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Primal Semidefinite Programming Problem 



 Dual Semidefinite Programming Problem 

Primal Semidefinite Programming Problem 



Duality gap and complementarity 

HW: prove the last statement 



Complementarity of eignevalues 



Complementarity of eigenvalues 



Optimality conditions 

Convex QP with linear equality constraints.  

Closed form solution via solving a linear system 



Optimality conditions 

Convex QP with linear inequality constraints.  

No closed form solution 



Nonlinear Constraints, linear objective: 

Convex Quadratically Constrained Quadratic Problems 

Feasible set can be described as a convex cone Å affine set 



Second Order Cone  

x= (x0, x1, . . . , xn ), x̄= (x1, . . . , xn )

K2 Rn+1 is a second order cone: 

x1

x2

x0



Discovering  SOCP cone 

A convex quadratic constraint: 

Factorize and rewrite: 

Norm constraint 

More general form 

Variable substitution 

SOCP: 



Second Order Cone Programming 



Complementarity Conditions 



Formulating SOCPs 

Rotated SOCP cone 
 
 
Equivalent to SOCP cone 
 
 
 
Example:  



Unconstrained Optimization 



Traditional methods 

•  Gradient descent 
•  Newton method 
•  Quazi-Newton method 
•  Conjugate gradient method 
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Interior Point Methods 



Interior Point Methods: a history 

² Ellipsoid Method, Nemirovskii, 1970’s. No complexity result.

² Polynomial Ellipsoid Method for LP, Khachian 1979. Not practical.

² Karmarkar’s method, 1984, first “efficient” interior point method.

² Primal-dual path following methods and others late 1980’s. Very efficent
practical methods.

² Extensions to other classes of convex problems. Early 1990’s.

² General theory of interior point methods, self-concordant barriers, Nes-
terov and Nemirovskii, 1990’s.



Self-concordant barrier 



Log barrier for  LP 



Log-barrier for SDP 



Log barrier for SOCP  



 Dual Linear Programming Problem 

Primal Linear Programming Problem 



Optimality (KKT) conditions 



Central Path 

Apply Newton method to the (self-concordant) barrier  problem (i.e. to 
its optimality conditions) 

Apply one or two steps of Newton method for a given µ and then 
reduce µ  



KKT conditions for primal central path 



Central Path 

Optimality 
conditions for 
the barrier 
problem 

Apply Newton 
method to the 
system of 
nonlinear 
equations 



Central Path 

-c 

It exists iff there is nonempty interior  
for the primal and dual problems.  
 



Interior point methods, the main idea 

 
•  Each point on the central path  can be approximated by 

applying Newton method to the perturbed KKT system. 

•  Start at some point near the central path for some value 
of µ, reduce µ. 

•  Make one or more Newton steps toward the solution with 
the new value of µ. 

 
•  Keep driving µ to 0, always staying close to the solutions 

of the central path. 

•  This prevents the iterates from getting trapped near the 
boundary and keeps them nicely central. 



-c 



KKT conditions for dual and primal-dual central paths 



Newton step 

Primal method 

Primal-dual method  

Dual method 

-c 



Predictor-Corrector steps 

¾ = 0 for predictor step and ¾ > 0 for corrector step.

Solve the system of linear equations twice with the same matrix 



Predictor-Corrector steps 

Augmented 
system 



Solving the augmented system 
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Cholesky Factorization 
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•  Numerically very stable! 

• The sparsity pattern of L remains the same at each iteration  

• Depends on sparsity pattern of A and ordering of rows of A 

• Can compute the pattern in advance (symbolic factorization) 

• The work for each factorization  depends on sparsity pattern, can 
be as little as O(n) if very sparse and as much as O(n^3) (if 
dense). 



Complexity per iteration 



Complexity and performance 



Optimality conditions 

Convex QP with linear inequality constraints.  



Interior Point method 



Newton Step 



Complexity per iteration 



 Dual Semidefinite Programming Problem 

Primal Semidefinite Programming Problem 



Duality gap and complementarity 



Central Path 



Central Path 



Central Path 

Dual CP 

Primal-Dual CP 

Symmetric Primal-Dual 



Computing a step 



Computing a step 



Cholesky factorization 

Each iteration may require O(n6) operations and O(n4) memory.  



Second Order Cone Programming 



Complementarity Conditions 



Log-barrier formulation 



Perturbed optimality conditions 



 Newton step 



Optimization methods for convex problems 
•  Interior Point methods  

–  Best iteration complexity O(log(1/²)), in practice <50. 
–  Worst per-iteration complexity (sometimes prohibitive) 

•  Active set methods 
–  Exponential complexity in theory, often linear in practice. 
–  Better per iteration complexity. 

•  Gradient based methods  
–                 or  O(1/²)  iterations 
–  Matrix/vector multiplication per iteration 

•  Nonsmooth gradient based methods 
–  O(1/²) or O(1/²2) iterations 
–  Matrix/vector multiplication per iteration 

•  Block coordinate descent  
–  Iteration complexity ranges from unknown to similar to FOMs. 
–  Per iteration complexity can be constant. 



Homework 
1. 
 
 
 
 
 
 
 
 

2. 

3. 
 


