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Hyperthermia treatment

I Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption

I Results in the killing of tumor cells and makes them more susceptible to
other accompanying therapies; e.g., chemotherapy
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Hyperthermia treatment planning

I Computer modeling can be used to help plan the therapy for each
patient, and it opens the door for numerical optimization

I The goal is to heat the tumor to a target temperature of 43◦C while
minimizing damage to nearby cells
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Hyperthermia treatment as an optimization problem

The problem is to

min
y,u

∫
Ω

(y − yt)
2dV where yt =

{
37 in Ω\Ω0

43 in Ω0

subject to the bio-heat transfer equation (Pennes (1948))

− ∇ · (κ∇y)︸ ︷︷ ︸
thermal conductivity

+ ω(y)π(y − yb)︸ ︷︷ ︸
effects of blood flow

= σ
2

∣∣∑
i ui Ei

∣∣2︸ ︷︷ ︸
electromagnetic field

, in Ω

and the bound constraints

y ≤ 37.5, on ∂Ω

y ≥ 41.0, in Ω0

where Ω0 is the tumor domain
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Applications
Model calibration Data assimilation

Image registration
Optimal design/control

(Walker et al., 2009)
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PDE-constrained optimization

min f (x)

s.t. cE(x) = 0

cI(x) ≥ 0

I Problem is infinite-dimensional

I Controls and states: x = (u, y)

I Solution methods integrate

I numerical simulation
I problem structure
I optimization algorithms
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Algorithmic frameworks

We hear the phrases:

I Discretize-then-optimize

I Optimize-then-discretize

I prefer:

I Discretize the optimization problem

min f (x)

s.t. c(x) = 0
⇒

min fh(x)

s.t. ch(x) = 0

I Discretize the optimality conditions

min f (x)

s.t. c(x) = 0
⇒

[
∇f + 〈A, λ〉

c

]
= 0 ⇒

[
(∇f + 〈A, λ〉)h

ch

]
= 0

I Discretize the search direction computation
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Algorithms

I Nonlinear elimination

min
u,y

f (u, y)

s.t. c(u, y) = 0
⇒ min

u
f (u, y(u)) ⇒ ∇uf +∇uyT∇y f = 0

I Reduced-space methods

dy : toward satisfying the constraints

λ : Lagrange multiplier estimates

du : toward optimality

I Full-space methodsHu 0 AT
u

0 Hy AT
y

Au Ay 0

du

dy

δ

 = −

∇uf + AT
u λ

∇y f + AT
y λ

c



Inexact Newton Methods and PDE-Constrained Optimization COPTA Lecture, U. Wisconsin



PDE Optimization Inexact Newton methods Experimental results Conclusion

Large-scale primal-dual algorithms

I Computational issues:

I Large matrices to be stored
I Large matrices to be factored

I Algorithmic issues:

I The problem may be nonconvex
I The problem may be ill-conditioned

I Computational/Algorithmic issues:

I No matrix factorizations makes difficulties more difficult
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Newton methods

I Unconstrained optimization

min
x

f (x) ⇒ ∇f (x) = 0 ⇒ ∇2f (xk)dk = −∇f (xk)

I Nonlinear equations

F (x) = 0 ⇒ ∇F (xk)dk = −F (xk)

... in either case we solve a large linear system of equations

∇F(xk)dk = −F(xk)
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Inexact Newton methods

I Compute
∇F(xk)dk = −F(xk) + rk (2.1)

requiring (Dembo, Eisenstat, Steihaug (1982))

‖rk‖ ≤ κ‖F(xk)‖, κ ∈ (0, 1) (2.2)

I Progress judged by the merit function

φ(x) , 1
2
‖F(xk)‖2 (2.3)

... note the consistency between (2.1)-(2.2) and (2.3):

∇φ(xk)T dk = F(xk)T∇F(xk)dk = −‖F(xk)‖2+F(xk)T rk ≤ (κ−1)‖F(xk)‖2 < 0
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Equality constrained optimization

I Consider
min
x∈Rn

f (x)

s.t. c(x) = 0

I Lagrangian is
L(x , λ) , f (x) + λT c(x)

so the first-order optimality conditions are

∇L(x , λ) =

[
∇f (x) +∇c(x)λ

c(x)

]
, F(x , λ) = 0
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Newton methods and sequential quadratic programming
If H(xk , λk) is positive definite on the null space of ∇c(xk)T , then[

H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
d
δ

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
is equivalent to

min
d∈Rn

f (xk) +∇f (xk)T d + 1
2
dT H(xk , λk)d

s.t. c(xk) +∇c(xk)T d = 0
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Merit function

I Simply minimizing

ϕ(x , λ) = 1
2
‖F(x , λ)‖2 = 1

2

∥∥∥∥[∇f (x) +∇c(x)λ
c(x)

]∥∥∥∥2

is generally inappropriate for constrained optimization

I We use the merit function

φ(x ;π) , f (x) + π‖c(x)‖

where π is a penalty parameter
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Minimizing a penalty function
Consider the penalty function for

min (x − 1)2, s.t. x = 0 i.e. φ(x ;π) = (x − 1)2 + π|x |

for different values of the penalty parameter π

Figure: π = 1 Figure: π = 2

Inexact Newton Methods and PDE-Constrained Optimization COPTA Lecture, U. Wisconsin



PDE Optimization Inexact Newton methods Experimental results Conclusion

Algorithm 0: Newton method for optimization

(Assume the problem is convex and regular)
for k = 0, 1, 2, . . .

I Solve the primal-dual (Newton) equations[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
I Increase π, if necessary, so that πk ≥ ‖λk + δk‖ (yields Dφk(dk ;πk)� 0)

I Backtrack from αk ← 1 to satisfy the Armijo condition

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαkDφk(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Convergence of Algorithm 0

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk)T has full row rank with singular values bounded
below by a positive constant

I (Convexity) uT H(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn satisfying
u 6= 0 and ∇c(xk)T u = 0

Theorem
(Han (1977)) The sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0
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Incorporating inexactness

I Iterative as opposed to direct methods

I Compute[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
+

[
ρk

rk

]
satisfying ∥∥∥∥[ρk

rk

]∥∥∥∥ ≤ κ ∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ , κ ∈ (0, 1)

I If κ is not sufficiently small (e.g., 10−3 vs. 10−12), then dk may be an
ascent direction for our merit function; i.e.,

Dφk(dk ;πk) > 0 for all πk ≥ πk−1
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Model reductions

I Define the model of φ(x ;π):

m(d ;π) , f (x) +∇f (x)T d + π(‖c(x) +∇c(x)T d‖)

I dk is acceptable if

∆m(dk ;πk) , m(0;πk)−m(dk ;πk)

= −∇f (xk)T dk + πk(‖c(xk)‖ − ‖c(xk) +∇c(xk)T dk‖)� 0

I This ensures Dφk(dk ;πk)� 0 (and more)
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Termination test 1
The search direction (dk , δk) is acceptable if∥∥∥∥[ρk

rk

]∥∥∥∥ ≤ κ ∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ , κ ∈ (0, 1)

and if for πk = πk−1 and some σ ∈ (0, 1) we have

∆m(dk ;πk) ≥ max{ 1
2
dT

k H(xk , λk)dk , 0}+ σπk max{‖c(xk)‖, ‖rk‖ − ‖c(xk)‖}︸ ︷︷ ︸
≥ 0 for any d

Inexact Newton Methods and PDE-Constrained Optimization COPTA Lecture, U. Wisconsin



PDE Optimization Inexact Newton methods Experimental results Conclusion

Termination test 2
The search direction (dk , δk) is acceptable if

‖ρk‖ ≤ β‖c(xk)‖, β > 0

and ‖rk‖ ≤ ε‖c(xk)‖, ε ∈ (0, 1)

Increasing the penalty parameter π then yields

∆m(dk ;πk) ≥ max{ 1
2
dT

k H(xk , λk)dk , 0}+ σπk‖c(xk)‖︸ ︷︷ ︸
≥ 0 for any d
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Algorithm 1: Inexact Newton for optimization
(Byrd, Curtis, Nocedal (2008))
for k = 0, 1, 2, . . .

I Iteratively solve[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
until termination test 1 or 2 is satisfied

I If only termination test 2 is satisfied, increase π so

πk ≥ max

{
πk−1,

∇f (xk)T dk + max{ 1
2
dT

k H(xk , λk)dk , 0}
(1− τ)(‖c(xk)‖ − ‖rk‖)

}

I Backtrack from αk ← 1 to satisfy

φ(xk + αkdk ;πk) ≤ φ(xk ;πk)− ηαk∆m(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Convergence of Algorithm 1

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk)T has full row rank with singular values bounded
below by a positive constant

I (Convexity) uT H(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn satisfying
u 6= 0 and ∇c(xk)T u = 0

Theorem
(Byrd, Curtis, Nocedal (2008)) The sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0
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Handling nonconvexity and rank deficiency

I There are two assumptions we aim to drop:

I (Regularity) ∇c(xk)T has full row rank with singular values
bounded below by a positive constant

I (Convexity) uTH(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn

satisfying u 6= 0 and ∇c(xk)Tu = 0

e.g., the problem is not regular if it is infeasible, and it is not convex if
there are maximizers and/or saddle points

I Without them, Algorithm 1 may stall or may not be well-defined
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No factorizations means no clue

I We might not store or factor[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

]
so we might not know if the problem is nonconvex or ill-conditioned

I Common practice is to perturb the matrix to be[
H(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T −ξ2I

]
where ξ1 convexifies the model and ξ2 regularizes the constraints

I Poor choices of ξ1 and ξ2 can have terrible consequences in the algorithm
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Our approach for global convergence

I Decompose the direction dk into a normal component (toward the
constraints) and a tangential component (toward optimality)

I Without convexity, we do not guarantee a minimizer, but our merit
function biases the method to avoid maximizers and saddle points
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Normal component computation

I (Approximately) solve

min 1
2
‖c(xk) +∇c(xk)T v‖2

s.t. ‖v‖ ≤ ω‖(∇c(xk))c(xk)‖

for some ω > 0

I We only require Cauchy decrease:

‖c(xk)‖ − ‖c(xk) +∇c(xk)T vk‖

≥ εv (‖c(xk)‖ − ‖c(xk) + α∇c(xk)T ṽk‖)

for εv ∈ (0, 1), where ṽk = −(∇c(xk))c(xk) is the
direction of steepest descent
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Tangential component computation (idea #1)

I Standard practice is to then (approximately) solve

min (∇f (xk) + H(xk , λk)vk)T u + 1
2
uT H(xk , λk)u

s.t. ∇c(xk)T u = 0, ‖u‖ ≤ ∆k

I However, maintaining

∇c(xk)T u ≈ 0 and ‖u‖ ≤ ∆k

can be expensive
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Tangential component computation

I Instead, we formulate the primal-dual system[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
uk

δk

]
= −

[
∇f (xk) +∇c(xk)λk + H(xk , λk)vk

0

]
I Our ideas from before apply!
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Handling nonconvexity

I Convexify the Hessian as in[
H(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T 0

]
by monitoring iterates

I Hessian modification strategy: Increase ξ1 whenever

‖uk‖2 > ψ‖vk‖2, ψ > 0

1
2
uT

k (H(xk , λk) + ξ1I )uk < θ‖uk‖2, θ > 0
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Inexact Newton Algorithm 2
(Curtis, Nocedal, Wächter (2009))
for k = 0, 1, 2, . . .

I Approximately solve

min 1
2
‖c(xk ) +∇c(xk )T v‖2, s.t. ‖v‖ ≤ ω‖(∇c(xk ))c(xk )‖

to compute vk satisfying Cauchy decrease

I Iteratively solve[
H(xk , λk ) + ξ1I ∇c(xk )
∇c(xk )T 0

] [
dk

δk

]
= −

[
∇f (xk ) +∇c(xk )λk

−∇c(xk )T vk

]
until termination test 1 or 2 is satisfied, increasing ξ1 as described

I If only termination test 2 is satisfied, increase π so

πk ≥ max

{
πk−1,

∇f (xk )T dk + max{ 1
2
uT

k (H(xk , λk ) + ξ1I )uk , θ‖uk‖2}
(1− τ)(‖c(xk )‖ − ‖c(xk ) +∇c(xk )T dk‖)

}
I Backtrack from αk ← 1 to satisfy

φ(xk + αkdk ;πk ) ≤ φ(xk ;πk )− ηαk∆m(dk ;πk )

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk )
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Convergence of Algorithm 2

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Nocedal, Wächter (2009)) If all limit points of {∇c(xk)T} have full
row rank, then the sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0.

Otherwise,
lim

k→∞
‖(∇c(xk))c(xk)‖ = 0

and if {πk} is bounded, then

lim
k→∞

‖∇f (xk) +∇c(xk)λk‖ = 0
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Handling inequalities

I Interior point methods are attractive for large applications

I Line-search interior point methods that enforce

c(xk) +∇c(xk)T dk = 0

may fail to converge globally (Wächter, Biegler (2000))

I Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!
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Algorithm 2 (Interior-point version)

I Apply Algorithm 2 to the logarithmic-barrier subproblem

min f (x)− µ
q∑

i=1

ln s i , s.t. cE(x) = 0, cI(x)− s = 0

for µ→ 0

I Define 
H(xk , λE,k , λI,k ) 0 ∇cE(xk ) ∇cI(xk )

0 µI 0 −Sk

∇cE(xk )T 0 0 0
∇cI(xk )T −Sk 0 0




dx
k

d s
k

δE,k
δI,k


so that the iterate update has[

xk+1

sk+1

]
←
[
xk

sk

]
+ αk

[
dx

k
Skd s

k

]
I Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in

the algorithm to maintain s ≥ max{0, cI(x)}
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Convergence of Algorithm 2 (Interior-point)

Assumption
The sequence {(xk , λE,k , λI,k)} is contained in a convex set Ω over which f ,
cE , cI , and their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Schenk, Wächter (2009))

I For a given µ, Algorithm 2 yields the same limits as in the equality
constrained case

I If Algorithm 2 yields a sufficiently accurate solution to the barrier
subproblem for each {µj} → 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point x̄ of {xj}, then there exist
Lagrange multipliers λ̄ such that the first-order optimality conditions of
the nonlinear program are satisfied
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Implementation details

I Incorporated in IPOPT software package (Wächter)

I Linear systems solved with PARDISO (Schenk)

I Symmetric quasi-minimum residual method (Freund (1994))

I PDE-constrained model problems

I 3D grid Ω = [0, 1]× [0, 1]× [0, 1]
I Equidistant Cartesian grid with N grid points
I 7-point stencil for discretization
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Boundary control problem

min 1
2

∫
Ω(y(x)− yt(x))2dx , // yt(x) = 3 + 10x1(x1 − 1)x2(x2 − 1) sin(2πx3)

s.t. −∇ · (ey(x) · ∇y(x)) = 20, in Ω

y(x) = u(x), on ∂Ω, // u(x) defined on ∂Ω

2.5 ≤ u(x) ≤ 3.5, on ∂Ω

N n p q # nnz f ∗ # iter CPU sec
20 8000 5832 4336 95561 1.3368e-2 12 33.4
30 27000 21952 10096 339871 1.3039e-2 12 139.4
40 64000 54872 18256 827181 1.2924e-2 12 406.0
50 125000 110592 28816 1641491 1.2871e-2 12 935.6
60 216000 195112 41776 2866801 1.2843e-2 13 1987.2

(direct) 40 64000 54872 18256 827181 1.2924e-2 10 3196.3
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Hyperthermia Treatment Planning

min 1
2

∫
Ω(y(x)− yt(x))2dx , // yt(x) =

{
37 in Ω\Ω0

43 in Ω0

s.t. −∆y(x)− 10(y(x)− 37) = u∗M(x)u, in Ω //

 uj = aje
iφj

Mjk (x) =< Ej (x),Ek (x) >
Ej = sin(jx1x2x3π)

37.0 ≤ y(x) ≤ 37.5, on ∂Ω

42.0 ≤ y(x) ≤ 44.0, in Ω0, // Ω0 = [3/8, 5/8]3

N n p q # nnz f ∗ # iter CPU sec
10 1020 512 1070 20701 2.3037 40 15.0
20 8020 5832 4626 212411 2.3619 62 564.7
30 27020 21952 10822 779121 2.3843 146 4716.5
40 64020 54872 20958 1924831 2.6460 83 9579.7

(direct) 30 27020 21952 10822 779121 2.3719 91 10952.4
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Sample solution for N = 40
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Conclusion and final remarks

I PDE-Constrained optimization is an active and exciting area

I Inexact Newton method with theoretical foundation

I Convergence guarantees are as good as exact methods, sometimes better

I Numerical experiments are promising so far, and more to come
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