Optimization Methods in Machine Learning

Katya Scheinberg

Lehigh University

katyas@lehigh.edu

Primal Semidefinite Programming Problem

min trace
$$(CX)$$
,
s.t. trace $(A_iX) = b_i, i = 1, ..., m$
 $X \in \mathbf{S}^n \ X \succeq 0$
 $C, A_i \in \mathbf{S}^n, b \in \mathbf{R}^m$.

SDP cone
$$K = \{x \in \mathbf{S}^n : X \succeq 0\}$$
 - self dual.

$$\max_{y,S\succeq 0} \min_{X} L(X,y,S) =$$

$$\operatorname{trace}(CX) - \sum_{i=1}^{m} y_i(\operatorname{trace}(A_iX) - b_i) - \operatorname{trace}(SX)$$

Primal Semidefinite Programming Problem

min trace
$$(CX)$$
,
s.t. trace $(A_iX) = b_i, i = 1, ..., m$
 $X \in \mathbf{S}^n \ X \succeq 0$
 $C, A_i \in \mathbf{S}^n, b \in \mathbf{R}^m$.

SDP cone
$$K = \{x \in \mathbf{S}^n : X \succeq 0\}$$
 - self dual.

Dual Semidefinite Programming Problem

max
$$b^T y$$
,
s.t. $\sum_{i=1}^{m} y_i A_i + S = C$
 $S \succeq 0$.

Duality gap and complementarity

$$A \bullet B = \operatorname{trace}(AB)$$

$$b^{T}y = \sum_{i} (A_{i} \bullet D)y_{i} = (\sum_{i} y_{i}A_{i}) \bullet D = C \bullet S - S \bullet X$$

Duality Gap:

$$S \bullet X \ge 0$$

 $X \bullet S = 0$ at optimality (given Slater condition)

$$X \bullet S = 0, X \succeq 0, S \succeq 0 \Rightarrow XS = SX = 0.$$

HW: prove the last statement

Complementarity of eignevalues

Assume \bar{X} and \bar{S} are optimal $\Rightarrow \bar{X}\bar{S} = \bar{S}\bar{X} = 0 \Rightarrow \bar{X}$ and \bar{S} commute, \Rightarrow

$$\bar{X} = \bar{Q}\bar{\Lambda}\bar{Q}^T,$$
$$\bar{S} = \bar{Q}\bar{W}\bar{Q}^T,$$

$$\bar{Q}\bar{Q}^T = I,$$

$$ar{\Lambda} = \left[\begin{array}{cc} ar{\lambda}_1 & & \\ & \ddots & \\ & ar{\lambda}_n \end{array} \right], \quad ar{W} = \left[\begin{array}{cc} ar{w}_1 & & \\ & \ddots & \\ & ar{w}_n \end{array} \right].$$

Columns of \bar{Q} - orthonormal basis of **eigenvectors** of \bar{X} and \bar{S} . $\bar{\lambda}_i, \bar{w}_i, i = 1, ..., n$ - **eigenvalues** of \bar{X} and \bar{S} , respectively.

 $\bar{X}\bar{S}=0 \Rightarrow \bar{\lambda}_i\bar{w}_i=0, \quad i=1,\ldots,n$ -complementarity condition

Complementarity of eigenvalues

$$\bar{\Lambda} = \begin{bmatrix} \bar{\lambda}_1 & & & & \\ & \ddots & & & \\ & & \bar{\lambda}_r & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{bmatrix} \qquad \bar{W} = \begin{bmatrix} \bar{0} & & & & \\ & \ddots & & & \\ & & 0 & & \\ & & w_{n-s+1} & & \\ & & & \ddots & \\ & & & w_n \end{bmatrix}$$

$$\operatorname{rank} \bar{X} = r, \ \operatorname{rank} \bar{S} = s,$$

from **complementarity** $\Rightarrow r + s \leq n$.

If $r + s = n - \bar{X}$ and \bar{S} are strictly complementary.

Convex QP with linear equality constraints.

min
$$x^{\top}Qx + c^{\top}x$$
,
s.t. $Ax = b$,
 $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m, Q \succeq 0$.
 $L(x, y) = x^{\top}Qx + c^{\top}x - y^{\top}(Ax - b)$

Optimality conditions

$$\nabla_x L(x, y) = Qx + c - y^\top A = 0,$$
$$Ax = b.$$

Closed form solution via solving a linear system

Convex QP with linear inequality constraints.

min
$$x^{\top}Qx + c^{\top}x$$
,
s.t. $Ax = b$,
 $x \ge 0$,

$$L(x,y) = x^{\top}Qx + c^{\top}x - y^{\top}(Ax - b)$$

Optimality conditions

$$Qx + c - y^{T}A - s = 0,$$

$$Ax = b,$$

$$s_{i}x_{i} = 0$$

No closed form solution

Convex Quadratically Constrained Quadratic Problems

min
$$x^{\top}Q_0x + c_0^{\top}x$$
,
s.t. $x^{\top}Q_ix + c_i^{\top}x \leq b_i, i = 1..., m$
 $Q_i \succeq 0 \ i = 0..., m$

Nonlinear Constraints, linear objective:

min
$$t$$

$$x^{\top}Q_0x + c_0^{\top}x \leq t$$
s.t. $x^{\top}Q_ix + c_i^{\top}x \leq b_i, i = 1..., m$

$$Q_i \succeq 0 \ i = 0..., m$$

Feasible set can be described as a convex cone ∩ affine set

Second Order Cone

$$x = (x_0, x_1, \dots, x_n), \, \bar{x} = (x_1, \dots, x_n)$$

 $K \in \mathbb{R}^{n+1}$ is a second order cone:

$$x \in K \Leftrightarrow x \ge_K 0 \Leftrightarrow x^0 \ge ||\bar{x}||,$$

Discovering SOCP cone

A convex quadratic constraint: $x^{\top}Qx + c^{\top}x \leq b, Q \succeq 0 \iff Q = LL^{\top}$

Factorize and rewrite:
$$x^\top L L^\top x + c^\top L^{-\top} L^\top x \leq b$$

Norm constraint
$$||L^\top x + \tfrac12 L^{-1} c||^2 \le b - \tfrac14 c^\top L^{-\top} L c$$

More general form
$$||Ax+b|| \leq c^{\top}x+d$$

Variable substitution
$$y = Ax + b \text{ and } t = c^{\top}x + d$$

SOCP:
$$||y|| \le t, \ (y,t) \in K$$

Second Order Cone Programming

min
$$c_1^{\top} x_1 + c_2^{\top} x_2 + \ldots + c_N^{\top} x_N$$

s.t. $A_1 x_1 + A_2 x_2 + \ldots + A_N x_N = b,$
 $x_i \ge_{K_i} 0,$

$$x_i = (x_i^0, \bar{x}_i), x_i \ge_{K_i} 0 \Leftrightarrow x_i^0 \ge ||\bar{x}_i||$$

max
$$b^{\top} y$$

s.t. $A_i^{\top} y + s_i = c_i, \quad i = 1, \dots, N$
 $s_i \ge_{K_i} 0,$

$$A_i \in \mathbf{R}^{m \times n_i}, c_i \in \mathbf{R}^{n_i}, x_i \in \mathbf{R}^{n_i}, s_i \in \mathbf{R}^{n_i}, i = 1, \dots, N, b \in \mathbf{R}^m \ y \in \mathbf{R}^m.$$

 $A = [A_1, A_2, \dots, A_N], x = (x_1^\top, x_2^\top, \dots, x_N^\top)^\top \text{ and } s = (s_1^\top, s_2^\top, \dots, s_N^\top)^\top.$

Complementarity Conditions

$$x_i^0 s_i^0 + \bar{x}_i^\top \bar{s}_i = 0 \quad i = 1, \dots, N$$

 $s_i^0 \bar{x}_i + x_i^0 \bar{s}_i = 0, \quad i = 1, \dots, N$

If we define an "arrow-shaped" matrix $\mathbf{Arr}(x_i)$ as

$$\mathbf{Arr}(x_i) = \left[egin{array}{cccc} x_i^0 & x_i^1 & \dots & x_i^{n_i} \ x_i^1 & x_i^0 & & & \ dots & \ddots & & \ x_i^{n_i} & & & x_i^0 \end{array}
ight],$$

and the block diagonal matrix $\mathbf{Arr}(x)$ as

$$\mathbf{Arr}(x) = \left[egin{array}{ccc} \mathbf{Arr}(x_1) & & & & \\ & \mathbf{Arr}(x_2) & & & \\ & & \ddots & & \\ & & & \mathbf{Arr}(x_N) \end{array}
ight],$$

then the complementarity conditions can be expressed as

$$\mathbf{Arr}(x)s = \mathbf{Arr}(s)x = \mathbf{Arr}(x)\mathbf{Arr}(s)e_0 = 0,$$

where

$$e^{0^T} = (e_1^{0^T}, e_2^{0^T}, \dots, e_N^{0^T}) \equiv (\underbrace{1, 0, \dots, 0}_{n_1}, \underbrace{1, 0, \dots, 0}_{n_2}, \dots, \underbrace{1, 0, \dots, 0}_{n_N})^{\top}.$$

Formulating SOCPs

Rotated SOCP cone

$$K_r = \{x = (x_0, x_1, \bar{x}) \in \mathbf{R}^{n+2} : x_0 x_1 \ge ||\bar{x}||^2, x_1, x_0 \ge 0\}$$

Equivalent to SOCP cone

$$||x_0 x_1|| \ge ||\bar{x}||^2 \iff \left\| \frac{2\bar{x}}{x_0 - x_1} \right\| \le x_0 + x_1$$

Example:
$$\min_{x} \sum_{i=1}^{m} \frac{1}{a_i^{\top} x + b_i}, \ a_i^{\top} x + b_i > 0, \forall i = 1, ..., m.$$

min
$$\sum_{i=1}^{m} u_i$$
$$v_i = a_i^{\top} x + b_i, \ i = 0 \dots, m$$
s.t.
$$1 \le u_i v_i, \ i = 1 \dots, m$$
$$u_i > 0 \ i = 0 \dots, m$$

Traditional methods

- Gradient descent
- Newton method
- Quazi-Newton method
- Conjugate gradient method

Unconstrained minimization

minimize
$$f(x)$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^* = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{dom} f$, $k = 0, 1, \ldots$ with

$$f(x^{(k)}) \to p^*$$

can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^*) = 0$$

Strong convexity and implications

f is strongly convex on S if there exists an m>0 such that

$$\nabla^2 f(x) \succeq mI$$
 for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

hence, S is bounded

• $p^{\star} > -\infty$, and for $x \in S$,

$$f(x) - p^* \le \frac{1}{2m} ||\nabla f(x)||_2^2$$

useful as stopping criterion (if you know m)

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (i.e., Δx is a descent direction)

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

• starting at t=1, repeat $t:=\beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \leq t_0$

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$. until stopping criterion is satisfied.
- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on $m, x^{(0)}$, line search type

very simple, but often very slow; rarely used in practice

quadratic problem in R²

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- ullet very slow if $\gamma\gg 1$ or $\gamma\ll 1$
- example for $\gamma = 10$:

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\Delta x_{\text{nsd}} = \operatorname{argmin} \{ \nabla f(x)^T v \mid ||v|| = 1 \}$$

interpretation: for small v, $f(x+v) \approx f(x) + \nabla f(x)^T v$; direction $\Delta x_{\rm nsd}$ is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

satisfies $\nabla f(x)^T \Delta_{\mathrm{sd}} = -\|\nabla f(x)\|_*^2$

steepest descent method

- general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

examples

- Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $\|x\|_P=(x^TPx)^{1/2}$ $(P\in \mathbf{S}^n_{++})$: $\Delta x_{\mathrm{sd}}=-P^{-1}\nabla f(x)$
- ℓ_1 -norm: $\Delta x_{\rm sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = ||\nabla f(x)||_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm:

Slides from L. Vandenberghe http://www.ee.ucla.edu/~vandenbe/ee236c.html

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$

shows choice of P has strong effect on speed of convergence

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

• $x + \Delta x_{\rm nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{\rm nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

Slides from L. Vandenberghe http://www.ee.ucla.edu/~vandenbe/ee236c.html

ullet $\Delta x_{
m nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x+v\mid v^T\nabla^2f(x)v=1\}$ arrow shows $-\nabla f(x)$

Slides from L. Vandenberghe http://www.ee.ucla.edu/~vandenbe/ee236c.html

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

Classical convergence analysis

assumptions

- ullet f strongly convex on S with constant m
- $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- \bullet function value decreases by at least γ
- if $p^{\star} > -\infty$, this phase ends after at most $(f(x^{(0)}) p^{\star})/\gamma$ iterations

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- all iterations use step size t=1
- $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

conclusion: number of iterations until $f(x) - p^* \le \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on m, L, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- ullet in practice, constants $m,\ L$ (hence $\gamma,\ \epsilon_0$) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- convex $f: \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \le 2f''(x)^{3/2}$ for all $x \in \operatorname{\mathbf{dom}} f$
- $f: \mathbf{R}^n \to \mathbf{R}$ is self-concordant if g(t) = f(x + tv) is self-concordant for all $x \in \operatorname{dom} f, v \in \mathbf{R}^n$

examples on R

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- negative entropy plus negative logarithm: $f(x) = x \log x \log x$

affine invariance: if $f: \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}'''(y) = a^3 f'''(ay + b), \qquad \tilde{f}''(y) = a^2 f''(ay + b)$$

Self-concordant calculus

properties

- preserved under positive scaling $\alpha \geq 1$, and sum
- preserved under composition with affine function
- if g is convex with $\operatorname{dom} g = \mathbf{R}_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

- $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$ on $\{x \mid a_i^T x < b_i, i = 1, ..., m\}$
- $f(X) = -\log \det X$ on \mathbf{S}_{++}^n
- $f(x) = -\log(y^2 x^T x)$ on $\{(x, y) \mid ||x||_2 < y\}$

Interior Point Methods: a history

- ² Ellipsoid Method, Nemirovskii, 1970's. No complexity result.
- ² Polynomial Ellipsoid Method for LP, Khachian 1979. Not practical.
- ² Karmarkar's method, 1984, first "efficient" interior point method.
- ² Primal-dual path following methods and others late 1980's. Very efficient practical methods.
- ² Extensions to other classes of convex problems. Early 1990's.
- ² General theory of interior point methods, self-concordant barriers, Nesterov and Nemirovskii, 1990's.

Self-concordant barrier

min
$$c^T x - \mu B_K(x)$$
,
s.t. $Ax = b$,
 $x \in \mathbf{R}^n \ x \succ_K 0$
 $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$.

Log barrier for LP

min
$$c^T x - \mu \sum_{i=1}^n \log x_i$$
,
s.t. $Ax = b$,
 $x \in \mathbf{R}^n \ x > 0$
 $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$.

Log-barrier for SDP

min trace
$$(CX) - \mu \log \det X$$
,
s.t. trace $(A_iX) = b_i, i = 1, ..., m$
 $X \in \mathbf{S}^n \ X \succ 0$
 $C, A_i \in \mathbf{S}^n, b \in \mathbf{R}^m$.

Log barrier for SOCP

min
$$\sum_{i=1}^{N} c_i^{\top} x_i - \mu \sum_{i=1}^{N} \log((x_i^0)^2 - ||\bar{x}_i||^2)$$
s.t.
$$A_1 x_1 + A_2 x_2 + \ldots + A_N x_N = b,$$

$$x_i >_{K_i} 0,$$

Primal Linear Programming Problem

min
$$c^T x$$
,
s.t. $Ax = b$,
 $x \in \mathbf{R}^n \ x \ge 0$

Dual Linear Programming Problem

$$\max \quad b^{T} y,$$
s.t.
$$A^{T} y + s = c$$

$$s \ge 0$$

Optimality (KKT) conditions

$$Ax = b$$

$$A^{\top}y + s = c,$$

$$x_i s_i = 0, \quad \forall i$$

$$x, s \ge 0$$

 $x_i s_i = 0 \ \forall i$ - complementarity, $x_i + s_i > 0 \ \forall i$ - strict complementarity.

Consider the following "barrier" problem

$$\min c^{\top} x - \mu \sum_{i} \ln x_{i} \quad \text{s.t. } Ax = b,$$

Solution for a given μ

$$(x(\mu), y(\mu), s(\mu))$$

As
$$\mu \to 0$$
,

$$(x(\mu), y(\mu), s(\mu)) \to (x^*, y^*, s^*)$$

Apply Newton method to the (self-concordant) barrier problem (i.e. to its optimality conditions)

Apply one or two steps of Newton method for a given μ and then reduce μ

KKT conditions for primal central path

$$\min c^{\top} x - \mu \sum_{i} \ln x_{i}$$
 s.t. $Ax = b$,

$$Ax = b$$

$$A^{\top}y + \mu X^{-1}e = c$$

$$x, s > 0$$

(where $X = \operatorname{diag}(x)$ and $e = (1, \dots, 1)^{\top}$).

$$Ax = b$$

$$A^{\top}y + s = c$$

$$s = \mu X^{-1}e$$

$$x, s > 0$$

Consider the following optimization problem

$$\min c^{\top} x - \mu \sum_{i} \ln x_{i} \quad \text{s.t. } Ax = b,$$

Solution for a given μ

$$(x(\mu), y(\mu), s(\mu))$$

As
$$\mu \to 0$$
,

$$(x(\mu), y(\mu), s(\mu)) \to (x^*, y^*, s^*)$$

Optimality conditions for the barrier problem

Apply Newton method to the system of nonlinear equations

$$Ax = b$$

$$A^{\top}y + s = c,$$

$$s_i = \frac{\mu}{x_i}, \quad \forall i$$

$$x, s \ge 0$$

It exists iff there is nonempty interior for the primal and dual problems.

Interior point methods, the main idea

- Each point on the central path can be approximated by applying Newton method to the perturbed KKT system.
- Start at some point near the central path for some value of μ , reduce μ .
- Make one or more Newton steps toward the solution with the new value of μ .
- Keep driving μ to 0, always staying close to the solutions of the central path.
- This prevents the iterates from getting trapped near the boundary and keeps them nicely central.

KKT conditions for dual and primal-dual central paths

$$\max b^{\top} y + \mu \sum_{i} \ln s_{i} \quad \text{s.t. } A^{\top} y + s = c,$$

$$Ax = b$$

$$A^{\top} y + s = c$$

$$x = \mu S^{-1} e$$

$$x, s > 0$$

(where
$$S = \operatorname{diag}(s)$$
 and $e = (1, \dots, 1)^{\top}$).

$$Ax = b$$

$$A^{\top}y + s = c$$

$$Xs = \mu e$$

$$x, s > 0$$

Newton step

$$A\Delta x = b - Ax$$
$$A^{\top} \Delta y + \Delta s = c - A^{\top} y - s$$

$$\Delta s = -\mu X^{-2} \Delta x$$

Primal method

$$X\Delta s + S\Delta x = \mu e - Xs$$

Primal-dual method

$$\Delta x = \mu S^{-2}e$$

Dual method

Predictor-Corrector steps

$$A\Delta x = b - Ax$$

$$A^{\top} \Delta y + \Delta s = c - A^{\top} y - s$$

$$X\Delta s + S\Delta x = \sigma \mu e - Xs$$

 $\sigma = 0$ for predictor step and $\sigma > 0$ for corrector step.

Solve the system of linear equations twice with the same matrix

Predictor-Corrector steps

$$A\Delta x = b - Ax$$

$$A^{\top} \Delta y + \Delta s = c - A^{\top} y - s$$

$$\Delta s = \sigma \mu X^{-1} e - Se - X^{-1} S \Delta x$$

$$\downarrow \downarrow$$

$$A\Delta x = b - Ax$$

$$A^{\top} \Delta y - X^{-1} S \Delta x = c - A^{\top} y - s - \sigma \mu X^{-1} e + Se$$

$$\left[\begin{array}{cc} -D & A^\top \\ A & 0 \end{array} \right] \left(\begin{array}{c} \Delta x \\ \Delta y \end{array} \right) = \left(\begin{array}{c} r_x \\ r_y \end{array} \right) \qquad \text{Augmented}$$
 system

$$D = X^{-1}S$$
 (or $D = S^{-2}$ or $D = X^{-2}$).

Solving the augmented system

$$\left[\begin{array}{cc} -D & A \\ A^{\top} & 0 \end{array}\right] \left(\begin{array}{c} \Delta y \\ \Delta s \end{array}\right) = \left(\begin{array}{c} r_y \\ r_s \end{array}\right)$$

Schur complement system: $AD^{-1}A^{\top}\Delta y = r$.

Normal equation

Cholesky Factorization

$$AD^{-1}A^{\top} = LL^{\top}$$
.

- Numerically very stable!
- •The sparsity pattern of L remains the same at each iteration
- •Depends on sparsity pattern of A and ordering of rows of A
- •Can compute the pattern in advance (symbolic factorization)
- •The work for each factorization depends on sparsity pattern, can be as little as O(n) if very sparse and as much as O(n^3) (if dense).

Complexity per iteration

- At each iteration form and factorize $AD^{-1}A^{\top}$, where D is diagonal and G is fixed.
- $A \in \mathbf{R}^{m \times n}$ hence factorizing $AD^{-1}A^{\top}$ is $O(m^3)$, in general.
- The sparsity structure of $AD^{-1}A^{\top}$ and its factors is the same at all iterations.
- The work to form $AD^{-1}A^{\top} \sim \#$ of nonzeros in $AD^{-1}A^{\top}$. The work to factorize $\sim \#$ of nonzeros in the Cholesky factor.

Complexity and performance

- Theoretical complexity: $O(\sqrt{n}L)$ iterations for short step methods and O(nL) iteration for long step methods. In practice everyone uses long step methods.
- In practice almost always < 50 iterations, independent of the size.
- In case of multiple solutions converges to the center of the optimal face, not to a vertex.
- Never attains the the exact solution! For LP there are polynomial crossover techniques to obtain an exact vertex from the approximate (central) solution.
- Does not benefit from warm start (not much, anyway)

Convex QP with linear inequality constraints.

min
$$x^{\top}Qx + c^{\top}x$$
,
s.t. $Ax = b$,
 $x \ge 0$,

$$L(x,y) = x^{\mathsf{T}}Qx + c^{\mathsf{T}}x - y^{\mathsf{T}}(Ax - b) - s^{\mathsf{T}}x$$

Optimality conditions

$$Qx + c - y^{T}A - s = 0,$$

$$Ax = b,$$

$$s_{i}x_{i} = 0$$

$$x, s \ge 0$$

Interior Point method

Consider the following optimization problem

$$\min \frac{1}{2} x^{\top} Q x + c^{\top} x - \mu \sum_{i} \ln x_{i} \quad \text{s.t. } A x = b,$$

 $(x(\mu), y(\mu), s(\mu))$ is the central path.

$$Ax = b$$

$$-Qx + A^{\top}y + s = c$$

$$s = \mu X^{-1}$$

$$x, s > 0$$

or

$$Xs = \mu e$$

Perturb complementarity conditions in a uniform way

Newton Step

$$S\Delta x + X\Delta s = \mu e - Xs$$

$$A\Delta x = r_p$$

$$-Q\Delta x + A^{\top} \Delta y + \Delta s = r_d$$

Augmented system

$$A\Delta x = r_p$$

$$A^{\top} \Delta y - (X^{-1}S + Q)\Delta x = r_d - X^{-1}(\mu e - Xs)$$

Normal Equation (Schur Complement System)

$$A(X^{-1}S + Q)^{-1}A^{\top}\Delta y = r$$

Complexity per iteration

- At each iteration form and factorize (Q+D) and $A(Q+D)^{-1}A^{\top}$, where D is diagonal and G is fixed.
- $A \in \mathbf{R}^{m \times n}$ hence factorizing (Q + D) is $O(n^3)$ and factorizing $A(Q + D)^{-1}A^{\top}$ is $O(m^3)$, in general.
- The sparsity structure of $A(Q+D)^{-1}A^{\top}$ and its factors is the same at all iterations.
- The work to form $A(Q+D)^{-1}A^{\top} \sim \#$ of nonzeros in $A(Q+D)^{-1}A^{\top}$. The work to factorize $\sim \#$ of nonzeros in the Cholesky factor. Same for factorizing Q+D.

Primal Semidefinite Programming Problem

min trace
$$(CX)$$
,
s.t. trace $(A_iX) = b_i, i = 1, ..., m$
 $X \in \mathbf{S}^n \ X \succeq 0$
 $C, A_i \in \mathbf{S}^n, b \in \mathbf{R}^m$.

SDP cone
$$K = \{x \in \mathbf{S}^n : X \succeq 0\}$$
 - self dual.

Dual Semidefinite Programming Problem

max
$$b^T y$$
,
s.t. $\sum_{i=1}^{m} y_i A_i + S = C$
 $S \succeq 0$.

Duality gap and complementarity

$$A \bullet B = \operatorname{trace}(AB)$$

$$b^{T}y = \sum_{i} (A_{i} \bullet D)y_{i} = (\sum_{i} y_{i}A_{i}) \bullet D = C \bullet S - S \bullet X$$

Duality Gap:

$$S \bullet X \geq 0$$

Complementarity:

$$XS = SX = 0.$$

$$(PCP) \qquad \min \qquad C \bullet X - \mu(\ln \det X)$$
s.t.
$$A_i \bullet X = b_i, \quad i = 1, \dots, m$$

$$X \succ 0$$

Central Path exists iff both primal and dual problems have interior solutions

Optimality conditions for (PCP):

$$L(X,y) = C \bullet X - \mu(\ln \det X) - \sum_{i=1}^{m} y_i (A_i \bullet X - b_i)$$
$$\nabla_X L(X,y) = C - \mu X^{-1} - \sum_{i=1}^{m} y_i A_i = 0.$$

 $C \bullet X - \mu(\ln \det X)$ is strictly convex for $\mu > 0$ thus the solution for (PCP) is unique and satisfies:

(CP)
$$S = \mu X^{-1}$$

$$A_i \bullet X = b_i, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} y_i A_i + S = C,$$

$$X, S \succ 0$$

$$X(\mu)$$
 and $S(\mu)$ satisfy (CP) $\Rightarrow S(\mu) = \mu X(\mu)^{-1} \Rightarrow$
 $X(\mu) \bullet S(\mu) = \mu n.$
 $\mu \to 0 \Rightarrow S(\mu) \bullet X(\mu) \to 0.$

$$X = \mu S^{-1}$$

$$XS = \mu I$$

$$\frac{1}{2}(XS + SX) = \mu I$$

Computing a step

Newton step

$$X\Delta S + \Delta XS = \mu I - XS$$

$$A_i \bullet \Delta X = b_i - A_i \bullet X, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} \Delta y_i A_i + \Delta S = C - \sum_{i=1}^{m} y_i A_i + S,$$

$$X, S \succ 0$$

$$\Delta X + X \Delta S S^{-1} = \mu S^{-1} - X$$

To symmetrize: $\Delta X = -\frac{1}{2}(X\Delta SS^{-1} + S^{-1}\Delta SX) + \mu S^{-1} - X$

Computing a step

The system to solve on each step

$$\begin{bmatrix} -M & A \\ A^{\top} & 0 \end{bmatrix} \begin{pmatrix} \Delta y \\ \Delta X \end{pmatrix} = \begin{pmatrix} r_y \\ r_x \end{pmatrix}$$

$$M = \frac{1}{2}(X \otimes S^{-1} + S^{-1} \otimes X)$$

(Kronecker product $A \otimes B = \{A_{ij}B_{kl}\}_{(ijkl)}$)

For dual direction $M = S^{-1} \otimes S^{-1}$.

Cholesky factorization

The normal equaltion matrix to factorize on each step

$$AM^{-1}A^{\top}$$

$$M = \frac{1}{2}(X \otimes S^{-1} + S^{-1} \otimes X)$$
 - $n^2 \times n^2$ almost dense matrix

$$M = \frac{1}{2}(S \otimes S)$$
- $n^2 \times n^2$ sparse (maybe) matrix

$$M = \frac{1}{2}(W \otimes W)$$
 - $n^2 \times n^2$ dense matrix $(W \text{ is a symmetric scaling matrix such as } WXW = S$ - Nesterov-Todd).

Each iteration may require O(n⁶) operations and O(n⁴) memory.

Second Order Cone Programming

min
$$c_1^{\top} x_1 + c_2^{\top} x_2 + \ldots + c_N^{\top} x_N$$

s.t. $A_1 x_1 + A_2 x_2 + \ldots + A_N x_N = b,$
 $x_i \ge_{K_i} 0,$

$$x_i = (x_i^0, \bar{x}_i), x_i \ge_{K_i} 0 \Leftrightarrow x_i^0 \ge ||\bar{x}_i||$$

max
$$b^{\top} y$$

s.t. $A_i^{\top} y + s_i = c_i, \quad i = 1, \dots, N$
 $s_i \ge_{K_i} 0,$

$$A_i \in \mathbf{R}^{m \times n_i}, c_i \in \mathbf{R}^{n_i}, x_i \in \mathbf{R}^{n_i}, s_i \in \mathbf{R}^{n_i}, i = 1, \dots, N, b \in \mathbf{R}^m \ y \in \mathbf{R}^m.$$

 $A = [A_1, A_2, \dots, A_N], x = (x_1^\top, x_2^\top, \dots, x_N^\top)^\top \text{ and } s = (s_1^\top, s_2^\top, \dots, s_N^\top)^\top.$

Complementarity Conditions

$$x_i^0 s_i^0 + \bar{x}_i^\top \bar{s}_i = 0 \quad i = 1, \dots, N$$

 $s_i^0 \bar{x}_i + x_i^0 \bar{s}_i = 0, \quad i = 1, \dots, N$

If we define an "arrow-shaped" matrix $\mathbf{Arr}(x_i)$ as

$$\mathbf{Arr}(x_i) = \left[egin{array}{cccc} x_i^0 & x_i^1 & \dots & x_i^{n_i} \ x_i^1 & x_i^0 & & & \ dots & \ddots & & \ x_i^{n_i} & & & x_i^0 \end{array}
ight],$$

and the block diagonal matrix $\mathbf{Arr}(x)$ as

$$\mathbf{Arr}(x) = \left[egin{array}{ccc} \mathbf{Arr}(x_1) & & & & \\ & \mathbf{Arr}(x_2) & & & \\ & & \ddots & & \\ & & & \mathbf{Arr}(x_N) \end{array}
ight],$$

then the complementarity conditions can be expressed as

$$\mathbf{Arr}(x)s = \mathbf{Arr}(s)x = \mathbf{Arr}(x)\mathbf{Arr}(s)e_0 = 0,$$

where

$$e^{0^T} = (e_1^{0^T}, e_2^{0^T}, \dots, e_N^{0^T}) \equiv (\underbrace{1, 0, \dots, 0}_{n_1}, \underbrace{1, 0, \dots, 0}_{n_2}, \dots, \underbrace{1, 0, \dots, 0}_{n_N})^{\top}.$$

Log-barrier formulation

min
$$c^{\top}x + \mu \sum_{i=1}^{N} \ln((x_i^0)^2 - \|\bar{x}_i\|^2)$$

s.t. $Ax = b,$
 $x_i \ge_{K_i} 0,$

Perturbed optimality conditions

$$x_i^0 s_i^0 + \bar{x}_i^\top \bar{s}_i = \mu \quad i = 1, \dots, N$$

 $s_i^0 \bar{x}_i + x_i^0 \bar{s}_i = 0, \quad i = 1, \dots, N$

The optimality conditions

$$Ax = b$$

 $A^{\top}y + s = c$
 $\mathbf{Arr}(x)s = \mathbf{Arr}(s)x = \mathbf{Arr}(x)\mathbf{Arr}(s)e_0 = \mu e_0,$

where

$$e^{0^T} = (e_1^{0^T}, e_2^{0^T}, \dots, e_N^{0^T}) \equiv (\underbrace{1, 0, \dots, 0}_{n_1}, \underbrace{1, 0, \dots, 0}_{n_2}, \dots, \underbrace{1, 0, \dots, 0}_{n_N})^{\top}.$$

Newton step

$$\mathbf{Arr}(x)\Delta s + \mathbf{Arr}(s)\Delta x = \mu e_0 - \mathbf{Arr}(x)\mathbf{Arr}(s)e_0,$$

$$A\Delta x = b - Ax,$$

$$A^{\top}\Delta y + \Delta s = c - A^{\top}y - s$$

$$\begin{bmatrix} -F & A \\ A^{\top} & 0 \end{bmatrix} \begin{pmatrix} \Delta y \\ \Delta x \end{pmatrix} = \begin{pmatrix} r_y \\ r_s \end{pmatrix}$$
$$F = \mathbf{Arr}(x)^{-1}\mathbf{Arr}(s), F^{-1} = \mathbf{Arr}(s)^{-1}\mathbf{Arr}(x),$$

$$(\mathbf{Arr}(x_i))^{-1} = \frac{1}{\gamma^2(x_i)} \begin{bmatrix} x_i^0 & -\bar{x}_i^\top \\ -\bar{x}_i & \frac{\gamma^2(x_i)}{x_0} I - \bar{x}_i \bar{x}_i^\top \end{bmatrix},$$

$$\gamma(x_i) = \sqrt{(x_i^0)^2 - \|\bar{x}_i\|^2}.$$

Optimization methods for convex problems

- Interior Point methods
 - Best iteration complexity $O(\log(1/\epsilon))$, in practice <50.
 - Worst per-iteration complexity (sometimes prohibitive)
- Active set methods
 - Exponential complexity in theory, often linear in practice.
 - Better per iteration complexity.
- Gradient based methods
 - $O(1/\sqrt{\epsilon})$ or $O(1/\epsilon)$ iterations
 - Matrix/vector multiplication per iteration
- Nonsmooth gradient based methods
 - $O(1/\epsilon)$ or $O(1/\epsilon^2)$ iterations
 - Matrix/vector multiplication per iteration
- Block coordinate descent
 - Iteration complexity ranges from unknown to similar to FOMs.
 - Per iteration complexity can be constant.

Homework

1. Given a matrix
$$M = \begin{bmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{n1} & \dots & M_{nm} \end{bmatrix} \in \mathbf{R}^{n \times m}$$
 prove

- $||M||_2 = \sigma_{max}$ where σ_{max} is the largest singular value of M.
- $||M||_1 = \max_j \sum_{i=1}^n |M_{ij}|$ matrix l_1 -norm
- $||M||_{\infty} = \max_{i} \sum_{j=1}^{m} |M_{ij}|$ l_{∞} -norm
- **2.** Let cone $K = \{(x, t) : ||x||_1 \le t\}$. Prove that $K^* = \{(x, t) : ||x||_{\infty} \le t\}$.
- **3**. Prove for two symmetric matrices X and S that if $\operatorname{trace}(XS) = 0$, $X \succeq 0$ and $S \succeq 0$ then XS = SX = 0.