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Hyperthermia treatment

» Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption

» Results in the killing of tumor cells and makes them more susceptible to
other accompanying therapies; e.g., chemotherapy
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Hyperthermia treatment planning

» Computer modeling can be used to help plan the therapy for each
patient, and it opens the door for numerical optimization

» The goal is to heat the tumor to a target temperature of 43°C while
minimizing damage to nearby cells
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:
PDE-constrained optimization
min f(x)
s.t. ce(x) =0
cz(x) >0

» Problem is infinite-dimensional
» Controls and states: x = (u, y)

» Solution methods integrate

> numerical simulation
> problem structure

» optimization algorithms
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Algorithmic frameworks

We hear the phrases:

Conclusion

» Discretize-then-optimize

» Optimize-then-discretize
| prefer:

» Discretize the optimization problem

min f(x) min f4(x)
=
st c(x)=0 s.t. ch(x) =0
» Discretize the optimality conditions
min f(x
() S| [VEHAN] o || [(VF AN
sit. ¢(x) =0 c ] Ch
» Discretize the search direction computation
o = - = = 9ace
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» Nonlinear elimination

min f(u,y
oy f() = | min f(u,y(v))
s.t. c(u,y) =0 !

=

Vuf +VuyTV,f=0
» Reduced-space methods

dy : toward satisfying the constraints

A . Lagrange multiplier estimates
d,:

toward optimality
» Full-space methods

Hi 0 Al [d Vuf + AJX
T T
0 H, Al ld|=—|V,Ff+AlA
As A 0 é c
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» Newton's method

| F() =0 | =] VF(w)de = —F(x) |
» Judge progress by the merit function

¢(x) = 3

S I1F ) 11P
» Direction is one of descent since

Vo(x) di = F(xx) T VF(xe)de = —||F(x)|]> < 0

(Note the consistency between the step computation and merit function!)
:
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Equality constrained optimization

» Consider

2 f)

stt.c(x)=0
» Lagrangian is

L(x,A) 2 f(x) + AT c(x)
so the first-order optimality conditions are

VL(x,A) = W(X)CJEXC(X)’\ 2 F(x,\) =0
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Merit function

Experimental results

Conclusion

» Simply minimizing

90, ) = FIIFCN* = 3

VF(x) + Ve(x)A]|]?
c(x)
is generally inappropriate for constrained optimization
» We use the merit function

¢(xim) £ f(x) + mllc(x)]|
where 7 is a penalty parameter
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Minimizing a penalty function

Consider the penalty function for
min (x — 1), st. x=0 ie ¢(x;7) = (x —1)° +7x|

for different values of the penalty parameter m
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Figure: 7 =1 Figure: m =2
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Algorithm 0: Newton method for optimization

(Assume the problem is sufficiently convex and regular)
for k=0,1,2,...

» Solve the primal-dual (Newton) equations

H(Xk,Ak) VC(Xk)

Ve(x)” 0 ] [g:] - [

Vi(xk) + Ve(x) Ak

C(Xk)
» Increase T, if necessary, so that Doy (dk; mx) < 0 (e.g., mk > ||k + dkl|)
» Backtrack from ay «— 1 to satisfy the Armijo condition

O(xk + audi; mk) < d(xi; ) + nak Do (dic; i)
» Update iterate (Xk41, Akt1) < (Xk; k) + ax(dk, 0k)
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:

Convergence of Algorithm 0

Assumption

The sequence {(xk, \«)} is contained in a convex set Q over which f, ¢, and
their first derivatives are bounded and Lipschitz continuous. Also,

> (Regularity) Vc(xk)" has full row rank with singular values bounded
below by a positive constant

> (Convexity) u” H(xk, Ak )u > pl|ul|® for 1 > 0 for all u € R" satisfying
u#0and Ve(x) u=0

Theorem
(Han (1977)) The sequence {(xx, \«)} yields the limit

35 -
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Large-scale primal-dual algorithms

» Computational issues:

> Large matrices to be stored

» Large matrices to be factored
» Algorithmic issues:
» The problem may be nonconvex

» The problem may be ill-conditioned
» Computational/Algorithmic issues:
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» Compute

V]'-(Xk)dk = —.7'-(Xk) + ri
requiring (Dembo, Eisenstat, Steihaug (1982))

[l < &llF()ll,  w € (0,1)
» Progress judged by the merit function

¢(x) =

» Again, note the consistency...

317l

V(i) de = F(xi) T VF(xi)de = —[|F () [P +F (i) " rie < (k1) [|F ()| < 0
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Experimental results

» Compute

Conclusion

[H(Xk, )\k) VC(Xk)
VC(Xk)T

o 2] =[]+ 2]
satisfying
‘ m ‘ . H [w(xk) + V()M
k

I

() ] k€ (0,1)
> If  is not sufficiently small (e.g., 1072 vs. 107'?), then dx may be an
ascent direction for our merit function; i.e.,
Do (dk; m) >0 for all my > w1
» Our work begins here... inexact Newton methods for optimization

(=]

» We cover the convex case, nonconvexity, irregularity, inequality constraints
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» Define the model of ¢(x; 7):

m(d; ) £ f(x) + VF(x)"d +7([[e(x) + Ve(x)"d]])
» dj is acceptable if
Am(dk; 7rk)

[I>

m(O; 7Tk) — m(dk; 7Tk)
=V (x) " die + m([|c(x)]| = leCa) + V() dil]) > 0
» This ensures D¢ (dk; mx) < 0 (and more)
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Experimental results

Conclusion

The search direction (dx, dx) is acceptable if

Inexact Newton Methods and Nonlinear Constrained Optimization

‘ m ‘ . HW(Xk)wC(xk)Ak

C(Xk) :|
and if for mx = m¢—1 and some o € (0,1) we have

‘, k€ (0,1)

Am(dy; mi) = max{5dy H(xe, \e)di, 0} + ome max{||c(x) I, [[rill = le(xi) I}
> 0 for any d

X
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:
Termination test 2
The search direction (dk, dx) is acceptable if

lloxll < BlleGe)ll,  5>0
and [ndl < efle(xe)ll;

e€(0,1)

Increasing the penalty parameter 7 then yields

Am(di; mi) > max{1dy H(xi, A\e)dk, 0} + oml|c(x)]|

>0 for any d
Inexact Newton Methods and Nonlinear Constrained Optimization
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(Byrd, Curtis, Nocedal (2008))
for k =0,1,2,...

Algorithm 1: Inexact Newton for optimization

> |teratively solve

{H(xk, k)

Ve(xk)]| [dk _ V(xk) + Ve(xk)Ak
VC(Xk)T 0 (51( - C(Xk)
until termination test 1 or 2 is satisfied
» If only termination test 2 is satisfied, increase 7 so

{ VF(xe) " di + max{2d] H(xx, Ae)dk, 0}
Tk > Max< Tk_1,

(T =7)UeGall = [Irell) }
» Backtrack from ay < 1 to satisfy

d(xk + audi; k) < d(xi; Th) — naxkAm(di; i)
» Update iterate (Xk+1, )\k+1) — (Xk7 )\k) + ak(dk,ék)
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:

Convergence of Algorithm 1

Assumption

The sequence {(xk, \«)} is contained in a convex set Q over which f, ¢, and
their first derivatives are bounded and Lipschitz continuous. Also

> (Regularity) Vc(xk)" has full row rank with singular values bounded
below by a positive constant

> (Convexity) u” H(xk, Ak )u > pl|ul|® for 1 > 0 for all u € R" satisfying
u#0and Ve(x) u=0

Theorem
(Byrd, Curtis, Nocedal (2008)) The sequence {(xx, Ax)} yields the limit

lim H {Vf Xx) + Vc(xk))\k}

k— o0 c(xk)

=0

] = =
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Handling nonconvexity and rank deficiency

» There are two assumptions we aim to drop:

» (Regularity) Vc(xx)T has full row rank with singular values
bounded below by a positive constant
» (Convexity) uT H(xk, A\x)u > pllul|? for o > 0 for all u € R"
satisfying u # 0 and Vc(xx)Tu =0
e.g., the problem is not regular if it is infeasible, and it is not convex if
there are maximizers and/or saddle points

» Without them, Algorithm 1 may stall or may not be well-defined

Inexact Newton Methods and Nonlinear Constrained Optimization
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No factorizations means no clue

» We might not store or factor

0

ey T

so we might not know if the problem is nonconvex or ill-conditioned
» Common practice is to perturb the matrix to be

|:H(Xk,)\k)-|—§1l VC(Xk):|
Velx)T —&l

o = = E E 9ace
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Our approach for global convergence

V,

» Decompose the direction di into a normal component (toward the
k

constraints) and a tangential component (toward optimality)

» We impose a specific type of trust region constraint on the vy step in
case the constraint Jacobian is (near) rank deficient

o
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Handling nonconvexity

Conclusion

» In computation of dx = vk + uk, convexify the Hessian as in

H(xi, M) + &1 Ve(xx)
Velx)" 0
by monitoring iterates

» Hessian modification strategy: Increase {1 whenever

luel? > llvil®, ¥ >0
2ul (H(a, M) + &l < 0],

0>0

Inexact Newton Methods and Nonlinear Constrained Optimization
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:
Algorithm 2: Inexact Newton (Regularized)
(Curtis, Nocedal, Wachter (2009))
for k=0,1,2,...
»  Approximately solve

min 3lle(xi) + Vela) Tv]?, st [|v]] < wll(Vel)) ()l
to compute vy satisfying Cauchy decrease
» Iteratively solve

|:H(Xk»)\k) + &l Velx)
Velx)

dk _ Vf(Xk) + VC(Xk))\k
0 o —VC(Xk)TVk
until termination test 1 or 2 is satisfied, increasing &; as described
» If only termination test 2 is satisfied, increase 7 so
{ V() T dic + max{ Lu] (H(xic, M) + &), 0] ui |2}
Tk > Max § Tg—1,
P> Backtrack from ay < 1 to satisfy

(T =) lleGi)ll = lle(xic) + Velxi) T dill)

d(xic + cucdic; mi) < d(xs i) — o Am(dy; i)

> Update iterate (xci1, Ak1) < O, M) +awldio o) -
:
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:

Convergence of Algorithm 2

Assumption

The sequence {(xx, Ak)} is contained in a convex set Q2 over which f, c, and
their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Nocedal, Wichter (2009)) If all limit points of {Vc(xx)"} have full
row rank, then the sequence {(xx, A«)} yields the limit

H [Vf(xk + Vc(xk)/\k]

lim c(x)

k—o0

-o

Otherwise,
Jim [(Ve(x))c(x0)]) =0
and if {m} is bounded, then

lim V£ () + Te(x)A] = 0

] = = =

2a¢
:
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Experimental results

Handling inequalities

Conclusion

» Interior point methods are attractive for large applications
» Line-search interior point methods that enforce

c(x) + Velu) de =0
may fail to converge globally (Wa&chter, Biegler (2000))

» Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!
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Experimental results
Algorithm 2 (Interior-point version)

»  Apply Algorithm 2 to the logarithmic-barrier subproblem

q
min f(x) — “Z Ins',
i=1

sit. cg(x) =0, cz(x) —s=0
for u — 0
» Define

H(xk, Ae ks Az k) 0 Veg(xw) Vez(x)| [ df

0 wl 0 —Sk d;

VCg(Xk)T 0 0 0 657/(

VCI(Xk)T —Sk 0 0 5I,k

so that the iterate update has
Xk+1 Xk d;:
[5k+1] - Lk} ek {Skdi
:

» Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in
the algorithm to maintain s > max{0, cz(x)}
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Convergence of Algorithm 2 (Interior-point)

Assumption

The sequence {(x«, Ae .k, Az ,k)} is contained in a convex set 0 over which f,
ce, ¢z, and their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Schenk, Waichter (2009))

» For a given u, Algorithm 2 yields the same limits as in the equality
constrained case

» If Algorithm 2 yields a sufficiently accurate solution to the barrier
subproblem for each {y;} — 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point X of {x;}, then there exist
Lagrange multipliers X such that the first-order optimality conditions of
the nonlinear program are satisfied

] = =
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Implementation details

Conclusion

> Incorporated in IPOPT software package (Wachter)
> inexact_algorithm yes

» Linear systems solved with PARDISO (Schenk)
» SQMR (Freund (1994))
» Preconditioning in PARDISO

> stabilized by symmetric-weighted matchings
» Optimality tolerance: le-8

» incomplete multilevel factorization with inverse-based pivoting

o = = E A
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CUTEr and COPS collections

745 problems written in AMPL

645 solved successfully

Robustness between 87%-94%

>
>
» 42 “real” failures
>
» Original IPOPT: 93%

o 5 = = £ DA
;
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Helmholtz

True ke

Peconsiicies kix)

28

2¢

24

22

56

£

N | n | p | q | # iter | CPU sec (per iter)

32 14724 13824 1800 37 807.823 (21.833)

64 56860 53016 7688 25 3741.42 (149.66)

128 | 227940 | 212064 | 31752 20 54581.8 (2729.1)
o 9 = = 9
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Helmholtz

Not taking nonconvexity into account:

True ke Paconsruces ki)

- [,
e
s
s
s
e
B
s
] 02 na e o 1 *
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Boundary control

min 3 [ (y(x) — yr(x))?dx

st. =V (™. Vy(x)) =20 in Q
y(x) = u(x) on 9Q
2.5 < u(x) < 3.5 on 00

where
ye(x) = 3 4+ 10x1(x1 — 1)x2(x2 — 1) sin(27x3)

N | n | p | q | # iter | CPU sec (per iter)
16 4096 2744 2704 13 2.8144 (0.2165)
32 32768 27000 | 11536 13 103.65 (7.9731)
64 | 262144 | 238328 | 47632 14 5332.3 (380.88)

Original IPOPT with N = 32 requires 238 seconds per iteration

o = = E E 9ace
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Hyperthermia Treatment Planning

min 3 Jo(y(x) = ye(x))?dx

sit. — Ay(x) —10(y(x) — 37) = u"M(x)u in Q
37.0 < y(x) < 37.5 on 022
42.0 < y(x) <44.0 in Qo

where )
u = a;e'®, My (x) =< Ej(x), Ex(x) >, E; = sin(jxixox3m)

N | n | p | q | # iter | CPU sec (per iter)
16 | 4116 | 2744 | 2994 68 | 22.803 (0.3367)
32 | 32788 | 27000 | 13034 51 3055.9 (59.920)

Original IPOPT with N = 32 requires 408 seconds per iteration

o 5 = = DA
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Conclusion
: :
: :
Groundwater modeling
min 3 [o(y(x) = ye(x))?dx + 3 [o[B(u(x) — ue(x))? + [V (u(x) — ue(x))[PJdx
st. —V- ("™ . Vy(x) =qi(x) nQ, i=1,...,6
Vyi(x)-n=0 on dQ
/y;(x)dx:O, i=1,...,6
Q
—1<u(x)<2 inQ
where
g; = 1005sin(27mxy) sin(2mx2) sin(27wx3)
N | n | p | q | # iter | CPU sec (per iter) |
16 28672 24576 8192 18 | 206.416 (11.4676)
32 229376 196608 65536 20 | 1963.64 (98.1820)
64 | 1835008 | 1572864 | 524288 21 | 134418. (6400.85)
Original IPOPT with N = 32 requires approx. 20 hours for the first iteration
= = = = = 9ac
: :
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:

Conclusion and final remarks

» PDE-Constrained optimization is an active and exciting area

» Inexact Newton method with theoretical foundation

» Convergence guarantees are as good as exact methods, sometimes better

» Numerical experiments are promising so far, and more to come

o = =
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