Inexact Newton Methods and Nonlinear Constrained Optimization

Frank E. Curtis

EPSRC Symposium Capstone Conference Warwick Mathematics Institute

July 2, 2009

Outline

PDE Optimization

PDE-Constrained Optimization

Newton's method

Inexactness

Experimental results

Conclusion and final remarks

PDE-Constrained Optimization

Hyperthermia treatment

- Regional hyperthermia is a cancer therapy that aims at heating large and deeply seated tumors by means of radio wave adsorption
- ▶ Results in the killing of tumor cells and makes them more susceptible to other accompanying therapies; e.g., chemotherapy

Hyperthermia treatment planning

- ► Computer modeling can be used to help plan the therapy for each patient, and it opens the door for numerical optimization
- ► The goal is to heat the tumor to a target temperature of 43°C while minimizing damage to nearby cells

PDE-constrained optimization

$$\min f(x)$$
s.t. $c_{\mathcal{E}}(x) = 0$

$$c_{\mathcal{I}}(x) \ge 0$$

- Problem is infinite-dimensional
- Controls and states: x = (u, y)
- Solution methods integrate
 - numerical simulation
 - problem structure
 - optimization algorithms

We hear the phrases:

- ► Discretize-then-optimize
- ► Optimize-then-discretize

I prefer:

► Discretize the optimization problem

$$\begin{array}{c}
\min f(x) \\
\text{s.t. } c(x) = 0
\end{array} \Rightarrow \begin{array}{c}
\min f_h(x) \\
\text{s.t. } c_h(x) = 0
\end{array}$$

Discretize the optimality conditions

$$\begin{vmatrix} \min f(x) \\ \text{s.t. } c(x) = 0 \end{vmatrix} \Rightarrow \begin{bmatrix} \nabla f + \langle A, \lambda \rangle \\ c \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} (\nabla f + \langle A, \lambda \rangle)_h \\ c_h \end{bmatrix} = 0$$

Discretize the search direction computation

Algorithms

Nonlinear elimination

$$\begin{vmatrix} \min_{u,y} f(u,y) \\ \text{s.t. } c(u,y) = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} \min_{u} f(u,y(u)) \\ \end{vmatrix} \Rightarrow \begin{vmatrix} \nabla_{u}f + \nabla_{u}y^{T}\nabla_{y}f = 0 \end{vmatrix}$$

► Reduced-space methods

 d_y : toward satisfying the constraints

 λ : Lagrange multiplier estimates

 d_u : toward optimality

► Full-space methods

$$\begin{bmatrix} H_u & 0 & A_u^T \\ 0 & H_y & A_y^T \\ A_u & A_y & 0 \end{bmatrix} \begin{bmatrix} d_u \\ d_y \\ \delta \end{bmatrix} = - \begin{bmatrix} \nabla_u f + A_u^T \lambda \\ \nabla_y f + A_y^T \lambda \\ c \end{bmatrix}$$

Outline

Newton's method

Newton's method

$$\mathcal{F}(x) = 0$$
 \Rightarrow $\nabla \mathcal{F}(x_k) d_k = -\mathcal{F}(x_k)$

Judge progress by the merit function

$$\phi(\mathbf{x}) \triangleq \frac{1}{2} \|\mathcal{F}(\mathbf{x}_k)\|^2$$

Direction is one of descent since

$$\nabla \phi(x_k)^T d_k = \mathcal{F}(x_k)^T \nabla \mathcal{F}(x_k) d_k = -\|\mathcal{F}(x_k)\|^2 < 0$$

(Note the consistency between the step computation and merit function!)

Equality constrained optimization

Consider

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Lagrangian is

$$\mathcal{L}(x,\lambda) \triangleq f(x) + \lambda^{T} c(x)$$

so the first-order optimality conditions are

$$\nabla \mathcal{L}(x,\lambda) = \begin{bmatrix} \nabla f(x) + \nabla c(x)\lambda \\ c(x) \end{bmatrix} \triangleq \mathcal{F}(x,\lambda) = 0$$

Merit function

Simply minimizing

$$\varphi(x,\lambda) = \frac{1}{2} \|\mathcal{F}(x,\lambda)\|^2 = \frac{1}{2} \left\| \begin{bmatrix} \nabla f(x) + \nabla c(x)\lambda \\ c(x) \end{bmatrix} \right\|^2$$

is generally inappropriate for constrained optimization

We use the merit function

$$\phi(x;\pi) \triangleq f(x) + \pi \|c(x)\|$$

where π is a penalty parameter

Minimizing a penalty function

Consider the penalty function for

min
$$(x-1)^2$$
, s.t. $x = 0$ i.e. $\phi(x; \pi) = (x-1)^2 + \pi |x|$

for different values of the penalty parameter $\boldsymbol{\pi}$

Figure: $\pi = 1$

Figure: $\pi = 2$

PDE Optimization

(Assume the problem is sufficiently convex and regular) for k = 0, 1, 2, ...

Solve the primal-dual (Newton) equations

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix}$$

Inexactness

- ▶ Increase π , if necessary, so that $D\phi_k(d_k; \pi_k) \ll 0$ (e.g., $\pi_k > ||\lambda_k + \delta_k||$)
- Backtrack from $\alpha_k \leftarrow 1$ to satisfy the Armijo condition

$$\phi(\mathbf{x}_k + \alpha_k \mathbf{d}_k; \pi_k) \leq \phi(\mathbf{x}_k; \pi_k) + \eta \alpha_k D\phi_k(\mathbf{d}_k; \pi_k)$$

▶ Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k(d_k, \delta_k)$

Convergence of Algorithm 0

Assumption

The sequence $\{(x_k, \lambda_k)\}$ is contained in a convex set Ω over which f, c, and their first derivatives are bounded and Lipschitz continuous. Also,

- ▶ $(Regularity) \nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
- (Convexity) $u^T H(x_k, \lambda_k) u \ge \mu \|u\|^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \ne 0$ and $\nabla c(x_k)^T u = 0$

Theorem

(Han (1977)) The sequence $\{(x_k, \lambda_k)\}$ yields the limit

$$\lim_{k\to\infty}\left\|\begin{bmatrix}\nabla f(x_k)+\nabla c(x_k)\lambda_k\\c(x_k)\end{bmatrix}\right\|=0$$

Outline

PDF-Constrained Ontimization

Nowton's mothos

Inexactness

Experimental results

Conclusion and final remark

Large-scale primal-dual algorithms

- ► Computational issues:
 - ▶ Large matrices to be stored
 - Large matrices to be factored
- Algorithmic issues:
 - The problem may be nonconvex
 - The problem may be ill-conditioned
- Computational/Algorithmic issues:
 - No matrix factorizations makes difficulties more difficult

Nonlinear equations

Compute

$$\nabla \mathcal{F}(x_k) d_k = -\mathcal{F}(x_k) + r_k$$

requiring (Dembo, Eisenstat, Steihaug (1982))

$$||r_k|| \le \kappa ||\mathcal{F}(x_k)||, \quad \kappa \in (0,1)$$

Progress judged by the merit function

$$\phi(\mathbf{x}) \triangleq \frac{1}{2} \|\mathcal{F}(\mathbf{x}_k)\|^2$$

Again, note the consistency...

$$\nabla \phi(x_k)^T d_k = \mathcal{F}(x_k)^T \nabla \mathcal{F}(x_k) d_k = -\|\mathcal{F}(x_k)\|^2 + \mathcal{F}(x_k)^T r_k \le (\kappa - 1)\|\mathcal{F}(x_k)\|^2 < 0$$

Optimization

Compute

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

satisfying

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\|, \quad \kappa \in (0, 1)$$

▶ If κ is not sufficiently small (e.g., 10^{-3} vs. 10^{-12}), then d_k may be an ascent direction for our merit function; i.e.,

$$D\phi_k(d_k; \pi_k) > 0$$
 for all $\pi_k \ge \pi_{k-1}$

- Our work begins here... inexact Newton methods for optimization
- We cover the convex case, nonconvexity, irregularity, inequality constraints

Model reductions

Define the model of $\phi(x;\pi)$:

$$m(d; \pi) \triangleq f(x) + \nabla f(x)^T d + \pi(\|c(x) + \nabla c(x)^T d\|)$$

 $ightharpoonup d_k$ is acceptable if

$$\Delta m(d_k; \pi_k) \triangleq m(0; \pi_k) - m(d_k; \pi_k) = -\nabla f(x_k)^T d_k + \pi_k (\|c(x_k)\| - \|c(x_k) + \nabla c(x_k)^T d_k\|) \gg 0$$

▶ This ensures $D\phi_k(d_k; \pi_k) \ll 0$ (and more)

Termination test 1

The search direction (d_k, δ_k) is acceptable if

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\|, \quad \kappa \in (0, 1)$$

and if for $\pi_k = \pi_{k-1}$ and some $\sigma \in (0,1)$ we have

$$\Delta m(d_k; \pi_k) \geq \underbrace{\max\{\frac{1}{2}d_k^T H(x_k, \lambda_k)d_k, 0\} + \sigma \pi_k \max\{\|c(x_k)\|, \|r_k\| - \|c(x_k)\|\}}_{\text{max}}$$

 \geq 0 for any d

Termination test 2

The search direction (d_k, δ_k) is acceptable if

$$\|
ho_k\| \le eta \|c(x_k)\|, \quad eta > 0$$

and $\|r_k\| \le \epsilon \|c(x_k)\|, \quad \epsilon \in (0,1)$

Increasing the penalty parameter π then yields

$$\Delta m(d_k; \pi_k) \ge \underbrace{\max\{\frac{1}{2}d_k^T H(x_k, \lambda_k) d_k, 0\} + \sigma \pi_k \|c(x_k)\|}_{> 0 \text{ for any } d}$$

(Byrd, Curtis, Nocedal (2008)) for k = 0, 1, 2, ...

Iteratively solve

PDE Optimization

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix}$$

Inexactness

until termination test 1 or 2 is satisfied

If only termination test 2 is satisfied, increase π so

$$\pi_k \geq \max \left\{ \pi_{k-1}, \frac{\nabla f(\boldsymbol{x}_k)^T d_k + \max\{\frac{1}{2} d_k^T H(\boldsymbol{x}_k, \lambda_k) d_k, 0\}}{(1 - \tau)(\|\boldsymbol{c}(\boldsymbol{x}_k)\| - \|\boldsymbol{r}_k\|)} \right\}$$

Backtrack from $\alpha_k \leftarrow 1$ to satisfy

$$\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) - \eta \alpha_k \Delta m(d_k; \pi_k)$$

▶ Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k (d_k, \delta_k)$

Convergence of Algorithm 1

Newton's method

Assumption

The sequence $\{(x_k, \lambda_k)\}$ is contained in a convex set Ω over which f, c, and their first derivatives are bounded and Lipschitz continuous. Also,

- ▶ $(Regularity) \nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
- (Convexity) $u^T H(x_k, \lambda_k) u \ge \mu \|u\|^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \ne 0$ and $\nabla c(x_k)^T u = 0$

Theorem

(Byrd, Curtis, Nocedal (2008)) The sequence $\{(x_k, \lambda_k)\}$ yields the limit

$$\lim_{k\to\infty} \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k)\lambda_k \\ c(x_k) \end{bmatrix} \right\| = 0$$

Handling nonconvexity and rank deficiency

- There are two assumptions we aim to drop:
 - (Regularity) $\nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
 - (Convexity) $u^T H(x_k, \lambda_k) u \ge \mu ||u||^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \neq 0$ and $\nabla c(x_k)^T u = 0$
 - e.g., the problem is not regular if it is infeasible, and it is not convex if there are maximizers and/or saddle points
- Without them, Algorithm 1 may stall or may not be well-defined

No factorizations means no clue

We might not store or factor

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix}$$

so we might not know if the problem is nonconvex or ill-conditioned

Common practice is to perturb the matrix to be

$$\begin{bmatrix} H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\ \nabla c(x_k)^T & -\xi_2 I \end{bmatrix}$$

where ξ_1 convexifies the model and ξ_2 regularizes the constraints

▶ Poor choices of ξ_1 and ξ_2 can have terrible consequences in the algorithm

Our approach for global convergence

▶ Decompose the direction d_k into a normal component (toward the constraints) and a tangential component (toward optimality)

▶ We impose a specific type of trust region constraint on the v_k step in case the constraint Jacobian is (near) rank deficient

Experimental results

Handling nonconvexity

In computation of $d_k = v_k + u_k$, convexify the Hessian as in

$$\begin{bmatrix} H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix}$$

by monitoring iterates

Hessian modification strategy: Increase ξ_1 whenever

$$\|u_{k}\|^{2} > \psi \|v_{k}\|^{2}, \quad \psi > 0$$

$$\frac{1}{2}u_{k}^{T}(H(x_{k}, \lambda_{k}) + \xi_{1}I)u_{k} < \theta \|u_{k}\|^{2}, \quad \theta > 0$$

Algorithm 2: Inexact Newton (Regularized)

(Curtis, Nocedal, Wächter (2009)) for k = 0, 1, 2, ...

Approximately solve

$$\min \frac{1}{2} \|c(x_k) + \nabla c(x_k)^T v\|^2$$
, s.t. $\|v\| \le \omega \|(\nabla c(x_k))c(x_k)\|$

Inexactness

to compute v_k satisfying Cauchy decrease

Iteratively solve

$$\begin{bmatrix} H(x_k, \lambda_k) + \frac{\xi_1}{\xi_1} I & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ -\nabla c(x_k)^T v_k \end{bmatrix}$$

until termination test 1 or 2 is satisfied, increasing ξ_1 as described

If only termination test 2 is satisfied, increase π so

$$\pi_k \geq \max \left\{ \pi_{k-1}, \frac{\nabla f(x_k)^T d_k + \max\{\frac{1}{2} u_k^T (H(x_k, \lambda_k) + \xi_1 I) u_k, \theta \|u_k\|^2\}}{(1 - \tau)(\|c(x_k)\| - \|c(x_k) + \nabla c(x_k)^T d_k\|)} \right\}$$

Backtrack from $\alpha_k \leftarrow 1$ to satisfy

$$\phi(x_k + \alpha_k d_k; \pi_k) \le \phi(x_k; \pi_k) - \eta \alpha_k \Delta m(d_k; \pi_k)$$

Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k (d_k, \delta_k)$

Convergence of Algorithm 2

Assumption

The sequence $\{(x_k, \lambda_k)\}$ is contained in a convex set Ω over which f, c, and their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Nocedal, Wächter (2009)) If all limit points of $\{\nabla c(x_k)^T\}$ have full row rank, then the sequence $\{(x_k, \lambda_k)\}$ yields the limit

$$\lim_{k\to\infty}\left\|\begin{bmatrix}\nabla f(x_k)+\nabla c(x_k)\lambda_k\\c(x_k)\end{bmatrix}\right\|=0.$$

Otherwise,

$$\lim_{k\to\infty}\|(\nabla c(x_k))c(x_k)\|=0$$

and if $\{\pi_k\}$ is bounded, then

$$\lim_{k\to\infty}\|\nabla f(x_k)+\nabla c(x_k)\lambda_k\|=0$$

Handling inequalities

- ▶ Interior point methods are attractive for large applications
- Line-search interior point methods that enforce

$$c(x_k) + \nabla c(x_k)^T d_k = 0$$

may fail to converge globally (Wächter, Biegler (2000))

Fortunately, the trust region subproblem we use to regularize the constraints also saves us from this type of failure!

Algorithm 2 (Interior-point version)

► Apply Algorithm 2 to the logarithmic-barrier subproblem

min
$$f(x) - \mu \sum_{i=1}^{q} \ln s^{i}$$
, s.t. $c_{\mathcal{E}}(x) = 0$, $c_{\mathcal{I}}(x) - s = 0$

for $\mu
ightarrow 0$

Define

$$\begin{bmatrix} H(x_k, \lambda_{\mathcal{E},k}, \lambda_{\mathcal{I},k}) & 0 & \nabla c_{\mathcal{E}}(x_k) & \nabla c_{\mathcal{I}}(x_k) \\ 0 & \mu I & 0 & -S_k \\ \nabla c_{\mathcal{E}}(x_k)^T & 0 & 0 & 0 \\ \nabla c_{\mathcal{I}}(x_k)^T & -S_k & 0 & 0 \end{bmatrix} \begin{bmatrix} d_k^x \\ d_k^s \\ \delta_{\mathcal{E},k} \\ \delta_{\mathcal{I},k} \end{bmatrix}$$

so that the iterate update has

$$\begin{bmatrix} x_{k+1} \\ s_{k+1} \end{bmatrix} \leftarrow \begin{bmatrix} x_k \\ s_k \end{bmatrix} + \alpha_k \begin{bmatrix} d_k^x \\ S_k d_k^s \end{bmatrix}$$

▶ Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in the algorithm to maintain $s > \max\{0, c_T(x)\}$

Convergence of Algorithm 2 (Interior-point)

Assumption

The sequence $\{(x_k, \lambda_{\mathcal{E},k}, \lambda_{\mathcal{I},k})\}$ is contained in a convex set Ω over which f, $c_{\mathcal{E}}$, $c_{\mathcal{I}}$, and their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Schenk, Wächter (2009))

- For a given μ, Algorithm 2 yields the same limits as in the equality constrained case
- ▶ If Algorithm 2 yields a sufficiently accurate solution to the barrier subproblem for each $\{\mu_j\} \to 0$ and if the linear independence constraint qualification (LICQ) holds at a limit point \bar{x} of $\{x_j\}$, then there exist Lagrange multipliers $\bar{\lambda}$ such that the first-order optimality conditions of the nonlinear program are satisfied

Experimental results

Experimental results

Implementation details

- Incorporated in IPOPT software package (Wächter)
 - inexact_algorithm yes
- Linear systems solved with PARDISO (Schenk)
 - SQMR (Freund (1994))
- Preconditioning in PARDISO
 - incomplete multilevel factorization with inverse-based pivoting
 - stabilized by symmetric-weighted matchings
- Optimality tolerance: 1e-8

Inexactness

CUTEr and COPS collections

PDE Optimization

- ▶ 745 problems written in AMPL
- ▶ 645 solved successfully
- ▶ 42 "real" failures
- Robustness between 87%-94%
- Original IPOPT: 93%

Helmholtz

Ν	n	р	q	# iter	CPU sec (per iter)
32	14724	13824	1800	37	807.823 (21.833)
64	56860	53016	7688	25	3741.42 (149.66)
128	227940	212064	31752	20	54581.8 (2729.1)

Helmholtz

Not taking nonconvexity into account:

$$\min \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx$$
s.t. $-\nabla \cdot (e^{y(x)} \cdot \nabla y(x)) = 20 \text{ in } \Omega$

$$y(x) = u(x) \text{ on } \partial\Omega$$

$$2.5 \le u(x) \le 3.5 \text{ on } \partial\Omega$$

where

$$y_t(x) = 3 + 10x_1(x_1 - 1)x_2(x_2 - 1)\sin(2\pi x_3)$$

Ν	n	p	q	# iter	CPU sec (per iter)
16	4096	2744	2704	13	2.8144 (0.2165)
32	32768	27000	11536	13	103.65 (7.9731)
64	262144	238328	47632	14	5332.3 (380.88)

Original IPOPT with N=32 requires 238 seconds per iteration

Hyperthermia Treatment Planning

min
$$\frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx$$

s.t. $-\Delta y(x) - 10(y(x) - 37) = u^* M(x) u$ in Ω
 $37.0 \le y(x) \le 37.5$ on $\partial \Omega$
 $42.0 \le y(x) \le 44.0$ in Ω_0

where

PDE Optimization

$$u_j = a_j e^{i\phi_j}, \quad M_{jk}(x) = \langle E_j(x), E_k(x) \rangle, \quad E_j = \sin(jx_1x_2x_3\pi)$$

Ν	n	p	q	# iter	CPU sec (per iter)
16	4116	2744	2994	68	22.893 (0.3367)
32	32788	27000	13034	51	3055.9 (59.920)

Original IPOPT with N=32 requires 408 seconds per iteration

$$\begin{aligned} &\min \ \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx + \frac{1}{2} \alpha \int_{\Omega} [\beta(u(x) - u_t(x))^2 + |\nabla(u(x) - u_t(x))|^2] dx \\ &\text{s.t.} \quad -\nabla \cdot (e^{u(x)} \cdot \nabla y_i(x)) = q_i(x) \quad \text{in } \Omega, \quad i = 1, \dots, 6 \\ &\nabla y_i(x) \cdot n = 0 \quad \text{on } \partial\Omega \\ &\int_{\Omega} y_i(x) dx = 0, \quad i = 1, \dots, 6 \\ &-1 \leq u(x) \leq 2 \quad \text{in } \Omega \end{aligned}$$

where

PDE Optimization

$$q_i = 100\sin(2\pi x_1)\sin(2\pi x_2)\sin(2\pi x_3)$$

Ν	n	р	q	# iter	CPU sec (per iter)
16	28672	24576	8192	18	206.416 (11.4676)
32	229376	196608	65536	20	1963.64 (98.1820)
64	1835008	1572864	524288	21	134418. (6400.85)

Original IPOPT with N=32 requires approx. 20 hours for the first iteration

Outline

Conclusion and final remarks

Conclusion and final remarks

- ▶ PDE-Constrained optimization is an active and exciting area
- Inexact Newton method with theoretical foundation
- ► Convergence guarantees are as good as exact methods, sometimes better
- Numerical experiments are promising so far, and more to come