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Primal Semidefinite Programming Problem

min trace(CX),

s.t. trace(A; X)=0b;, i=1,....,m
XeS"X =0
C,A;, € S". be R™.

SDP cone K = {x € S": X > 0} - self dual.

in L(X,y,S5) =
max min L(X, y, 5)

m

trace(C'X) — Z y; (trace(A; X)) — b;) — trace(SX)

1=1



Primal Semidefinite Programming Problem
min trace(C'X),
s.t. trace(A4; X)=1b;, i=1,...,m
XeS"X =0
C,A;, €S",be R™.

SDP cone K ={x € S": X = 0} - self dual.

Dual Semidefinite Programming Problem

T
max b y,

1=1

S = 0.



Duality gap and complementarity

A e B = trace(AB)

Duality Gap:
Se X >0

X ¢ S =0 at optimality (given Slater condition)
XeS=0X-0S=0=XS=5X=0.

HW: prove the last statement



Complementarity of eignevalues
Assume X and S are optimal = XS =SX =0 = X and S commute, =

X = QAQ",
5=QWwQ".
QQ" =1,
— 5\1 - — wl -
/_\ — . W =
L 5\” . | U_]n |

Columns of @ - orthonormal basis of eigenvectors of X and S.
Ai, Wi, 1 =1,...,n - eigenvalues of X and S, respectively.

XS=0=\w; =0, i=1,...,n—complementarity condition



=

Complementarity of eigenvalues

rankX = r, rankS = s,

from complementarity = r + s < n.

If r+s=n — X and S are strictly complementary.




Convex QP with linear equality constraints.
min ' Qx +¢' x,
s.t. Ax = b,
AcR™" beR™,Q = 0.

Liz,y)=2'Qx+c'z —y' (Ax —b)

Optimality conditions

VQ;L(CU,:U) — QCB—I—C—yTA:O,
Ax =b.

Closed form solution via solving a linear system



Convex QP with linear inequality constraints.

min z' Qr+c¢'z,
s.t.  Ax =0,
x > 0,

Liz,y)=2'Qx+c'z —y' (Ax — b)
Optimality conditions
Qr+c—y' A—s=0,
Ax = b,

s;x; =0 -

.~ V(")

No closed form solution



Convex Quadratically Constrained Quadratic Problems

min :z:TQox—l—cOTa;,
S.t. xTQix—l—ciTxgbi,i:l...,m

Nonlinear Constraints, linear objective:

min ¢
' Qor 4 cgx <t
s.t. xTQiaz—l—c;bei,i:l...,m

QZEOZ:O,m

Feasible set can be described as a convex cone N affine set



Second Order Cone
= (o, Z1,...,%n), T=(T1,...,%n)

K& R is a second order cone:

reK x>0 < 2> |7/,




Discovering SOCP cone

A convex quadratic constraint: ' Qr +c¢'2 < b, Q>0 < Q=LL"

Factorize and rewrite: x'LL'e+c¢'L-"LTx <b
Norm constraint ||LT£IZ -+ %L_chQ < b— iCTL_TLC
More general form ||A£U ~+ b|| <c'x+d

Variable substitution y=Axr+bandt= c'x + d

SOCP: lyll <t (1) € K



A=

A, eR™™ ;e RY, z; e R, s, cR",¢1=1,..., N, be R™ y ¢ R™.
[Al,AQ,...,AN],ZU = (.CUlT,CEQT,...,QINT)T and s = (S T T

Second Order Cone Programming

min clTxl —I—CQTZBQ —I—...—I—CNTSBN
S.t. A1$1+AQCE2—|—...—|—AN£UNZZ),
z; >k, 0,

max by
S.t. AiTy—FSZ':CZ', 221,,N
Sq ZK,L 07

1 595 °7SNT)T°



Complementarity Conditions

00 | ~T= _ .

x;8, +x; & = 0 +=1,...,N
0- = -
s;i+x;5 = 0, +=1,...,N

If we define an “arrow-shaped” matrix Arr(z;) as

B 0 1 g ]
:1[;_?l xé X,
Ly, T
AI‘I’(%'Z') = . ) 3
n; 0
| X Ly ]

and the block diagonal matrix Arr(z) as

[ Arr(zp)
Arr(xs)

Arr(z) =

Arr(xzy)

then the complementarity conditions can be expressed as

Arr(z)s = Arr(s)x = Arr(x)Arr(s)eg =0,

where

ol _ , 0T of o\ _
e’ =(e] ,e5 ,...,ex ) =(1,0,...,0,1,0,...,0,...
N _/ N\ ~~ \ 7




Formulating SOCPs

Rotated SOCP cone

K, ={z = (z0,21,%) € R"™ : zoz1 > ||Z||?, 21,20 > 0}

Equivalent to SOCP cone

_ 2T
vor1 > |27 ‘ || < 2o+ 21
Lo — L1
. m 1 :
Example: min, ) ._, e a;'v+b; >0,Vi=1,...,m.
m
min Zuz
i=1
. T .
v, =a; x+0b,1=0...,m
s.t. 1 <ww;, 1=1...,m



Unconstrained Optimization




Traditional methods

Gradient descent

Newton method
Quazi-Newton method
Conjugate gradient method



Unconstrained minimization

minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z\*) € dom f, k =0, 1,... with
fa®) = p’

e can be interpreted as iterative methods for solving optimality condition

Vilx*)=0

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all z € S

implications
e for z,y € S,

fly) = flz)+ V@) (y— )+ "';—lnr —y

hence, S is bounded
e p* > —o¢, and for z € S,
1

7 () ||2
— ||V £(2)]3

f(z)—p* <

useful as stopping criterion (if you know m)

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html
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Descent methods

p AN — 20 L AR with fa®HD)) < f(z®)

e other notations: 7™ = r + tAr, r := r + tAr

e Az is the step, or search direction; t is the step size, or step length

e from convexity, f(z*) < f(x) implies Vf(z)' Az < 0
(i.e., Ax is a descent direction)

General descent method.

—

given a starting point = € dom f.

repeat
1. Determine a descent direction A x.

2. Line search. Choose a step size t > 0.
3. Update. © := = + tAzx.
until stopping criterion is satisfied.

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Line search types

exact line search: t = argmin, ., f(z + tAz)

backtracking line search (with parameters a € (0,1/2), 3 € (0,1))

e starting at £ = 1, repeat t := St until

flz+tAz) < f(z) + atV f(z)T Ax

e graphical interpretation: backtrack until t < {5

S f(x + tAz)
@) F V@) A @)+ atV (@) A
t=0 to !

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Gradient descent method

general descent method with Az = —V f(x)

—

given a starting point # € dom f.

repeat
1. Az := —V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. = := = + tAwx.

until stopping criterion is satisfied.

e stopping criterion usually of the form [V f(z)|[, < €

e convergence result: for strongly convex f,

f(z®) = p* < F(f(2) - p7)

(0)

c¢ < (0,1) depends on m, ', line search type

e very simple, but often very slow; rarely used in practice

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



quadratic problem in R*
f(z) = (1/2)(2F + yz3) (v > 0)

with exact line search, starting at ") = (v, 1):

Ay K PR
RONN Gt L _ (]
ol ' Yy + 1 ' 2 ~ =+ 1

e veryslowif v > 1lorvy < 1

e example for v = 10:

4_ | I I -
w I:I:
(D
A4t |
—II'D lfl' 1ID

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Steepest descent method

normalized steepest descent direction (at z, for norm || - ||):
Arysq = argmin{V f (il7)T‘l’ | ||v]| = 1}

interpretation: for small v, f(z +v) =~ f(z)+ Vf(z) v;
direction Ax,.q is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
AIsd = ||vf(l7)||*Al7nsd

satisfies V f(2)T Asq = — ||V f(2)]|?
steepest descent method

e general descent method with Az = Az,

e convergence properties similar to gradient descent

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



examples

e Euclidean norm: Az, = -V f(x)

e quadratic norm ||z|p = (! Px)"/? (P €S! ) Aryg=—P~'Vf(x)
e /1-norm: Aryg = —(0f(x)/0x;)e;, where |0f(x)/0x;| = ||V f(z)]

unit balls and normalized steepest descent directions for a quadratic norm
and the #;-norm:

-~V f(x)

ﬁil’nsd

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



choice of norm for steepest descent

()
:]'_‘_'lk !
20)
' (2]

401) 2@ —_—

(1)

e steepest descent with backtracking line search for two quadratic norms

e ellipses show {z | ||z — z®)||p =1}

e equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables T = P1/%x

shows choice of P has strong effect on speed of convergence

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Newton step

Az = —V2f(z) 'Vf(x)
interpretations

e ©+ Axy minimizes second order approximation

E

flr+v)= flz)+ V() v+ ét!T?zf(:r)t-‘

e =+ Ax,; solves linearized optimality condition

Vilr+v)~Vf(z+v)=VF(z)+Vif(z)v=0

-

7
N f (z + .&:{rni}fj{ff + Awnt))
(z, flz)) (=, f'(x))
(2 + Acene, f (2 + Agy)) f

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



e Ax,; is steepest descent direction at x in local Hessian norm

. 1/2
vl g2 fz) = (! V2 f(x)u)

dashed lines are contour lines of f; ellipse is {z + v | v! V2 f(z)v = 1}

arrow shows —V f(x)

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Newton’'s method

given a starting point = € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Azy = =V f(2) 'V f(z); A= V() Vif(2)'V ().
2. Stopping criterion. quit if A*/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := = + tAwxy;.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(Ty) with starting point y(@ = T—12(% are

ynm — T —1,(k)

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Classical convergence analysis

assumptions

e [ strongly convex on S with constant m

e V2f is Lipschitz continuous on S, with constant L > 0:
IV2f(z) = V2f(y)|l2 < Llz — vl
(L measures how well f can be approximated by a quadratic function)

outline: there exist constants i € (0,m?/L), v > 0 such that

o if [Vf(z)|2=mn, then fz¥ 1) — f(z™) < —
o if |Vf(z)||z<mn, then

(L i\
SV A e < (5597

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



damped Newton phase (||V f(z)||2 = )
e most iterations require backtracking steps

e function value decreases by at least ~

e if p* > —0o0, this phase ends after at most (f(z'Y)) — p*)/~ iterations

quadratically convergent phase (|Vf(z)|2 < n)

e all iterations use step size t = 1

e |V f(z)||2 converges to zero quadratically: if ||V f(z*))||2 < n, then

ol—k

al—k
L L ‘ - 1\ 2
5l VI@ < (5l VI6hle) < (3) . 1z

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



conclusion: number of iterations until f(x) — p* < € is bounded above by

f(z™) —p*

Y

+ log, log,(€o/€)

e 7, €y are constants that depend on m, L, =%

e second term is small (of the order of 6) and almost constant for
practical purposes

e in practice, constants m, L (hence 7, €;) are usually unknown

e provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Self-concordance

shortcomings of classical convergence analysis

e depends on unknown constants (m, L, ... )

e bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions ('self-concordant’ functions)

e developed to analyze polynomial-time interior-point methods for convex
optimization

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Self-concordant functions

definition

e convex f: R — Ris self-concordant if | f"”/(x)| < 2f"(x)3/* for all
r < dom f

e f:R" — R is self-concordant if g(t) = f(x + tv) is self-concordant for
all z € dom f, v € R”

examples on R

e linear and quadratic functions

e negative logarithm f(x) = —logx

e negative entropy plus negative logarithm: f(z) = xrlogz — logx
affine invariance: if f: R — R is s.c., then f(y) = flay + b) is s.c.
f’"(y) _ a‘3fm(ay + b), f//(y) — a,zf"(a.y + b)

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Self-concordant calculus

properties
e preserved under positive scaling & > 1, and sum

e preserved under composition with affine function

o if g is convex with dom g =R, and |¢"'(z)| < 3¢"(z)/z then

f(z) = log(—g(z)) — logx

is self-concordant

examples: properties can be used to show that the following are s.c.
o f(r)=—-Y " log(b; —alz)on {x|alx <b, i=1,...,m}
e f(X)=—logdet X on S}

o f(r)=—log(y?—zTz)on {(z,y)||z]: <y}

Slides from L. Vandenberghe

http://www.ee.ucla.edu/~vandenbe/ee236¢.html



Interior Point Methods




Interior Point Methods: a history

Ellipsoid Method, Nemirovskii, 1970’s. No complexity result.
Polynomial Ellipsoid Method for LP, Khachian 1979. Not practical.
Karmarkar’s method, 1984, first “efficient” interior point method.

Primal-dual path following methods and others late 1980’s. Very efficent
practical methods.

Extensions to other classes of convex problems. Early 1990’s.

General theory of interior point methods, self-concordant barriers, Nes-
terov and Nemirovskii, 1990’s.



Self-concordant barrier

min cTa:—,uBK(a:),

s.t. Az =0,
reER" 2> 0
AeR™™ be R™.



Log barrier for LP

min ¢ z — MZlogaﬁi,
i=1
s.t. Ax =0,
reR" x>0

AeR™"™ be R™.



Log-barrier for SDP

min trace(CX) — plogdet X,

s.t. trace(A; X)=0b;, i=1,...

XeS"X =0
C,A;, €S".be R™.



Log barrier for SOCP

N N
min Z@:Tﬂ?i — leog((xg)Q — HszQ)
i=1 i=1

S.1. Alaﬁl—l—AQZEQ—I—...—I—ANQ?N:b,

T > K, 0,



Primal Linear Programming Problem

T

min c¢ &,
s.t. Az =0,
reR" >0

Dual Linear Programming Problem

T

max b v,

s.t. ATy—I—SIC
s >0



Optimality (KKT) conditions

Ax =b
Aly+s=c,
x;5;, =0, Wi
x,s >0

x;8; = 0 Vi - complementarity, xz; +s; > 0 Vi - strict complementarity.



Central Path

Consider the following ”barrier” problem

minc' z — ,uZln r; s.t. Ax =0,

Solution for a given u
(@(p), y(1), s(1))
As u— 0,
(), y(p), s(p)) = (27,47, 57)

Apply Newton method to the (self-concordant) barrier problem (i.e. to
its optimality conditions)

Apply one or two steps of Newton method for a given p and then
reduce




KKT conditions for primal central path

minc' z — ,uZln r; s.t. Az =0,

Axr =10
Aly+uXle=c
x,s >0

(where X = diag(z) and e = (1,...,1)").

Ax =10
Aly+s=c
s=puX le
x,s >0



Central Path

Consider the following optimization problem

minc' z — ,LLZlD r; s.t. Ax =0,

Solution for a given p

As u— 0,

Optimality

conditions for :>

the barrier
problem

Ax =
Aly+s=c,
sz—ﬂ, V1

x,s >0

Apply Newton
method to the
system of
nonlinear
equations



Central Path

Axr =0

Aly+s=c,
S; — ﬂ, \V/Z
€L

x,s >0

It exists iff there is nonempty interior
for the primal and dual problems.



Interior point methods, the main idea

Each point on the central path can be approximated by
applying Newton method to the perturbed KKT system.

Start at some point near the central path for some value
of u, reduce .

Make one or more Newton steps toward the solution with
the new value of p.

Keep driving i to 0, always staying close to the solutions
of the central path.

This prevents the iterates from getting trapped near the
boundary and keeps them nicely central.






KKT conditions for dual and primal-dual central paths

maxb 'y + ,uZlnsi st. Aly+s=c,

Ax =b
Aly+s=c
r=pS e
x,s >0

(where S = diag(s) and e = (1,...,1)").

Ax =b
Aly+s=c
Xs = e

x,s >0



Newton step

AAx =b— Ax
ATAy+As=c—ATy—s

As = —uX *Azx
Primal method

XAs+ SAzx = pe — Xs

Primal-dual method

Az = S %e

Dual method

C@
n, r. 3, /,Oa”)



Predictor-Corrector steps

AAx =b— Ax
ATAy+As=c—A'y—s
XAs+ SAxz =ocpe — Xs

o = 0 for predictor step and o > 0 for corrector step.

Solve the system of linear equations twice with the same matrix



Predictor-Corrector steps

AAr =b— Ax
ATAy+As=c—A'y—s
As =ouX te—Se— X 1SAz

4

AAz =b— Ax
A'Ay—X1SAz=c—A'y—s—ouX"te+ Se

T
[ —D A ] ( Az ) — < e ) Augmented
A 0 Ay Ty system

D=X"18(orD=S"20or D=X"?).



Solving the augmented system
-D A Ay \ [ 7y
AT 0 As |\ r,

Schur complement system: AD 'A" Ay = r.

Normal equation




Cholesky Factorization

AD7 A" = LL"T,

X X X X X
X X x = %
Xy _— X X X X
— X X X
X X X X X
X X X X X X
X X X X X X

* Numerically very stable!

*The sparsity pattern of L remains the same at each iteration
*Depends on sparsity pattern of A and ordering of rows of A
*Can compute the pattern in advance (symbolic factorization)

*The work for each factorization depends on sparsity pattern, can
be as little as O(n) if very sparse and as much as O(n”*3) (if
dense).



Complexity per iteration

At each iteration form and factorize AD™'A", where D is diagonal and
G is fixed.

A € R™*™ hence factorizing ADYA" is O(m?), in general.

The sparsity structure of AD™'AT and its factors is the same at all iter-
ations.

The work to form AD 1A' ~ # of nonzeros in AD"1A". The work to
factorize ~ # of nonzeros in the Cholesky factor.



Complexity and performance

Theoretical complexity: O(y/nL) iterations for short step methods and
O(nL) iteration for long step methods. In practice everyone uses long
step methods.

In practice almost always < 50 iterations, independent of the size.

In case of multiple solutions converges to the center of the optimal face,
not to a vertex.

Never attains the the exact solution! For LP there are polynomial crossover
techniques to obtain an exact vertex from the approximate (central) solu-
tion.

Does not benefit from warm start (not much, anyway)



Convex QP with linear inequality constraints.

min z' Qz +c¢'zx,
s.t. Az =0,
x > 0,

Liz,y) =2'Qr+c'a —y'(Az —b) —s'x

Optimality conditions

-
Qr+c—y A—s=0, —V fola*)
AZU — b, o

S;L; = 0 P

x,s >0



Interior Point method

Consider the following optimization problem

1
min §SETQ.CE +cla— uZln x; st.Axr =0,

(x(p),y(p), s(w)) is the central path.

Ax =10
—Qr+Aly+s=c
s=pX "1

x,s >0

or

X5 = e

Perturb complementarity conditions in a uniform way



Newton Step

SAx+ XAs = pe—Xs
AAx = 1y
—QAz+A"Ay+As = 1y

Augmented system

AAx = 1y
A'Ay — (X'S+Q)Az = 14— X Hue— Xs)

Normal Equation (Schur Complement System)

AXTIS+ Q) "ATAy =7



Complexity per iteration

At each iteration form and factorize (Q + D) and A(Q + D) 'AT, where
D is diagonal and G is fixed.

A € R™*"™ hence factorizing (Q + D) is O(n?) and factorizing A(Q +
D)~1A" is O(m3), in general.

The sparsity structure of A(Q+ D) 'A" and its factors is the same at all
iterations.

The work to form A(Q + D)"tA" ~ # of nonzeros in A(Q + D)~ tAT,
The work to factorize ~ # of nonzeros in the Cholesky factor. Same for

factorizing @ + D.



Primal Semidefinite Programming Problem
min trace(C'X),
s.t. trace(A4; X)=1b;, i=1,...,m
XeS"X =0
C,A;, €S",be R™.

SDP cone K ={x € S": X = 0} - self dual.

Dual Semidefinite Programming Problem

T
max b y,

1=1

S = 0.



Duality gap and complementarity

A e B = trace(AB)

bTy:Z(AioD)yi:(ZyiAi)oD:CoS—SoX

Duality Gap:
SeX >0

Complementarity:

XS5=5X=0.



Central Path

min CeX — p(lndetX)
(PCP) s.t. A;ie X =b;, t1=1,....m
X >0

Central Path exists iff both primal and dual problems have interior solutions

Optimality conditions for (PCP):

m

L(X,y)=Ce X — p(lndetX) — Zyi(AioX — b;)

1=1

VxL(X,y)=C —pX"' =) yA;=0.

1=1



Central Path

C o X — p(lndetX) is strictly convex for p > 0 thus the solution for (PCP) is
unique and satisfies:

S=pX""!
(OP) AiOX:bi, z':l,...,m
Y yidi+S=C,

=1
X, 50

X(p) and S(p) satisfy (CP) = S(u) = puX(p)™ ! =
X(N) o S(,u) = un.

pw—0=S(u) e X(u)—0.



Central Path
Dual CP X = MS_l

Primal-Dual CP XS =ul

Symmetric Primal-Dual %(XS i SX) = ul



Computing a step
Newton step

XAS +AXS = ul — XS
AZ'OAX:bi—AiOX, z':l,...,m

Zm:AyiAi +AS = C_iyiAi‘i_S?
=1 i=1
X, 5>0

AX + XASS ' =pSt— X

(XASS™t+ S7IASX) +uS™ 1 - X

To symmetrize: AX = —%



Computing a step

The system to solve on each step
—-M A Ay \ [ 7y
AT 0 AX |\ r,

M=2(X®S1t14+S5S !t X)

1
2
( Kronecker product A ® B = {A;jBri}jk) )

For dual direction M = S~ 1 S~ 1.



Cholesky factorization

The normal equaltion matrix to factorize on each step

AM™1AT

— %(X ®971+ 571 ® X) - n? x n? almost dense matrix

(S ® S)- n? x n? sparse (maybe) matrix

D=

= 2(W @ W) - n? x n? dense matrix
(W is a symmetric scaling matrix such as WXW = S - Nesterov-Todd).

Each iteration may require O(n®) operations and O(n*) memory.
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Complementarity Conditions
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If we define an “arrow-shaped” matrix Arr(z;) as
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and the block diagonal matrix Arr(z) as

[ Arr(zp)
Arr(xs)

Arr(z) =

Arr(xzy)

then the complementarity conditions can be expressed as

Arr(z)s = Arr(s)x = Arr(x)Arr(s)eg =0,

where
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Log-barrier formulation
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Perturbed optimality conditions
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The optimality conditions

Ax =b
Aly+s=c
Arr(xz)s = Arr(s)zr = Arr(z)Arr(s)ey = peo,

where

e =0, el .., e% ) =(1,0,...,0,1,0,...,0,...,1,0,...,0)".




Newton step

Arr(z)As+ Arr(s)Ax = peg — Arr(x)Arr(s)ey,
AAx = b— Ax,
ATAy+As=c— A"y —s

o (ar)=()

F = Arr(z) 'Arr(s), F~! = Arr(s) 1 Arr(z),

(Arr(z;)) "
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Optimization methods for convex problems

Interior Point methods
— Best iteration complexity O(log(1/¢)), in practice <50.
— Worst per-iteration complexity (sometimes prohibitive)
Active set methods
— Exponential complexity in theory, often linear in practice.
— Better per iteration complexity.
Gradient based methods
— O(1/+/e) or O(1/e) iterations
— Matrix/vector multiplication per iteration
Nonsmooth gradient based methods
— O(1/€) or O(1/€?) iterations
— Matrix/vector multiplication per iteration
Block coordinate descent

— lteration complexity ranges from unknown to similar to FOMs.
— Per iteration complexity can be constant.



Homework

1. M1 ... Mlm
Given a matrix M = e R"*™ prove
My, ... Myn

o ||[M|l2 = 0ynaz - Where 0,4, is the largest singular value of M.
o ||M|y = max; Y ., |M;;| - matrix {;-norm

o [|M|s = max; Z;n:l |Mw| - [so-norm

I 2. Let cone K = {(z,t) : ||z||1 <t}. Prove that K* = {(z,?) : ||z||cc <t}

3. Prove for two symmetric matrices X and S that if trace(X.S) =0, X = 0
and S > 0 then XS =S5X =0. .




