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Thanks, Don!
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History

Nonlinear optimization has had parallel developments

convexity

Rockafellar

Fenchel

Nemirovski

Nesterov

subgradient
inequality

convergence,
complexity
guarantees

smoothness

Powell

Fletcher

Goldfarb

Nocedal

sufficient
decrease

convergence,
fast local

convergence

Worlds are (finally) colliding!
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Worst-case complexity for nonconvex optimization

Here is how we do it now:

Assuming Lipschitz continuity of derivatives. . .

. . . upper bound on # of iterations until ‖∇f(xk)‖2 ≤ ε?

Gradient descent Newton / trust region Cubic regularization

O(ε−2) O(ε−2) O(ε−3/2)
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Self-examination

But. . .

I Is this the best way to characterize our algorithms?

I Is this the best way to represent our algorithms?

People listen! Cubic regularization. . .

I Griewank (1981)

I Nesterov & Polyak (2006)

I Weiser, Deuflhard, Erdmann (2007)

I Cartis, Gould, Toint (2011), the ARC method

. . . is a framework to which researchers have been attracted. . .

I Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)

I Carmon, Duchi (2017)

I Kohler, Lucchi (2017)

I Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!
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Purpose of this talk

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our approach

I local convergence rate

We’re admitting: Our approach does not give the complete picture.

But we believe it is useful!

Nonconvexity is difficult in every sense!

I Can we accept a characterization strategy with some (literal) holes?

I Or should we be purists, even if we throw out the baby with the bathwater...
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Simple setting

Consider the iteration

xk+1 ← xk − 1
L
gk for all k ∈ N.

A contemporary complexity analysis considers the set

G(εg) := {x ∈ Rn : ‖g(x)‖2 ≤ εg}

and aims to find an upper bound on the cardinality of

Kg(εg) := {k ∈ N : xk 6∈ G(εg)}.

gk := ∇f(xk), g := ∇f
How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization 10 of 32
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Upper bound on |Kg(εg)|

Using sk = − 1
L
gk and the upper bound

fk+1 ≤ fk + gTk sk + 1
2
L‖sk‖22,

one finds with finf := infx∈Rn f(x) that

fk − fk+1 ≥ 1
2L
‖gk‖22

=⇒ (f0 − finf) ≥ 1
2L
|Kg(εg)|ε2g

=⇒ |Kg(εg)| ≤ 2L(f0 − finf)ε−2
g .
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“Nice” f

But what if f is “nice”?

. . . e.g., satisfying the Polyak- Lojasiewicz condition for c ∈ (0,∞), i.e.,

f(x)− finf ≤ 1
2c
‖g(x)‖22 for all x ∈ Rn.

Now consider the set

F(εf ) := {x ∈ Rn : f(x)− finf ≤ εf}

and consider an upper bound on the cardinality of

Kf (εf ) := {k ∈ N : xk 6∈ F(εf )}.
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Upper bound on |Kf (εf )|

Using sk = − 1
L
gk and the upper bound

fk+1 ≤ fk + gTk sk + 1
2
L‖sk‖22,

one finds that

fk − fk+1 ≥ 1
2L
‖gk‖22

≥ c
L

(fk − finf)

=⇒ (1− c
L

)(fk − finf) ≥ fk+1 − finf
=⇒ (1− c

L
)k(f0 − finf) ≥ fk − finf

=⇒ |Kf (εf )| ≤ log

(
f0 − finf

εf

)(
log

(
L

L− c

))−1

.
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For the first step. . .

In the “general nonconvex” analysis. . .

. . . the expected decrease for the first step is much more pessimistic:

general nonconvex: f0 − f1 ≥ 1
2L
ε2g

PL condition: (1− c
L

)(f0 − finf) ≥ f1 − finf

. . . and it remains more pessimistic throughout!
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Upper bounds on |Kf (εf )| versus |Kg(εg)|

Let f(x) = 1
2
x2, meaning that g(x) = x.

I Let εf = 1
2
ε2g , meaning that F(εf ) = G(εg).

I Let x0 = 10, c = 1, and L = 2. (Similar pictures for any L > 1.)
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Upper bounds on |Kf (εf )| versus |{k ∈ N : 1
2‖gk‖

2
2 > εg}|

Let f(x) = 1
2
x2, meaning that 1

2
g(x)2 = 1

2
x2.

I Let εf = εg , meaning that F(εf ) = G(εg).

I Let x0 = 10, c = 1, and L = 2. (Similar pictures for any L > 1.)
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Bad worst-case!

Worst-case complexity bounds in the general nonconvex case are very pessimistic.

I The analysis immediately admits a large gap when the function is nice.

I The “essentially tight” examples for the worst-case bounds are. . . weird.1

1Cartis, Gould, Toint (2010)

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization 17 of 32
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Plea

Let’s not have these be the problems that dictate how we

I characterize our algorithms and

I represent our algorithms to the world!
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Motivation

We want a characterization strategy that

I attempts to capture behavior in actual practice

I i.e., is not “bogged down” by pedogogical examples

I can be applied consistently across different classes of functions

I shows more than just the worst of the worst case

Our idea is to

I partition the search space (dependent on f and x0)

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

For some functions, there will be holes, but for some of interest there are none!
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Intuition

Think about an arbitrary point in the search space, i.e.,

L := {x ∈ Rn : f(x) ≤ f(x0)}.

I If ‖g(x)‖2 � 0, then “a lot” of progress can be made.

I If min(eig(∇2f(x)))� 0, then “a lot” of progress can also be made.
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Assumption

Assumption 1

I f is p-times continuously differentiable

I f is bounded below by finf := infx∈Rn f(x)

I for all p ∈ {1, . . . , p}, there exists Lp ∈ (0,∞) such that

f(x+ s) ≤ f(x) +

p∑
j=1

1

j!
∇jf(x)[s]j

︸ ︷︷ ︸
tp(x,s)

+
Lp

p+ 1
‖s‖p+1

2

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization 22 of 32
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pth-order term reduction

Definition 2

For each p ∈ {1, . . . , p}, define the function

mp(x, s) =
1

p!
∇pf(x)[s]p +

rp

p+ 1
‖s‖p+1

2 .

Letting smp (x) := arg mins∈Rn , the reduction in the pth-order term from x is

∆mp(x) = mp(x, 0)−mp(x, smp (x)) ≥ 0.

*Exact definition of rp is not complicated, but we’ll skip it here
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Regions

We propose to partition the search space, given (κ, fref) ∈ (0, 1)× [finf, f(x0)), into

R1 := {x ∈ L : ∆m1(x) ≥ κ(f(x)− fref)},

Rp := {x ∈ L : ∆mp(x) ≥ κ(f(x)− fref)} \

p−1⋃
j=1

Rj

 for all p ∈ {2, . . . , p},

and R := L \

 p⋃
j=1

Rj

 .

*We don’t need fref = finf, but, for simplicity, think of it that way here
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Functions satisfying Polyak- Lojasiewicz

Theorem 3

A continuously differentiable f with a Lipschitz continuous gradient satisfies the
Polyak- Lojasiewicz condition if and only if R1 = L for any x0 ∈ Rn.

Hence, if we prove something about the behavior of an algorithm over R1, then

I we know how it behaves if f satisfies PL and

I we know how it behaves at any point satisfying the PL inequality.
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Functions satisfying a strict-saddle-type property

Theorem 4

If f is twice-continuously differentiable with Lipschitz continuous gradient and
Hessian functions such that, at all x ∈ L and for some ζ ∈ (0,∞), one has

max{‖∇f(x)‖22,−λmin(∇2f(x))3} ≥ ζ(f(x)− finf),

then R1 ∪R2 = L.
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Linearly convergent behavior over Rp

Let swp (x) be a minimum norm global minimizer of the regularized Taylor model

wp(x, s) = tp(x, s) +
lp

p+ 1
‖s‖p+1

2

Theorem 5

If {xk} is generated by the iteration

xk+1 ← xk + swp (x),

then, with εf ∈ (0, f(x0)− fref), the number of iterations in

Rp ∩ {x ∈ Rn : f(x)− fref ≥ εf}

is bounded above by⌈
log

(
f(x0)− fref

εf

)(
log

(
1

1− κ

))−1
⌉

= O
(

log

(
f(x0)− fref

εf

))

How to Characterize the Worst-Case Performance of Algorithms for Nonconvex Optimization 28 of 32



Motivation Contemporary Analyses Partitioning Regularization Methods Summary

Characterization: Contemporary

Let RG and RN represent regularized gradient and Newton, respectively.

Theorem 6

With p ≥ 2, let

K1(εg) := {k ∈ N : ‖∇f(xk)‖2 > εg}

and K2(εH) := {k ∈ N : λmin(∇2f(xk)) < −εH}.

Then, the cardinalities of K1(εg) and K2(εH) are of the order. . .

Algorithm |K1(εg)| |K2(εH)|

RG O
(
l1(f(x0)−finf)

ε2g

)
∞

RN O
(
l
1/2
2 (f(x0)−finf)

ε
3/2
g

)
O
(
l22(f(x0)−finf)

ε3
H

)
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Characterization: Our approach

Theorem 7

The numbers of iterations in R1 and R2 with fref = finf are of the order. . .

Algorithm R1 R2

RG O
(
log

(
f(x0)−finf

εf

))
∞

RN O
(
l22(f(x0)−finf)

r31

)
+ O

(
log

(
f(x0)−finf

εf

))
O

(
log

(
f(x0)−finf

εf

))
There is an initial phase, as seen in Nesterov & Polyak (2006)

A ∞ can appear, but one could consider probabilistic bounds, too
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Summary & Perspectives

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our approach

I local convergence rate

Our idea is to

I partition the search space (dependent on f and x0)

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

For some functions, there are holes, but for others the characterization is complete.
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