Second-Order Methods for Stochastic and Nonsmooth Optimization

Frank E. Curtis, Lehigh University

USC Department of ISE

10 October 2017

Outline

Perspectives on Nonconvex Optimization

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

<mark>erspectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summar

Outline

Perspectives on Nonconvex Optimization

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

Problem statement

Consider the problem to find $x \in \mathbb{R}^n$ to minimize f subject to being in $\mathcal{X} \subseteq \mathbb{R}^n$:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad x \in \mathcal{X}. \tag{P}$$

Interested in algorithms for solving (P) when f and/or \mathcal{X} might not be convex.

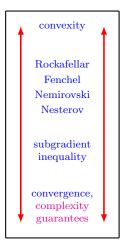
Nonconvex optimization is experiencing a heyday!

- ▶ nonlinear least squares
- ▶ training deep neural networks
- ▶ PDE-constrained optimization

rspectives Motivation Self-Correction Nonsmooth Stochastic Summar

History

Nonlinear optimization theory and algorithms have had parallel developments



These worlds are (finally) colliding! Where should emphasis be placed?

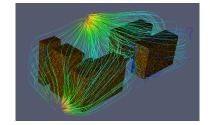
My work: Inexact Newton Methods

Doctoral work, postdoc, and first few years as asst. prof.:

- ▶ Inexact Newton and interior-point methods for solving large-scale problems
- ▶ Motivated primarily by PDE-constrained optimization
- ► Software available in Ipopt/Pardiso

$$\begin{bmatrix} W_k & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + J_k^T \lambda_k \\ c_k \end{bmatrix}$$

- Iterative Krylov methods
- Inexactness conditions



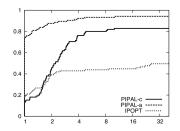
- Theory: Emphasis on preserving global and fast local convergence guarantees
- Have to deal with nonconvexity and rank deficiency issues

rspectives Motivation Self-Correction Nonsmooth Stochastic Summary

My work: Infeasibility Detection

Postdoc and first few years as asst. prof.:

- State-of-the-art packages fail at infeasibility detection!
- ▶ IPOPT, KNITRO, LOQO, SNOPT, etc.
- ▶ Designed additional steps / new algorithms that overcome this deficiency



▶ Theory: Emphasis on completing the table...

	Convergence	Fast Local Convergence
Feasible	✓	✓
Infeasible	√	√

e<mark>rspectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summar

My work: Nonconvex, Nonsmooth Optimization

Postdoc and first few years as asst. prof.:

- ▶ Adaptive gradient sampling and other types of methods
- ▶ More on this later...

r<mark>spectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summa

Early 2010's

Back to the colliding worlds...

Complexity guarantees for nonconvex optimization algorithms

▶ Iterations or function/derivative evaluations to achieve

$$\|\nabla f(x_k)\|_2 \le \epsilon$$

- Steepest descent (first-order): $\mathcal{O}(\epsilon^{-2})$
- ▶ Line search (second-order): $\mathcal{O}(\epsilon^{-2})$
- ▶ Trust region (second-order): $\mathcal{O}(\epsilon^{-2})$
- ▶ Cubic regularization (second-order): $\mathcal{O}(\epsilon^{-3/2})$

spectives Motivation Self-Correction Nonsmooth Stochastic Summar

Early 2010's

Back to the colliding worlds...

Complexity guarantees for nonconvex optimization algorithms

▶ Iterations or function/derivative evaluations to achieve

$$\|\nabla f(x_k)\|_2 \le \epsilon$$

- ▶ Steepest descent (first-order): $\mathcal{O}(\epsilon^{-2})$
- ▶ Line search (second-order): $\mathcal{O}(\epsilon^{-2})$
- ▶ Trust region (second-order): $\mathcal{O}(\epsilon^{-2})$
- Cubic regularization (second-order): $\mathcal{O}(\epsilon^{-3/2})$

Cubic regularization has longer history, but picks up steam in early 2010's:

- ▶ Griewank (1981)
- Nesterov & Polyak (2006)
- ▶ Weiser, Deuflhard, Erdmann (2007)
- ► Cartis, Gould, Toint (2011), the ARC method

r<mark>spectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summary

My work: Trust Region Methods with Optimal Complexity

Researchers have been gravitating to adopt and build on cubic regularization:

- ► Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
- ► Carmon, Duchi (2017)
- ► Kohler, Lucchi (2017)
- ▶ Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!

repectives Motivation Self-Correction Nonsmooth Stochastic Summary

My work: Trust Region Methods with Optimal Complexity

Researchers have been gravitating to adopt and build on cubic regularization:

- Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
- ► Carmon, Duchi (2017)
- ► Kohler, Lucchi (2017)
- ▶ Peng, Roosta-Khorasan, Mahoney (2017)

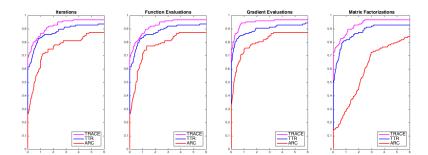
However, there remains a large gap between theory and practice!

Little evidence that cubic regularization methods offer improved performance:

- ► Trust region (TR) methods remain the state-of-the-art
- ▶ TR-like methods can achieve the same complexity guarantees

<mark>erspectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summar

My work: Trust Region Methods with Optimal Complexity



<mark>rspectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summar

My view: Message of this Talk

Nonconvex optimization is experiencing a heyday!

- ▶ People want to solve more complicated problems
- \blacktriangleright . . . involving nonsmoothness
- ▶ ...involving stochasticity

r<mark>spectives</mark> Motivation Self-Correction Nonsmooth Stochastic Summary

My view: Message of this Talk

Nonconvex optimization is experiencing a heyday!

- ▶ People want to solve more complicated problems
- ...involving nonsmoothness
- ... involving stochasticity

However, we might waste this opportunity if we do not...

- ▶ Make clear the gap between theory and practice (and close it!)
- ▶ Learn from advances that have already been made
- ... and adapt them appropriately for modern problems

erspectives <u>Motivation</u> Self-Correction Nonsmooth Stochastic Summa

Outline

Perspectives on Nonconvex Optimization

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

First- versus Second-Order

First-order methods follow a steepest descent methodology:

$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f(x_k)$$

Second-order methods follow Newton's methodology:

$$x_{k+1} \leftarrow x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k),$$

which one should view as minimizing a quadratic model of f at x_k :

$$f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

First- versus Quasi-Second-Order

First-order methods follow a steepest descent methodology:

$$x_{k+1} \leftarrow x_k - \alpha_k \nabla f(x_k)$$

Second-order methods follow Newton's methodology:

$$x_{k+1} \leftarrow x_k - \alpha_k W_k \nabla f(x_k),$$

which one should view as minimizing a quadratic model of f at x_k :

$$f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \frac{H_k}{(x - x_k)}$$

Might also replace the Hessian with an approximation H_k with inverse W_k

Why Second-Order?

For better complexity properties?

erspectives <u>Motivation</u> Self-Correction Nonsmooth Stochastic Summar

Why Second-Order?

For better complexity properties?

- ▶ Eh, not really...
- ▶ Many are no better than first-order methods in terms of complexity
- ▶ ... and ones with better complexity aren't necessarily best in practice (yet)

erspectives <u>Motivation</u> Self-Correction Nonsmooth Stochastic Summar

Why Second-Order?

For better complexity properties?

- ▶ Eh, not really...
- ▶ Many are no better than first-order methods in terms of complexity
- ... and ones with better complexity aren't necessarily best in practice (yet)

For fast local convergence guarantees?

erspectives <u>Motivation</u> Self-Correction Nonsmooth Stochastic Summar

Why Second-Order?

For better complexity properties?

- ▶ Eh, not really...
- ▶ Many are no better than first-order methods in terms of complexity
- ▶ ... and ones with better complexity aren't necessarily best in practice (yet)

For fast local convergence guarantees?

- ► Eh, probably not...
- ▶ Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

erspectives Motivation Self-Correction Nonsmooth Stochastic Summar

Why Second-Order?

For better complexity properties?

- ▶ Eh, not really...
- Many are no better than first-order methods in terms of complexity
- ... and ones with better complexity aren't necessarily best in practice (yet)

For fast local convergence guarantees?

- ► Eh, probably not...
- ▶ Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

Then why?

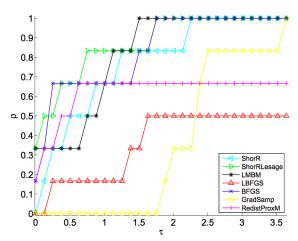
- ▶ Adaptive, natural scaling (gradient descent $\approx 1/L$ while Newton ≈ 1)
- Mitigate effects of ill-conditioning
- ► Easier to tune parameters(?)
- ▶ Better at avoiding saddle points(?)
- ▶ Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old...)

erspectives <mark>Motivation</mark> Self-Correction Nonsmooth Stochastic Summar

Nonsmooth Optimization

Few comparisons between first- and second-order methods, but here's one:



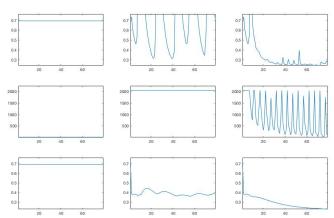
Skajaa (2010) (Master's thesis advised by Overton)

erspectives <mark>Motivation</mark> Self-Correction Nonsmooth Stochastic Summar

Stochastic Optimization: No Parameter Tuning

Limited memory stochastic gradient method (extends Barzilai-Borwein):

$$x_{k+1} \leftarrow x_k - \alpha_k g_k$$
 where $\alpha_k > 0$ chosen adaptively



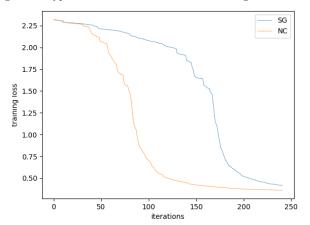
Minimizing logistic loss for binary classification with RCV1 dataset

erspectives <mark>Motivation</mark> Self-Correction Nonsmooth Stochastic Summar

Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in ${\tt mnist}$:

Stochastic-gradient-type method versus one that follows negative curvature:



Overcomes slow initial progress by SG-type method...

erspectives Motivation Self-Correction Nonsmooth Stochastic Summar

Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in ${\tt mnist}$:

Stochastic-gradient-type method versus one that follows negative curvature:



... while still yielding good behavior in terms of testing accuracy

erspectives Motivation <mark>Self-Correction</mark> Nonsmooth Stochastic Summa

Outline

Perspectives on Nonconvex Optimization

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

Quasi-Newton Methodology

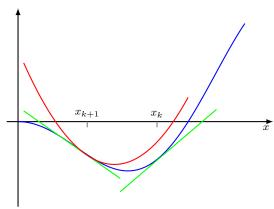
Quasi-Newton step:

$$x_{k+1} \leftarrow x_k - \alpha_k W_k \nabla f(x_k)$$

How should we choose W_k ?

Standard Motivation

Only $\it approximate$ second-order information with gradient displacements:



Secant equation $H_k y_k = s_k$ to match gradient of f at x_k , where

$$s_k := x_{k+1} - x_k$$
 and $y_k := \nabla f(x_{k+1}) - \nabla f(x_k)$

erspectives Motivation <mark>Self-Correction</mark> Nonsmooth Stochastic Summar

But BFGS offers more!

All quasi-Newton methods use this idea, but all are not equal!

- ▶ Broyden (1970)
- ▶ Fletcher (1970)
- ▶ Goldfarb (1970)
- ▶ Shanno (1970)

The critical properties of BFGS took a few extra years to come into focus:

- ▶ Powell (1976)
- ▶ Ritter (1979, 1981)
- ▶ Werner (1978)
- ▶ Byrd, Nocedal (1989)

BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas $(s_k^T v_k > 0)$:

$$W_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T W_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$$

$$H_{k+1} \leftarrow \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right) + \frac{v_k v_k^T}{s_k^T v_k}$$

▶ These satisfy secant-type equations

$$W_{k+1}v_k = s_k$$
 and $H_{k+1}s_k = v_k$,

but these are not critical for this talk.

Consider the matrices (which only depend on s_k and H_k , not g_k !)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- \triangleright P_k yields H_k -orthogonal projection onto span (s_k) .
- ▶ Q_k yields H_k -orthogonal projection onto span $(s_k)^{\perp}H_k$.

Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on s_k and H_k , not g_k !)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k -orthogonal projection matrices (i.e., idempotent and H_k -self-adjoint).

- ▶ P_k yields H_k -orthogonal projection onto span (s_k) .
- ▶ Q_k yields H_k -orthogonal projection onto span $(s_k)^{\perp}H_k$.

Returning to the Hessian update:

$$H_{k+1} \leftarrow \underbrace{\left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)}_{\text{rank } n-1} + \underbrace{\frac{v_k v_k^T}{s_k^T v_k}}_{\text{rank } 1}$$

- ightharpoonup Curvature projected out along span (s_k)
- ► Curvature corrected by $\frac{v_k v_k^T}{s_k^T v_k} = \left(\frac{v_k v_k^T}{\|v_k\|_2^2}\right) \left(\frac{\|v_k\|_2^2}{v_k^T W_{k+1} v_k}\right)$ (inverse Rayleigh).

Self-correcting properties of Hessian update $\,$

Since curvature is constantly projected out, what happens after many updates?

Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem (Byrd, Nocedal (1989))

Suppose that, for all k, there exists $\{\eta, \theta\} \subset \mathbb{R}_{++}$ such that

$$\eta \le \frac{s_k^T v_k}{\|s_k\|_2^2} \quad and \quad \frac{\|v_k\|_2^2}{s_k^T v_k} \le \theta.$$
 (\star)

Then, for any $p \in (0,1)$, there exist constants $\{\iota, \kappa, \lambda\} \subset \mathbb{R}_{++}$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1, \ldots, K\}$:

$$\iota \le \frac{s_k^T H_k s_k}{\|s_k\|_2 \|H_k s_k\|_2} \quad and \quad \kappa \le \frac{\|H_k s_k\|_2}{\|s_k\|_2} \le \lambda.$$

Proof technique.

Building on work of Powell (1976), involves bounding growth of

$$\gamma(H_k) = \operatorname{tr}(H_k) - \ln(\det(H_k)).$$

Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary

Suppose the conditions of Theorem 1 hold. Then, for any $p \in (0,1)$, there exist constants $\{\mu,\nu\} \subset \mathbb{R}_{++}$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1,\ldots,K\}$:

$$\mu \|\bar{g}_k\|_2^2 \le \bar{g}_k^T W_k \bar{g}_k \quad and \quad \|W_k \bar{g}_k\|_2^2 \le \nu \|\bar{g}_k\|_2^2$$

Here \bar{g}_k is the vector such that the iterate displacement is

$$x_{k+1} - x_k = s_k = -W_k \bar{g}_k$$

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 1, using the facts that $s_k = -W_k \bar{g}_k$ and $W_k = H_k^{-1}$ for all k.

Summary

Our main idea is to use a carefully selected type of damping:

▶ Choosing $v_k \leftarrow y_k := g_{k+1} - g_k$ yields standard BFGS, but we consider

$$v_k \leftarrow \beta_k H s_k + (1 - \beta_k) \tilde{y}_k$$
 for some $\beta_k \in [0, 1]$ and $\tilde{y}_k \in \mathbb{R}^n$.

This scheme preserves the self-correcting properties of BFGS.

erspectives Motivation Self-Correction <mark>Nonemooth</mark> Stochastic Summan

Outline

Perspectives on Nonconvex Optimization

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

$${x_{k,j}}_{j=1}^m, {f_{k,j}}_{j=1}^m, {g_{k,j}}_{j=1}^m,$$

nonsmooth optimization methods involve the primal subproblem

$$\min_{x \in \mathbb{R}^n} \left(\max_{j \in \{1, \dots, m\}} \left\{ f_{k,j} + g_{k,j}^T (x - x_{k,j}) \right\} + \frac{1}{2} (x - x_k)^T H_k (x - x_k) \right)
\text{s.t. } ||x - x_k|| \le \delta_k,$$
(P)

but, with $G_k \leftarrow [g_{k,1} \cdots g_{k,m}]$, it is typically more efficient to solve the dual

$$\sup_{(\omega,\gamma)\in\mathbb{R}_+^m\times\mathbb{R}^n} -\frac{1}{2} (G_k\omega + \gamma)^T W_k (G_k\omega + \gamma) + b_k^T\omega - \delta_k \|\gamma\|_*$$
s.t. $\mathbb{1}_m^T\omega = 1$. (D)

The primal solution can then be recovered by

$$x_k^* \leftarrow x_k - W_k \underbrace{(G_k \omega_k + \gamma_k)}_{\tilde{q}_k}.$$

Algorithm Self-Correcting BFGS for Nonsmooth Optimization

- 1: Choose $x_1 \in \mathbb{R}^n$.
- 2: Choose a symmetric positive definite $W_1 \in \mathbb{R}^{n \times n}$.
- 3: Choose $\alpha \in (0,1)$
- 4: **for** $k = 1, 2, \dots$ **do**
- Solve (P)–(D) such that setting

$$G_k \leftarrow \begin{bmatrix} g_{k,1} & \cdots & g_{k,m} \end{bmatrix},$$

$$s_k \leftarrow -W_k(G_k\omega_k + \gamma_k),$$
and $x_{k+1} \leftarrow x_k + s_k$

vields 6:

$$f(x_{k+1}) \le f(x_k) - \frac{1}{2}\alpha (G_k\omega_k + \gamma_k)^T W_k (G_k\omega_k + \gamma_k).$$

- Choose $\tilde{y}_k \in \mathbb{R}^n$. 7:
- Set $\beta_k \leftarrow \min\{\beta \in [0,1] : v(\beta) := \beta s_k + (1-\beta)\tilde{y}_k \text{ satisfies } (\star)\}.$ 8.
- Set $v_k \leftarrow v(\beta_k)$. 9:
- Set 10:

$$W_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_L^T v_k}\right)^T W_k \left(I - \frac{v_k s_k^T}{s_L^T v_k}\right) + \frac{s_k s_k^T}{s_L^T v_k}.$$

11: end for

erspectives Motivation Self-Correction <mark>Nonsmooth</mark> Stochastic Summar

Instances of the framework

Cutting plane / bundle methods

- Points added incrementally until sufficient decrease obtained
- ▶ Finite number of additions until accepted step

Gradient sampling methods

- ▶ Points added randomly / incrementally until sufficient decrease obtained
- Sufficient number of iterations with "good" steps

In any case: convergence guarantees require $\{W_k\}$ to be uniformly positive definite and bounded on a sufficient number of accepted steps

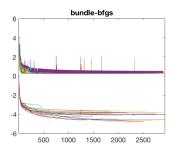
spectives Motivation Self-Correction Nonsmooth Stochastic Sum

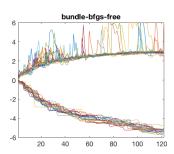
C++ implementation: NonOpt (sabbatical project)

	BF	GS w/ weak Wo	lfe line sear	ch			
Name	Exit	$\epsilon_{ exttt{end}}$	$f(x_{\mathtt{end}})$	#iter	#func	#grad	#subs
maxq	Stationary	+9.77e-05	+2.26e-07	450	1017	452	451
mxhilb	Stepsize	+3.13e-03	+9.26e-02	101	1886	113	102
chained lq	Stepsize	+5.00e-02	-6.93e+01	205	4754	207	206
chained cb3 1	Stepsize	+1.00e-01	+9.80e+01	347	7469	348	348
chained cb3 2	Stepsize	+1.00e-01	+9.80e+01	64	1496	69	65
active faces	Stepsize	+2.50e-02	+2.22e-16	24	672	27	25
brown function 2	Stepsize	+1.00e-01	+2.04e-05	395	17259	396	396
chained mifflin 2	Stepsize	+5.00e-02	-3.47e+01	476	10808	508	477
chained crescent 1	Stepsize	+1.00e-01	+2.18e-01	74	2278	91	75
chained crescent 2	Stepsize	+1.00e-01	+5.86e-02	313	7585	334	314
	Bundle met	hod with self	-correcting p	propertie	s		
Name	Exit	$\epsilon_{ exttt{end}}$	$f(x_{end})$	#iter	#func	#grad	#subs
maxq	Stationary	+9.77e-05	+1.04e-06	193	441	635	440
mxhilb	Stationary	+9.77e-05	+2.25e-05	39	338	351	137
chained lq	Stationary	+9.77e-05	-6.93e+01	29	374	398	366
chained cb3 1	Stationary	+9.77e-05	+9.80e+01	50	1038	1069	1017
chained cb3 2	Stationary	+9.77e-05	+9.80e+01	29	174	204	173
active faces	Stationary	+9.77e-05	+2.09e-02	17	387	165	32
brown function 2	Stationary	+9.77e-05	+2.49e-03	232	10094	9674	9438
chained mifflin 2	Stationary	+9.77e-05	-3.48e+01	393	24410	19493	18924
chained crescent 1	Stationary	+9.77e-05	+2.73e-04	30	66	92	59
chained crescent 2	Stationary	+9.77e-05	+4.36e-05	137	6679	6140	5997

erspectives Motivation Self-Correction <mark>Nonsmooth</mark> Stochastic Summa

Minimum and maximum eigenvalues





Outline

Perspectives on Nonconvex Optimizatio

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

Stochastic Gradient (SG)

SG and its variants are the state-of-the-art:

$$x_{k+1} \leftarrow x_k - \alpha_k g_k$$
 where $\mathbb{E}_k[g_k] = \nabla f(x_k)$

SG is great! Let's keep proving how great it is!

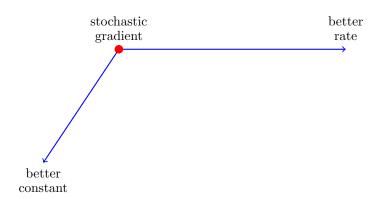
- ▶ Stability of SG; Hardt, Recht, Singer (2015)
- ► SG avoids steep minima; Keskar, Mudigere, Nocedal, Smelyanskiy (2016)
- ▶ ... (many more)

No, we should want more...

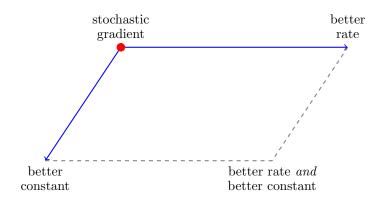
- ► SG requires a lot of tuning
- Sublinear convergence is not satisfactory
- ▶ ... "linearly" convergent method eventually wins
- ▶ ... with higher budget, faster computation, parallel?, distributed?

Also, any "gradient"-based method is not scale invariant.

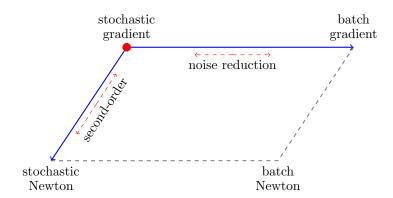
What can be improved?



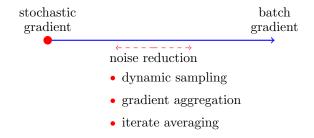
What can be improved?



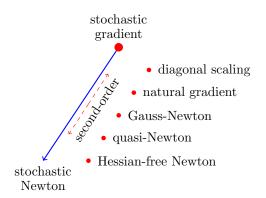
Two-dimensional schematic of methods



2D schematic: Noise reduction methods



2D schematic: Second-order methods



Previous work: BFGS-type methods

Much focus on the secant equation $(H_{k+1} \sim \text{Hessian approximation})$

$$H_{k+1}s_k = y_k$$
 where
$$\begin{cases} s_k := w_{k+1} - w_k \\ y_k := \nabla f(w_{k+1}) - \nabla f(w_k) \end{cases}$$

and an appropriate replacement for the gradient displacement:

$$y_k \leftarrow \underbrace{\nabla f(w_{k+1}, \xi_k) - \nabla f(w_k, \xi_k)}_{\text{use same seed}}$$
oLBFGS, Schraudolph et al. (2007)
SGD-QN, Bordes et al. (2009)
RES, Mokhtari & Ribeiro (2014)
or
$$y_k \leftarrow \underbrace{\left(\sum_{i \in \mathcal{S}_k^H} \nabla^2 f(w_{k+1}, \xi_{k+1,i})\right) s_k}_{\text{use action of step on subsampled Hessian}}$$

SQN, Byrd et al. (2015)

I believe this is the wrong focus

Algorithm SC: Self-Correcting BFGS Algorithm

- 1: Choose $w_1 \in \mathbb{R}^d$.
- 2: Set $q_1 \approx \nabla f(w_1)$.
- 3: Choose a symmetric positive definite $M_1 \in \mathbb{R}^{d \times d}$.
- 4: Choose a positive scalar sequence $\{\alpha_k\}$.
- for k = 1, 2, ... do
- 6: Set $s_k \leftarrow -\alpha_k M_k q_k$.
- Set $w_{k+1} \leftarrow w_k + s_k$. 7.
- 8: Set $q_{k+1} \approx \nabla f(w_{k+1})$.
- Set $y_k \leftarrow q_{k+1} q_k$. 9:
- Set $\beta_k \leftarrow \min\{\beta \in [0,1] : v(\beta) := \beta s_k + (1-\beta)\alpha_k y_k \text{ satisfies } (\star)\}.$ 10:
- Set $v_k \leftarrow v(\beta_k)$. 11:
- Set 12:

$$M_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T M_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}.$$

13: end for

Global convergence theorem

Theorem (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant $\rho > 0$ such that

$$-\nabla f(w_k)^T \mathbb{E}_{\xi_k}[M_k g_k] \le -\rho \|\nabla f(w_k)\|_2^2,$$

and there exist scalars $\sigma > 0$ and $\tau > 0$ such that

$$\mathbb{E}_{\xi_k}[\|M_k g_k\|_2^2] \le \sigma + \tau \|\nabla f(w_k)\|_2^2.$$

Then, $\{\mathbb{E}[f(w_k)]\}\$ converges to a finite limit and

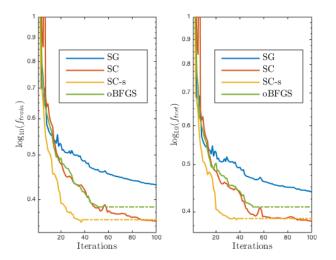
$$\liminf_{k \to \infty} \mathbb{E}[\nabla f(w_k)] = 0.$$

Proof technique.

Follows from the critical inequality

$$\mathbb{E}_{\varepsilon_k}[f(w_{k+1})] - f(w_k) \le -\alpha_k \nabla f(w_k)^T \mathbb{E}_{\varepsilon_k}[M_k g_k] + \alpha_k^2 L \mathbb{E}_{\varepsilon_k}[\|M_k g_k\|_2^2].$$

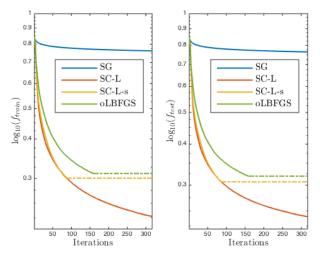
Numerical Experiments: a1a



logistic regression, data a1a, diminishing stepsizes

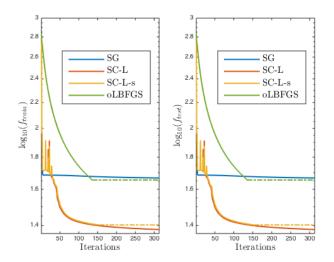
Numerical Experiments: rcv1

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:



logistic regression, data rcv1, diminishing stepsizes

Numerical Experiments: mnist



deep neural network, data mnist, diminishing stepsizes

Perspectives Motivation Self-Correction Nonsmooth Stochastic Summs

Outline

Perspectives on Nonconvex Optimization

Motivation for Second-Order Methods

Self-Correcting Properties of BFGS

Nonsmooth Optimization

Stochastic Optimization

Summary

Summary

Nonconvex optimization is experiencing a heyday!

- ▶ People want to solve more complicated problems
- ...involving nonsmoothness
- ightharpoonup . . . involving stochasticity

However, we might waste this opportunity if we do not...

- ▶ Make clear the gap between theory and practice (and close it!)
- ▶ Learn from advances that have already been made
- ... and adapt them appropriately for modern problems

Why Second-Order?

For better complexity properties?

- ▶ Eh, not really...
- Many are no better than first-order methods in terms of complexity
- ... and ones with better complexity aren't necessarily best in practice (yet)

For fast local convergence guarantees?

- ► Eh, probably not...
- ▶ Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

Then why?

- ▶ Adaptive, natural scaling (gradient descent $\approx 1/L$ while Newton ≈ 1)
- Mitigate effects of ill-conditioning
- ► Easier to tune parameters(?)
- ▶ Better at avoiding saddle points(?)
- ▶ Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old...)

References

For references, please see

► http://coral.ise.lehigh.edu/frankecurtis/publications

Please also visit the OptML @ Lehigh website!

► http://optml.lehigh.edu

