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Problem statement

Consider the problem to find x ∈ Rn to minimize f subject to being in X ⊆ Rn:

min
x∈Rn

f(x) s.t. x ∈ X . (P)

Interested in algorithms for solving (P) when f and/or X might not be convex.

Nonconvex optimization is experiencing a heyday!

I nonlinear least squares

I training deep neural networks

I PDE-constrained optimization
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History

Nonlinear optimization theory and algorithms have had parallel developments

convexity

Rockafellar

Fenchel

Nemirovski

Nesterov

subgradient
inequality

convergence,
complexity
guarantees

smoothness

Powell

Fletcher

Goldfarb

Nocedal

sufficient
decrease

convergence,
fast local

convergence

These worlds are (finally) colliding! Where should emphasis be placed?
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My work: Inexact Newton Methods

Doctoral work, postdoc, and first few years as asst. prof.:

I Inexact Newton and interior-point methods for solving large-scale problems

I Motivated primarily by PDE-constrained optimization

I Software available in Ipopt/Pardiso

[
Wk JTk
Jk 0

] [
dk
δk

]
= −

[
gk + JTk λk

ck

]

I Iterative Krylov methods

I Inexactness conditions

I Theory: Emphasis on preserving global and fast local convergence guarantees

I Have to deal with nonconvexity and rank deficiency issues
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My work: Infeasibility Detection

Postdoc and first few years as asst. prof.:

I State-of-the-art packages fail at infeasibility detection!

I IPOPT, KNITRO, LOQO, SNOPT, etc.

I Designed additional steps / new algorithms that overcome this deficiency

I Theory: Emphasis on completing the table. . .

Convergence Fast Local Convergence
Feasible X X

Infeasible X X
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My work: Nonconvex, Nonsmooth Optimization

Postdoc and first few years as asst. prof.:

I Adaptive gradient sampling and other types of methods

I More on this later. . .

Second-Order Methods for Stochastic and Nonsmooth Optimization 8 of 49



Perspectives Motivation Self-Correction Nonsmooth Stochastic Summary

Early 2010’s

Back to the colliding worlds. . .

Complexity guarantees for nonconvex optimization algorithms

I Iterations or function/derivative evaluations to achieve

‖∇f(xk)‖2 ≤ ε

I Steepest descent (first-order): O(ε−2)

I Line search (second-order): O(ε−2)

I Trust region (second-order): O(ε−2)

I Cubic regularization (second-order): O(ε−3/2)

Cubic regularization has longer history, but picks up steam in early 2010’s:

I Griewank (1981)

I Nesterov & Polyak (2006)

I Weiser, Deuflhard, Erdmann (2007)

I Cartis, Gould, Toint (2011), the ARC method
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My work: Trust Region Methods with Optimal Complexity

Researchers have been gravitating to adopt and build on cubic regularization:

I Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)

I Carmon, Duchi (2017)

I Kohler, Lucchi (2017)

I Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!

Little evidence that cubic regularization methods offer improved performance:

I Trust region (TR) methods remain the state-of-the-art

I TR-like methods can achieve the same complexity guarantees
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My work: Trust Region Methods with Optimal Complexity
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My view: Message of this Talk

Nonconvex optimization is experiencing a heyday!

I People want to solve more complicated problems

I . . . involving nonsmoothness

I . . . involving stochasticity

However, we might waste this opportunity if we do not. . .

I Make clear the gap between theory and practice (and close it!)

I Learn from advances that have already been made

I . . . and adapt them appropriately for modern problems
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First- versus Second-Order

First-order methods follow a steepest descent methodology:

xk+1 ← xk − αk∇f(xk)

Second-order methods follow Newton’s methodology:

xk+1 ← xk − αk[∇2f(xk)]−1∇f(xk),

which one should view as minimizing a quadratic model of f at xk:

f(xk) +∇f(xk)T (x− xk) + 1
2

(x− xk)T∇2f(xk)(x− xk)

Might also replace the Hessian with an approximation Hk with inverse Wk
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First- versus Quasi-Second-Order

First-order methods follow a steepest descent methodology:

xk+1 ← xk − αk∇f(xk)

Second-order methods follow Newton’s methodology:

xk+1 ← xk − αkWk∇f(xk),

which one should view as minimizing a quadratic model of f at xk:

f(xk) +∇f(xk)T (x− xk) + 1
2

(x− xk)THk(x− xk)

Might also replace the Hessian with an approximation Hk with inverse Wk
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Why Second-Order?

For better complexity properties?

I Eh, not really. . .

I Many are no better than first-order methods in terms of complexity

I . . . and ones with better complexity aren’t necessarily best in practice (yet)

For fast local convergence guarantees?

I Eh, probably not. . .

I Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

Then why?

I Adaptive, natural scaling (gradient descent ≈ 1/L while Newton ≈ 1)

I Mitigate effects of ill-conditioning

I Easier to tune parameters(?)

I Better at avoiding saddle points(?)

I Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old. . . )
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Nonsmooth Optimization

Few comparisons between first- and second-order methods, but here’s one:

Skajaa (2010) (Master’s thesis advised by Overton)
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Stochastic Optimization: No Parameter Tuning

Limited memory stochastic gradient method (extends Barzilai-Borwein):

xk+1 ← xk − αkgk where αk > 0 chosen adaptively

Minimizing logistic loss for binary classification with RCV1 dataset
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Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in mnist:

Stochastic-gradient-type method versus one that follows negative curvature:

Overcomes slow initial progress by SG-type method. . .
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Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in mnist:

Stochastic-gradient-type method versus one that follows negative curvature:
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Quasi-Newton Methodology

Quasi-Newton step:
xk+1 ← xk − αkWk∇f(xk)

How should we choose Wk?
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Standard Motivation

Only approximate second-order information with gradient displacements:

x

xkxk+1

Secant equation Hkyk = sk to match gradient of f at xk, where

sk := xk+1 − xk and yk := ∇f(xk+1)−∇f(xk)
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But BFGS offers more!

All quasi-Newton methods use this idea, but all are not equal!

I Broyden (1970)

I Fletcher (1970)

I Goldfarb (1970)

I Shanno (1970)

The critical properties of BFGS took a few extra years to come into focus:

I Powell (1976)

I Ritter (1979, 1981)

I Werner (1978)

I Byrd, Nocedal (1989)
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BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas (sTk vk > 0):

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
+
vkv

T
k

sTk vk

I These satisfy secant-type equations

Wk+1vk = sk and Hk+1sk = vk,

but these are not critical for this talk.
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Geometric properties of Hessian update: Burke, Lewis, Overton (2007)

Consider the matrices (which only depend on sk and Hk, not gk!)

Pk :=
sks

T
kHk

sTkHksk
and Qk := I − Pk.

Both Hk-orthogonal projection matrices (i.e., idempotent and Hk-self-adjoint).

I Pk yields Hk-orthogonal projection onto span(sk).

I Qk yields Hk-orthogonal projection onto span(sk)⊥Hk .

Returning to the Hessian update:

Hk+1 ←
(
I −

sks
T
kHk

sTkHksk

)T
Hk

(
I −

sks
T
kHk

sTkHksk

)
︸ ︷︷ ︸

rank n− 1

+
vkv

T
k

sTk vk︸ ︷︷ ︸
rank 1

I Curvature projected out along span(sk)

I Curvature corrected by
vkv

T
k

sT
k
vk

=

(
vkv

T
k

‖vk‖22

)(
‖vk‖22

vT
k
Wk+1vk

)
(inverse Rayleigh).
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Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem (Byrd, Nocedal (1989))
Suppose that, for all k, there exists {η, θ} ⊂ R++ such that

η ≤
sTk vk

‖sk‖22
and

‖vk‖22
sTk vk

≤ θ. (?)

Then, for any p ∈ (0, 1), there exist constants {ι, κ, λ} ⊂ R++ such that, for any
K ≥ 2, the following relations hold for at least dpKe values of k ∈ {1, . . . ,K}:

ι ≤
sTkHksk

‖sk‖2‖Hksk‖2
and κ ≤

‖Hksk‖2
‖sk‖2

≤ λ.

Proof technique.
Building on work of Powell (1976), involves bounding growth of

γ(Hk) = tr(Hk)− ln(det(Hk)).
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Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary
Suppose the conditions of Theorem 1 hold. Then, for any p ∈ (0, 1), there exist
constants {µ, ν} ⊂ R++ such that, for any K ≥ 2, the following relations hold for
at least dpKe values of k ∈ {1, . . . ,K}:

µ‖gk‖22 ≤ gTkWkgk and ‖Wkgk‖22 ≤ ν‖gk‖22

Here gk is the vector such that the iterate displacement is

xk+1 − xk = sk = −Wkgk

Proof sketch.
Follows simply after algebraic manipulations from the result of Theorem 1, using
the facts that sk = −Wkgk and Wk = H−1

k for all k.
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Summary

Our main idea is to use a carefully selected type of damping:

I Choosing vk ← yk := gk+1 − gk yields standard BFGS, but we consider

vk ← βkHsk + (1− βk)ỹk for some βk ∈ [0, 1] and ỹk ∈ Rn.

This scheme preserves the self-correcting properties of BFGS.
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Subproblems in nonsmooth optimization algorithms

With sets of points, scalars, and (sub)gradients

{xk,j}mj=1, {fk,j}mj=1, {gk,j}mj=1,

nonsmooth optimization methods involve the primal subproblem

min
x∈Rn

(
max

j∈{1,...,m}
{fk,j + gTk,j(x− xk,j)}+ 1

2
(x− xk)THk(x− xk)

)
s.t. ‖x− xk‖ ≤ δk,

(P)

but, with Gk ← [gk,1 · · · gk,m], it is typically more efficient to solve the dual

sup
(ω,γ)∈Rm

+×Rn
− 1

2
(Gkω + γ)TWk(Gkω + γ) + bTk ω − δk‖γ‖∗

s.t. 1Tmω = 1.

(D)

The primal solution can then be recovered by

x∗k ← xk −Wk (Gkωk + γk)︸ ︷︷ ︸
g̃k

.
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Algorithm Self-Correcting BFGS for Nonsmooth Optimization

1: Choose x1 ∈ Rn.
2: Choose a symmetric positive definite W1 ∈ Rn×n.
3: Choose α ∈ (0, 1)
4: for k = 1, 2, . . . do
5: Solve (P)–(D) such that setting

Gk ←
[
gk,1 · · · gk,m

]
,

sk ← −Wk(Gkωk + γk),

and xk+1 ← xk + sk

6: yields

f(xk+1) ≤ f(xk)− 1
2
α(Gkωk + γk)TWk(Gkωk + γk).

7: Choose ỹk ∈ Rn.
8: Set βk ← min{β ∈ [0, 1] : v(β) := βsk + (1− β)ỹk satisfies (?)}.
9: Set vk ← v(βk).

10: Set

Wk+1 ←
(
I −

vks
T
k

sTk vk

)T
Wk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk
.

11: end for
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Instances of the framework

Cutting plane / bundle methods

I Points added incrementally until sufficient decrease obtained

I Finite number of additions until accepted step

Gradient sampling methods

I Points added randomly / incrementally until sufficient decrease obtained

I Sufficient number of iterations with “good” steps

In any case: convergence guarantees require {Wk} to be uniformly positive
definite and bounded on a sufficient number of accepted steps
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C++ implementation: NonOpt (sabbatical project)

BFGS w/ weak Wolfe line search

Name Exit εend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +2.26e-07 450 1017 452 451

mxhilb Stepsize +3.13e-03 +9.26e-02 101 1886 113 102

chained lq Stepsize +5.00e-02 -6.93e+01 205 4754 207 206

chained cb3 1 Stepsize +1.00e-01 +9.80e+01 347 7469 348 348

chained cb3 2 Stepsize +1.00e-01 +9.80e+01 64 1496 69 65

active faces Stepsize +2.50e-02 +2.22e-16 24 672 27 25

brown function 2 Stepsize +1.00e-01 +2.04e-05 395 17259 396 396

chained mifflin 2 Stepsize +5.00e-02 -3.47e+01 476 10808 508 477

chained crescent 1 Stepsize +1.00e-01 +2.18e-01 74 2278 91 75

chained crescent 2 Stepsize +1.00e-01 +5.86e-02 313 7585 334 314

Bundle method with self-correcting properties

Name Exit εend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +1.04e-06 193 441 635 440

mxhilb Stationary +9.77e-05 +2.25e-05 39 338 351 137

chained lq Stationary +9.77e-05 -6.93e+01 29 374 398 366

chained cb3 1 Stationary +9.77e-05 +9.80e+01 50 1038 1069 1017

chained cb3 2 Stationary +9.77e-05 +9.80e+01 29 174 204 173

active faces Stationary +9.77e-05 +2.09e-02 17 387 165 32

brown function 2 Stationary +9.77e-05 +2.49e-03 232 10094 9674 9438

chained mifflin 2 Stationary +9.77e-05 -3.48e+01 393 24410 19493 18924

chained crescent 1 Stationary +9.77e-05 +2.73e-04 30 66 92 59

chained crescent 2 Stationary +9.77e-05 +4.36e-05 137 6679 6140 5997
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Minimum and maximum eigenvalues
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Stochastic Gradient (SG)

SG and its variants are the state-of-the-art:

xk+1 ← xk − αkgk where Ek[gk] = ∇f(xk)

SG is great! Let’s keep proving how great it is!

I Stability of SG; Hardt, Recht, Singer (2015)

I SG avoids steep minima; Keskar, Mudigere, Nocedal, Smelyanskiy (2016)

I . . . (many more)

No, we should want more. . .

I SG requires a lot of tuning

I Sublinear convergence is not satisfactory

I . . . “linearly” convergent method eventually wins

I . . . with higher budget, faster computation, parallel?, distributed?

Also, any “gradient”-based method is not scale invariant.
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What can be improved?

stochastic
gradient

better
rate

better
constant

better rate and
better constant
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Two-dimensional schematic of methods
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2D schematic: Noise reduction methods
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gradient
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gradient

stochastic
Newton

noise reduction

dynamic sampling

gradient aggregation

iterate averaging
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2D schematic: Second-order methods
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Previous work: BFGS-type methods

Much focus on the secant equation (Hk+1 ∼ Hessian approximation)

Hk+1sk = yk where

{
sk := wk+1 − wk
yk := ∇f(wk+1)−∇f(wk)

and an appropriate replacement for the gradient displacement:

yk ← ∇f(wk+1, ξk)−∇f(wk, ξk)︸ ︷︷ ︸
use same seed

oLBFGS, Schraudolph et al. (2007)
SGD-QN, Bordes et al. (2009)

RES, Mokhtari & Ribeiro (2014)

or yk ←

 ∑
i∈SH

k

∇2f(wk+1, ξk+1,i)

 sk

︸ ︷︷ ︸
use action of step on subsampled Hessian

SQN, Byrd et al. (2015)

I believe this is the wrong focus
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Algorithm SC : Self-Correcting BFGS Algorithm

1: Choose w1 ∈ Rd.
2: Set g1 ≈ ∇f(w1).
3: Choose a symmetric positive definite M1 ∈ Rd×d.
4: Choose a positive scalar sequence {αk}.
5: for k = 1, 2, . . . do
6: Set sk ← −αkMkgk.
7: Set wk+1 ← wk + sk.
8: Set gk+1 ≈ ∇f(wk+1).
9: Set yk ← gk+1 − gk.

10: Set βk ← min{β ∈ [0, 1] : v(β) := βsk + (1− β)αkyk satisfies (?)}.
11: Set vk ← v(βk).
12: Set

Mk+1 ←
(
I −

vks
T
k

sTk vk

)T
Mk

(
I −

vks
T
k

sTk vk

)
+
sks

T
k

sTk vk
.

13: end for
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Global convergence theorem

Theorem (Bottou, Curtis, Nocedal (2016))
Suppose that, for all k, there exists a scalar constant ρ > 0 such that

−∇f(wk)TEξk [Mkgk] ≤ −ρ‖∇f(wk)‖22,

and there exist scalars σ > 0 and τ > 0 such that

Eξk [‖Mkgk‖22] ≤ σ + τ‖∇f(wk)‖22.

Then, {E[f(wk)]} converges to a finite limit and

lim inf
k→∞

E[∇f(wk)] = 0.

Proof technique.
Follows from the critical inequality

Eξk [f(wk+1)]− f(wk) ≤ −αk∇f(wk)TEξk [Mkgk] + α2
kLEξk [‖Mkgk‖22].
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Numerical Experiments: a1a

logistic regression, data a1a, diminishing stepsizes
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Numerical Experiments: rcv1

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:

logistic regression, data rcv1, diminishing stepsizes
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Numerical Experiments: mnist

deep neural network, data mnist, diminishing stepsizes
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Summary

Nonconvex optimization is experiencing a heyday!

I People want to solve more complicated problems

I . . . involving nonsmoothness

I . . . involving stochasticity

However, we might waste this opportunity if we do not. . .

I Make clear the gap between theory and practice (and close it!)

I Learn from advances that have already been made

I . . . and adapt them appropriately for modern problems
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Why Second-Order?

For better complexity properties?

I Eh, not really. . .

I Many are no better than first-order methods in terms of complexity

I . . . and ones with better complexity aren’t necessarily best in practice (yet)

For fast local convergence guarantees?

I Eh, probably not. . .

I Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

Then why?

I Adaptive, natural scaling (gradient descent ≈ 1/L while Newton ≈ 1)

I Mitigate effects of ill-conditioning

I Easier to tune parameters(?)

I Better at avoiding saddle points(?)

I Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old. . . )
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References

For references, please see

I http://coral.ise.lehigh.edu/frankecurtis/publications

Please also visit the OptML @ Lehigh website!

I http://optml.lehigh.edu
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