

Reformulate as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Standard QP formulation 

Reformulate as 
 
 
 
 
 
 
 
 
 
Features of this QP  

1.  Q=MTM, where M is m£n, with n>>m.  
2.  Forming Q is O(m2n), factorizing Q+D is O(m3) 
3.  There are no upper bound constraints. 

 
 
 
 
 
 

IPM complexity is O
(m3) per iteration 



Dual Problem 



Dual Problem 

Using: 



Lasso 

Primal-Dual pair of problems 
 
 
 
 
 
 
 
 
 
 



Optimality Conditions 


