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Hyperthermia treatment

I Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption

I Results in the killing of tumor cells and makes them more susceptible to
other accompanying therapies; e.g., chemotherapy
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Hyperthermia treatment planning

I Computer modeling can be used to help plan the therapy for each
patient, and it opens the door for numerical optimization

I The goal is to heat the tumor to a target temperature of 43◦C while
minimizing damage to nearby cells
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PDE-constrained optimization

min f (x)

s.t. cE(x) = 0

cI(x) ≥ 0

I Problem is infinite-dimensional

I Controls and states: x = (u, y)

I Solution methods integrate

I numerical simulation
I problem structure
I optimization algorithms
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Algorithmic frameworks

We hear the phrases:

I Discretize-then-optimize

I Optimize-then-discretize

I prefer:

I Discretize the optimization problem

min f (x)

s.t. c(x) = 0
⇒

min fh(x)

s.t. ch(x) = 0

I Discretize the optimality conditions

min f (x)

s.t. c(x) = 0
⇒

[
∇f + 〈A, λ〉

c

]
= 0 ⇒

[
(∇f + 〈A, λ〉)h

ch

]
= 0

I Discretize the search direction computation
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Algorithms

I Nonlinear elimination

min
u,y

f (u, y)

s.t. c(u, y) = 0
⇒ min

u
f (u, y(u)) ⇒ ∇uf +∇uyT∇y f = 0

I Reduced-space methods

dy : toward satisfying the constraints

λ : Lagrange multiplier estimates

du : toward optimality

I Full-space methodsHu 0 AT
u

0 Hy AT
y

Au Ay 0

du

dy

δ

 = −

∇uf + AT
u λ

∇y f + AT
y λ

c


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Nonlinear equations

I Newton’s method

F(x) = 0 ⇒ ∇F(xk)dk = −F(xk)

I Judge progress by the merit function

φ(x) , 1
2
‖F(xk)‖2

I Direction is one of descent since

∇φ(xk)T dk = F(xk)T∇F(xk)dk = −‖F(xk)‖2 < 0

(Note the consistency between the step computation and merit function!)
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Equality constrained optimization

I Consider
min
x∈Rn

f (x)

s.t. c(x) = 0

I Lagrangian is
L(x , λ) , f (x) + λT c(x)

so the first-order optimality conditions are

∇L(x , λ) =

[
∇f (x) +∇c(x)λ

c(x)

]
, F(x , λ) = 0
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Merit function

I Simply minimizing

ϕ(x , λ) = 1
2
‖F(x , λ)‖2 = 1

2

∥∥∥∥[∇f (x) +∇c(x)λ
c(x)

]∥∥∥∥2

is generally inappropriate for constrained optimization

I We use the merit function

φ(x ;π) , f (x) + π‖c(x)‖

where π is a penalty parameter
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Minimizing a penalty function
Consider the penalty function for

min (x − 1)2, s.t. x = 0 i.e. φ(x ;π) = (x − 1)2 + π|x |

for different values of the penalty parameter π

Figure: π = 1 Figure: π = 2
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Algorithm 0: Newton method for optimization

(Assume the problem is sufficiently convex and regular)
for k = 0, 1, 2, . . .

I Solve the primal-dual (Newton) equations[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
I Increase π, if necessary, so that Dφk(dk ;πk)� 0 (e.g., πk ≥ ‖λk + δk‖)
I Backtrack from αk ← 1 to satisfy the Armijo condition

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαkDφk(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Convergence of Algorithm 0

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk)T has full row rank with singular values bounded
below by a positive constant

I (Convexity) uT H(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn satisfying
u 6= 0 and ∇c(xk)T u = 0

Theorem
(Han (1977)) The sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0
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Large-scale primal-dual algorithms

I Computational issues:

I Large matrices to be stored
I Large matrices to be factored

I Algorithmic issues:

I The problem may be nonconvex
I The problem may be ill-conditioned

I Computational/Algorithmic issues:

I No matrix factorizations makes difficulties more difficult
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Nonlinear equations

I Compute
∇F(xk)dk = −F(xk) + rk

requiring (Dembo, Eisenstat, Steihaug (1982))

‖rk‖ ≤ κ‖F(xk)‖, κ ∈ (0, 1)

I Progress judged by the merit function

φ(x) , 1
2
‖F(xk)‖2

I Again, note the consistency...

∇φ(xk)T dk = F(xk)T∇F(xk)dk = −‖F(xk)‖2+F(xk)T rk ≤ (κ−1)‖F(xk)‖2 < 0
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Optimization

I Compute[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
+

[
ρk

rk

]
satisfying ∥∥∥∥[ρk

rk

]∥∥∥∥ ≤ κ ∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ , κ ∈ (0, 1)

I If κ is not sufficiently small (e.g., 10−3 vs. 10−12), then dk may be an
ascent direction for our merit function; i.e.,

Dφk(dk ;πk) > 0 for all πk ≥ πk−1

I Our work begins here... inexact Newton methods for optimization

I We cover the convex case, nonconvexity, irregularity, inequality constraints

Inexact Newton Methods and Nonlinear Constrained Optimization EPSRC Symposium Capstone Conference, WMI



PDE Optimization Newton’s method Inexactness Experimental results Conclusion

Model reductions

I Define the model of φ(x ;π):

m(d ;π) , f (x) +∇f (x)T d + π(‖c(x) +∇c(x)T d‖)

I dk is acceptable if

∆m(dk ;πk) , m(0;πk)−m(dk ;πk)

= −∇f (xk)T dk + πk(‖c(xk)‖ − ‖c(xk) +∇c(xk)T dk‖)� 0

I This ensures Dφk(dk ;πk)� 0 (and more)
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Termination test 1
The search direction (dk , δk) is acceptable if∥∥∥∥[ρk

rk

]∥∥∥∥ ≤ κ ∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ , κ ∈ (0, 1)

and if for πk = πk−1 and some σ ∈ (0, 1) we have

∆m(dk ;πk) ≥ max{ 1
2
dT

k H(xk , λk)dk , 0}+ σπk max{‖c(xk)‖, ‖rk‖ − ‖c(xk)‖}︸ ︷︷ ︸
≥ 0 for any d
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Termination test 2
The search direction (dk , δk) is acceptable if

‖ρk‖ ≤ β‖c(xk)‖, β > 0

and ‖rk‖ ≤ ε‖c(xk)‖, ε ∈ (0, 1)

Increasing the penalty parameter π then yields

∆m(dk ;πk) ≥ max{ 1
2
dT

k H(xk , λk)dk , 0}+ σπk‖c(xk)‖︸ ︷︷ ︸
≥ 0 for any d

Inexact Newton Methods and Nonlinear Constrained Optimization EPSRC Symposium Capstone Conference, WMI



PDE Optimization Newton’s method Inexactness Experimental results Conclusion

Algorithm 1: Inexact Newton for optimization
(Byrd, Curtis, Nocedal (2008))
for k = 0, 1, 2, . . .

I Iteratively solve[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

] [
dk

δk

]
= −

[
∇f (xk) +∇c(xk)λk

c(xk)

]
until termination test 1 or 2 is satisfied

I If only termination test 2 is satisfied, increase π so

πk ≥ max

{
πk−1,

∇f (xk)T dk + max{ 1
2
dT

k H(xk , λk)dk , 0}
(1− τ)(‖c(xk)‖ − ‖rk‖)

}

I Backtrack from αk ← 1 to satisfy

φ(xk + αkdk ;πk) ≤ φ(xk ;πk)− ηαk∆m(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Convergence of Algorithm 1

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk)T has full row rank with singular values bounded
below by a positive constant

I (Convexity) uT H(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn satisfying
u 6= 0 and ∇c(xk)T u = 0

Theorem
(Byrd, Curtis, Nocedal (2008)) The sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0

Inexact Newton Methods and Nonlinear Constrained Optimization EPSRC Symposium Capstone Conference, WMI



PDE Optimization Newton’s method Inexactness Experimental results Conclusion

Handling nonconvexity and rank deficiency

I There are two assumptions we aim to drop:

I (Regularity) ∇c(xk)T has full row rank with singular values
bounded below by a positive constant

I (Convexity) uTH(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn

satisfying u 6= 0 and ∇c(xk)Tu = 0

e.g., the problem is not regular if it is infeasible, and it is not convex if
there are maximizers and/or saddle points

I Without them, Algorithm 1 may stall or may not be well-defined
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No factorizations means no clue

I We might not store or factor[
H(xk , λk) ∇c(xk)
∇c(xk)T 0

]
so we might not know if the problem is nonconvex or ill-conditioned

I Common practice is to perturb the matrix to be[
H(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T −ξ2I

]
where ξ1 convexifies the model and ξ2 regularizes the constraints

I Poor choices of ξ1 and ξ2 can have terrible consequences in the algorithm
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Our approach for global convergence

I Decompose the direction dk into a normal component (toward the
constraints) and a tangential component (toward optimality)

I We impose a specific type of trust region constraint on the vk step in
case the constraint Jacobian is (near) rank deficient
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Handling nonconvexity

I In computation of dk = vk + uk , convexify the Hessian as in[
H(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T 0

]
by monitoring iterates

I Hessian modification strategy: Increase ξ1 whenever

‖uk‖2 > ψ‖vk‖2, ψ > 0

1
2
uT

k (H(xk , λk) + ξ1I )uk < θ‖uk‖2, θ > 0
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Algorithm 2: Inexact Newton (Regularized)
(Curtis, Nocedal, Wächter (2009))
for k = 0, 1, 2, . . .

I Approximately solve

min 1
2
‖c(xk ) +∇c(xk )T v‖2, s.t. ‖v‖ ≤ ω‖(∇c(xk ))c(xk )‖

to compute vk satisfying Cauchy decrease

I Iteratively solve[
H(xk , λk ) + ξ1I ∇c(xk )
∇c(xk )T 0

] [
dk

δk

]
= −

[
∇f (xk ) +∇c(xk )λk

−∇c(xk )T vk

]
until termination test 1 or 2 is satisfied, increasing ξ1 as described

I If only termination test 2 is satisfied, increase π so

πk ≥ max

{
πk−1,

∇f (xk )T dk + max{ 1
2
uT

k (H(xk , λk ) + ξ1I )uk , θ‖uk‖2}
(1− τ)(‖c(xk )‖ − ‖c(xk ) +∇c(xk )T dk‖)

}
I Backtrack from αk ← 1 to satisfy

φ(xk + αkdk ;πk ) ≤ φ(xk ;πk )− ηαk∆m(dk ;πk )

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk )
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Convergence of Algorithm 2

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Nocedal, Wächter (2009)) If all limit points of {∇c(xk)T} have full
row rank, then the sequence {(xk , λk)} yields the limit

lim
k→∞

∥∥∥∥[∇f (xk) +∇c(xk)λk

c(xk)

]∥∥∥∥ = 0.

Otherwise,
lim

k→∞
‖(∇c(xk))c(xk)‖ = 0

and if {πk} is bounded, then

lim
k→∞

‖∇f (xk) +∇c(xk)λk‖ = 0
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Handling inequalities

I Interior point methods are attractive for large applications

I Line-search interior point methods that enforce

c(xk) +∇c(xk)T dk = 0

may fail to converge globally (Wächter, Biegler (2000))

I Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!
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Algorithm 2 (Interior-point version)

I Apply Algorithm 2 to the logarithmic-barrier subproblem

min f (x)− µ
q∑

i=1

ln s i , s.t. cE(x) = 0, cI(x)− s = 0

for µ→ 0

I Define 
H(xk , λE,k , λI,k ) 0 ∇cE(xk ) ∇cI(xk )

0 µI 0 −Sk

∇cE(xk )T 0 0 0
∇cI(xk )T −Sk 0 0




dx
k

d s
k

δE,k
δI,k


so that the iterate update has[

xk+1

sk+1

]
←
[
xk

sk

]
+ αk

[
dx

k
Skd s

k

]
I Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in

the algorithm to maintain s ≥ max{0, cI(x)}
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Convergence of Algorithm 2 (Interior-point)

Assumption
The sequence {(xk , λE,k , λI,k)} is contained in a convex set Ω over which f ,
cE , cI , and their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Schenk, Wächter (2009))

I For a given µ, Algorithm 2 yields the same limits as in the equality
constrained case

I If Algorithm 2 yields a sufficiently accurate solution to the barrier
subproblem for each {µj} → 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point x̄ of {xj}, then there exist
Lagrange multipliers λ̄ such that the first-order optimality conditions of
the nonlinear program are satisfied
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Implementation details

I Incorporated in IPOPT software package (Wächter)

I inexact algorithm yes

I Linear systems solved with PARDISO (Schenk)

I SQMR (Freund (1994))

I Preconditioning in PARDISO

I incomplete multilevel factorization with inverse-based pivoting
I stabilized by symmetric-weighted matchings

I Optimality tolerance: 1e-8
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CUTEr and COPS collections

I 745 problems written in AMPL

I 645 solved successfully

I 42 “real” failures

I Robustness between 87%-94%

I Original IPOPT: 93%
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Helmholtz

N n p q # iter CPU sec (per iter)
32 14724 13824 1800 37 807.823 (21.833)
64 56860 53016 7688 25 3741.42 (149.66)

128 227940 212064 31752 20 54581.8 (2729.1)
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Helmholtz

Not taking nonconvexity into account:
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Boundary control

min 1
2

∫
Ω(y(x)− yt(x))2dx

s.t. −∇ · (ey(x) · ∇y(x)) = 20 in Ω

y(x) = u(x) on ∂Ω

2.5 ≤ u(x) ≤ 3.5 on ∂Ω

where
yt(x) = 3 + 10x1(x1 − 1)x2(x2 − 1) sin(2πx3)

N n p q # iter CPU sec (per iter)
16 4096 2744 2704 13 2.8144 (0.2165)
32 32768 27000 11536 13 103.65 (7.9731)
64 262144 238328 47632 14 5332.3 (380.88)

Original IPOPT with N = 32 requires 238 seconds per iteration
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Hyperthermia Treatment Planning

min 1
2

∫
Ω(y(x)− yt(x))2dx

s.t. −∆y(x)− 10(y(x)− 37) = u∗M(x)u in Ω

37.0 ≤ y(x) ≤ 37.5 on ∂Ω

42.0 ≤ y(x) ≤ 44.0 in Ω0

where
uj = aje

iφj , Mjk (x) =< Ej (x),Ek (x) >, Ej = sin(jx1x2x3π)

N n p q # iter CPU sec (per iter)
16 4116 2744 2994 68 22.893 (0.3367)
32 32788 27000 13034 51 3055.9 (59.920)

Original IPOPT with N = 32 requires 408 seconds per iteration
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Groundwater modeling

min 1
2

∫
Ω(y(x)− yt(x))2dx + 1

2
α
∫

Ω[β(u(x)− ut(x))2 + |∇(u(x)− ut(x))|2]dx

s.t. −∇ · (eu(x) · ∇yi (x)) = qi (x) in Ω, i = 1, . . . , 6

∇yi (x) · n = 0 on ∂Ω∫
Ω

yi (x)dx = 0, i = 1, . . . , 6

− 1 ≤ u(x) ≤ 2 in Ω

where
qi = 100 sin(2πx1) sin(2πx2) sin(2πx3)

N n p q # iter CPU sec (per iter)
16 28672 24576 8192 18 206.416 (11.4676)
32 229376 196608 65536 20 1963.64 (98.1820)
64 1835008 1572864 524288 21 134418. (6400.85)

Original IPOPT with N = 32 requires approx. 20 hours for the first iteration
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Conclusion and final remarks

I PDE-Constrained optimization is an active and exciting area

I Inexact Newton method with theoretical foundation

I Convergence guarantees are as good as exact methods, sometimes better

I Numerical experiments are promising so far, and more to come
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