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Outline

Perspectives on Nonconvex Optimization



Problem statement

Consider the problem to find z € R™ to minimize f subject to being in X C R™:

xnelﬁgrvlz f(z) st. zeX. (P)

Interested in algorithms for solving (P) when f and/or X might not be convex.
Nonconvex optimization is experiencing a heyday!
> nonlinear least squares

> training deep neural networks

» PDE-constrained optimization



History

Nonlinear optimization theory and algorithms have had parallel developments

convexity smoothness
A A A
Rockafellar Powell
Fenchel Fletcher
Nemirovski Goldfarb
Nesterov Nocedal
subgradient sufficient
inequality decrease
convergence, convergence,
complexity fast local
Y guarantees Y Y convergence Y

These worlds are (finally) colliding! Where should emphasis be placed?



My work: Inexact Newton Methods

Doctoral work, postdoc, and first few years as asst. prof.:
> Inexact Newton and interior-point methods for solving large-scale problems
> Motivated primarily by PDE-constrained optimization

» Software available in Ipopt/Pardiso

Wi JE) [de] _  [oe + JT Ak
Jk 0 (Sk o Ck

» Iterative Krylov methods

» Inexactness conditions

» Theory: Emphasis on preserving global and fast local convergence guarantees

» Have to deal with nonconvexity and rank deficiency issues
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My work: Infeasibility Detection

Postdoc and first few years as asst. prof.:
> State-of-the-art packages fail at infeasibility detection!
» IPOPT, KNITRO, LOQO, SNOPT, etc.

> Designed additional steps / new algorithms that overcome this deficiency

1 T T T T

0.8
0.6
0.4

02 s

> Theory: Emphasis on completing the table. ..

Convergence | Fast Local Convergence
Feasible v v
Infeasible v v




My work: Nonconvex, Nonsmooth Optimization

Postdoc and first few years as asst. prof.:
> Adaptive gradient sampling and other types of methods

» More on this later. ..



Early 2010’s

Back to the colliding worlds. ..

Complexity guarantees for nonconvex optimization algorithms

> Iterations or function/derivative evaluations to achieve

IV f(zr)l2 < e

> Steepest descent (first-order): O(e~2)
» Line search (second-order): O(e~2)
» Trust region (second-order): O(e~2)

» Cubic regularization (second-order): O(e~3/2)



Early 2010’s

Back to the colliding worlds. ..

Complexity guarantees for nonconvex optimization algorithms

> Iterations or function/derivative evaluations to achieve
IVF(zp)ll2 < e

> Steepest descent (first-order): O(e~2)
» Line search (second-order): O(e~2)
» Trust region (second-order): O(e~2)

» Cubic regularization (second-order): O(e~3/2)

Cubic regularization has longer history, but picks up steam in early 2010’s:
» Griewank (1981)
» Nesterov & Polyak (2006)
» Weiser, Deuflhard, Erdmann (2007)
» Cartis, Gould, Toint (2011), the ARC method



My work: Trust Region Methods with Optimal Complexity

Researchers have been gravitating to adopt and build on cubic regularization:
» Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
» Carmon, Duchi (2017)
» Kohler, Lucchi (2017)
» Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!



My work: Trust Region Methods with Optimal Complexity

Researchers have been gravitating to adopt and build on cubic regularization:
» Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
» Carmon, Duchi (2017)
» Kohler, Lucchi (2017)
» Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!

Little evidence that cubic regularization methods offer improved performance:
» Trust region (TR) methods remain the state-of-the-art

» TR-like methods can achieve the same complexity guarantees



My work: Trust Region Methods with Optimal Complexity

B Iterations N Function B Gradient B Matrix Factorizatiol
o —_ o —_ o o —T
ARC ARC ARC ARC
T 2 E 4 5 T 2 E 4 5 ° T 2 E 4 5 T 2 E 4 5

11 of 49



My view: Message of this Talk

Nonconvex optimization is experiencing a heyday!
» People want to solve more complicated problems
> ...involving nonsmoothness

> ...involving stochasticity



My view: Message of this Talk

Nonconvex optimization is experiencing a heyday!
» People want to solve more complicated problems
> ...involving nonsmoothness

> ...involving stochasticity

However, we might waste this opportunity if we do not. ..
» Make clear the gap between theory and practice (and close it!)
> Learn from advances that have already been made

> ...and adapt them appropriately for modern problems



Outline

Motivation for Second-Order Methods



First- versus Second-Order

First-order methods follow a steepest descent methodology:
Tpt1 ¢z — RV f(zk)
Second-order methods follow Newton’s methodology:
Thy1 <z — ap[V2 [ ()] TV (1),
which one should view as minimizing a quadratic model of f at xj:

flar) + V@) (@ —ap) + 3 (@ — 20) TV f (@) (2 — 1)
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First- versus Second-Order

First-order methods follow a steepest descent methodology:
Tpt1 ¢z — RV f(zk)
Second-order methods follow Newton’s methodology:
Tp41 — xp — ap WiV f(zk),
which one should view as minimizing a quadratic model of f at xj:
f@r) + V@) (@ —ap) + 3 (@ — 20) T Hi(z — )

Might also replace the Hessian with an approximation Hj with inverse Wy
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Why Second-Order?

For better complexity properties?
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Why Second-Order?

For better complexity properties?

> Eh, not really...

» Many are no better than first-order methods in terms of complexity

> ...and ones with better complexity aren’t necessarily best in practice (yet)
For fast local convergence guarantees?

» Eh, probably not. ..

» Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings
Then why?

» Adaptive, natural scaling (gradient descent ~ 1/L while Newton ~ 1)

» Mitigate effects of ill-conditioning

» Easier to tune parameters(?)

> Better at avoiding saddle points(?)

> Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old...)



Nonsmooth Optimization

Few comparisons between first- and second-order methods, but here’s one:

1
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Skajaa (2010) (Master’s thesis advised by Overton)
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Stochastic Optimization: No Paramet

Tuning

Limited memory stochastic gradient method (extends Barzilai-Borwein)

Tpy1 < Tk — aggr where oy > 0 chosen adaptively
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Minimizing logistic loss for binary classification with RCV1 dataset



Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in mnist:

Stochastic-gradient-type method versus one that follows negative curvature:

225{ T 36
’ A NC

2.00 4
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1.50

1.251 |

training loss

1.00 1

0.75 1

0.50

T T T T
0 50 100 150 200 250
iterations

Overcomes slow initial progress by SG-type method. ..



Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in mnist:

Stochastic-gradient-type method versus one that follows negative curvature:
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... while still yielding good behavior in terms of testing accuracy



Outline

Self-Correcting Properties of BFGS



Quasi-Newton Methodology

Quasi-Newton step:
Tpt1 < o — agWiV f(zg)

How should we choose Wj,?
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Standard Motivation

Only approzimate second-order information with gradient displacements:

A

Th41 T /
T >

Secant equation Hpyr = s to match gradient of f at zp, where

Sk = Tk+1 — @ and yg = Vf(zrry1) — V(zk)
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But BFGS offers more!

All quasi-Newton methods use this idea, but all are not equal!
» Broyden (1970)
» Fletcher (1970)
> Goldfarb (1970)
» Shanno (1970)
The critical properties of BFGS took a few extra years to come into focus:
> Powell (1976)
> Ritter (1979, 1981)
» Werner (1978)
» Byrd, Nocedal (1989)




BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas (szvk > 0):

T
T T T
VS VS SKS
Wi < | I— —-F Wi | I— 5 |+ 3%
S3, Vk S Vk Sk Vk

T
spsTH spsTH vEvL
Hk+1“<1];kk Hy, 7 kSRR 4 k%

T T
sy, Hi sk S}, Vk

> These satisfy secant-type equations
Wk+1’l}k = Sk and Hk+18k = Vg,

but these are not critical for this talk.

(X



Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).

> Qp yields Hyp-orthogonal projection onto span(sk)LHk .



Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s and Hy, not gi!)

T
sksi H
Py = 73 k7K and Qi :=1— Pg.
Sk Hk Sk
Both Hj-orthogonal projection matrices (i.e., idempotent and Hy-self-adjoint).
» Py yields Hy-orthogonal projection onto span(sg).
> Qp yields Hyp-orthogonal projection onto span(sk)LHk .

Returning to the Hessian update:

T
SkSZHk SkSng Ukvg‘

R e E A
sy, Hisk sy, Hisk S}, Vk
~——
rank n — 1 rank 1

» Curvature projected out along span(sy)

T T 2
Vv VU v . .
» Curvature corrected by —k-k = ( kZk T” k2 (inverse Rayleigh).
Sk Vk llvells v Wet1vk



Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

o



Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem (Byrd, Nocedal (1989))
Suppose that, for all k, there ewists {n,0} C R, such that

T
) Vk

2
n < 5 and ”?ﬂ <6. (*)
llskll3 % Vk
Then, for any p € (0,1), there exist constants {¢,k,A\} C R, such that, for any
K > 2, the following relations hold for at least [pK| values of k € {1,...,K}:

H,
and R<M§)\

= skl

ngksk

L < SkMRSE
lIskll2l| Hrskll2

Proof technique.
Building on work of Powell (1976), involves bounding growth of

v(Hy) = tr(Hg) — In(det(Hy)).

o



Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.
Corollary
Suppose the conditions of Theorem 1 hold. Then, for any p € (0,1), there exist

constants {p,v} C R, . such that, for any K > 2, the following relations hold for
at least [pK'| values of k € {1,...,K}:

plgkll3 < 3k Wig and Wik 3 < vlg,l3

Here g, is the vector such that the iterate displacement is

Tyl — T = sk = —Wi gy,
Proof sketch.
Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that s, = —Wyg;, and Wy, = H;l for all k. O



Summary

Our main idea is to use a carefully selected type of damping:

» Choosing vy < Yk ‘= gr+1 — gk yields standard BFGS, but we consider

v < BrHsk + (1 — Bx)yr for some By € [0,1] and g € R™.

This scheme preserves the self-correcting properties of BFGS.




Outline

Nonsmooth Optimization



Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

{zr e Afeadien Aoksdien

nonsmooth optimization methods involve the primal subproblem

S, (jG{IR?j)Sm} Ui + 9,50 = 2} + 3@ — o) Hilo - xk))

P)
st ||z — zgll < Ok,
but, with G < [gr,1 - gr,m], it is typically more efficient to solve the dual
sup = 2(Grw +NT Wi (Grw +7) + b w — Skl
(w,7) ERT XR™ (D)

s.t. le;w =1.

The primal solution can then be recovered by

xy o — Wi (Grwi + 1) -
—_—

9k



Algorithm Self-Correcting BFGS for Nonsmooth Optimization

1: Choose z1 € R™.

2: Choose a symmetric positive definite W7 € R"X™,
3: Choose a € (0,1)

4: for k=1,2,... do

5: Solve (P)—(D) such that setting

G + [gk,l cee gk,m] )
sk —Wi(Grwi + k),
and Tpy1 < Tk + Sk

6: yields
F(@rg1) < flar) — 3a(Grwr + 1) " Wi (Grwr + Yk)-
7 Choose g, € R™.

8: Set B < min{8 € [0,1] : v(B) := Bsk + (1 — B)yy. satisfies (x)}.
9: Set vg < v(Bk)-

10: Set
vksT r ’UkST SkST
Wipr < (1— 55 ) Wi [I— 5 )+ 5.
Sp Vk Sp, Vk Sp Vk

11: end for




Instances of the framework

Cutting plane / bundle methods
» Points added incrementally until sufficient decrease obtained
» Finite number of additions until accepted step
Gradient sampling methods
» Points added randomly / incrementally until sufficient decrease obtained

» Sufficient number of iterations with “good” steps

In any case: convergence guarantees require {Wy} to be uniformly positive
definite and bounded on a sufficient number of accepted steps



C++ implement

ion: NonOpt (sabbatical project)

BFGS w/ weak Wolfe line search

Name Exit €end f(Tend) #iter #func #grad #subs
maxq Stationary +9.77e-05 +2.26e-07 450 1017 452 451
mxhilb Stepsize +3.13e-03 +9.26e-02 101 1886 113 102
chained 1q Stepsize +5.00e-02 -6.93e+01 205 4754 207 206
chained cb3 1 Stepsize +1.00e-01 +9.80e+01 347 7469 348 348
chained cb3 2 Stepsize +1.00e-01 +9.80e+01 64 1496 69 65
active faces Stepsize +2.50e-02 +2.22e-16 24 672 27 25
brown function 2 Stepsize +1.00e-01 +2.04e-05 395 17259 396 396
chained mifflin 2 Stepsize +5.00e-02 -3.47e+01 476 10808 508 477
chained crescent 1 Stepsize +1.00e-01 +2.18e-01 74 2278 91 75
chained crescent 2 Stepsize +1.00e-01 +5.86e-02 313 7585 334 314
Bundle method with self-correcting properties
Name Exit €end f(Zend) #iter #func #grad #subs
maxq Stationary +9.77e-05 +1.04e-06 193 441 635 440
mxhilb Stationary +9.77e-05 +2.25e-05 39 338 351 137
chained 1q Stationary +9.77e-05 -6.93e+01 29 374 398 366
chained cb3 1 Stationary +9.77e-05 +9.80e+01 50 1038 1069 1017
chained cb3 2 Stationary +9.77e-05 +9.80e+01 29 174 204 173
active faces Stationary +9.77e-05 +2.09e-02 17 387 165 32
brown function 2 Stationary +9.77e-05 +2.49e-03 232 10094 9674 9438
chained mifflin 2 Stationary +9.77e-05 -3.48e+01 393 24410 19493 18924
chained crescent 1 Stationary +9.77e-05 +2.73e-04 30 66 92 59
chained crescent 2 Stationary +9.77e-05 +4.36e-05 137 6679 6140 5997




Minimum and maximum eigenvalues

bundle-bfgs bundle-bfgs-free

500 1000 1500 2000 2500

0

[
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Stochastic Optimization



Stochastic Gradient (SG)

SG and its variants are the state-of-the-art:

Tp41 ¢ T — apgr where Exlgr] = Vf(xy)

SG is great! Let’s keep proving how great it is!
» Stability of SG; Hardt, Recht, Singer (2015)
» SG avoids steep minima; Keskar, Mudigere, Nocedal, Smelyanskiy (2016)
> ...(many more)
No, we should want more. ..
» SG requires a lot of tuning
> Sublinear convergence is not satisfactory
> ... “linearly” convergent method eventually wins
> ...with higher budget, faster computation, parallel?, distributed?

Also, any “gradient”-based method is not scale invariant.

0
o
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What can be improved?

stochastic better
gradient rate

better
constant




What can be improved?

stochastic better
gradient rate

better better rate and
constant better constant




Two-dimensional schematic of methods

stochastic batch
gradient gradient
e — = > /l
noise reduction ,/
stochastic batch
Newton Newton



2D schematic: Noise reduction methods

stochastic batch
gradient gradient
@

noise reduction
e dynamic sampling

e gradient aggregation

e iterate averaging




2D schematic: Second-order methods

stochastic
gradient

o diagonal scaling

/7\‘2'&, .
;'Y e natural gradient
/.9

. qu e Gauss-Newton
/

v Qc)') .
¢ e quasi-Newton

_® Hessian-free Newton
stochastic

Newton



Previous work: BFGS-type methods

Much focus on the secant equation (Hy41 ~ Hessian approximation)

Sk 1= Wh41 — Wk

Hy418, = yr where
Yk = Vf(wgy1) — Vf(wyg)

and an appropriate replacement for the gradient displacement:

Yk < Vf(wrg1, &) — VF(we, &)

use same seed
oLBFGS, Schraudolph et al. (2007)
SGD-QN, Bordes et al. (2009)
RES, Mokhtari & Ribeiro (2014)

or yi ¢ D VP f(wrgrs kg | sk
ieSH

use action of step on subsampled Hessian
SQN, Byrd et al. (2015)

I believe this is the wrong focus



Algorithm SC : Self-Correcting BFGS Algorithm

Choose w; € R4,
Set g1 = V f(w1).
Choose a symmetric positive definite M; € R4x4,
Choose a positive scalar sequence {ay}.
for k=1,2,... do
Set Sk 7akngk.
Set wyy1 — wg + 5.
Set gpt+1 = Vf(wiy1).
Set yr < gr+1 — gk-
Set By <~ min{B € [0,1] : v(B) := Bsk + (1 — B)aryy satisfies (x)}.
Set vg <+ v(Bk)-

Set .
T T T
Vg S Vg S SkS
Mgy« | T — —E My [T — 5 |+ =2
Sk’Uk Sk’l)k skvk

© P NS q BN

= o e
N o= O

13: end for
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Global convergence theorem

Theorem (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant p > 0 such that
~V i (wi) " Ee, [Migr] < —pllV S (wi) 13,
and there exist scalars o > 0 and T > 0 such that
Ee, [IMkgrll3] < o + 7V (wi)3.
Then, {E[f(wk)]} converges to a finite limit and

lim inf B[V f (wy,)] = 0.

Proof technique.
Follows from the critical inequality

Ee, [f (wit1)] — flwg) < —apV f(wp) B, [Migr] + of LEe, [| Mrgrl|3)-

O



Numerical Experiments: ala
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logistic regression, data ala, diminishing stepsizes




Numerical Experimen

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:

1 . 1
09 09
08 \-________ 08 \_________
o7
' —5C —5C
a6 — 8C-L — SC-L
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logistic regression, data rcvil, diminishing stepsizes
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Numerical Experiments: mnist
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Nonconvex optimization is experiencing a heyday!

» People want to solve more complicated problems
> ...involving nonsmoothness

> ...involving stochasticity

However, we might waste this opportunity if we do not. ..
» Make clear the gap between theory and practice (and close it!)
> Learn from advances that have already been made

> ...and adapt them appropriately for modern problems



Why Second-Order?

For better complexity properties?

> Eh, not really...

» Many are no better than first-order methods in terms of complexity

> ...and ones with better complexity aren’t necessarily best in practice (yet)
For fast local convergence guarantees?

» Eh, probably not. ..

» Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings
Then why?

» Adaptive, natural scaling (gradient descent ~ 1/L while Newton ~ 1)

» Mitigate effects of ill-conditioning

» Easier to tune parameters(?)

> Better at avoiding saddle points(?)

> Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old...)



References

For references, please see

> http://coral.ise.lehigh.edu/frankecurtis/publications

[=] 3% [m]

Please also visit the OptML @ Lehigh website!
> http://optml.lehigh.edu
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