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Unconstrained (nonconvex) optimization

Given f : Rn → R, consider the unconstrained optimization problem

min
x∈Rn

f(x).

In this talk, we are primarily interested in

I solving nonconvex instances

I . . . to find first- or second-order critical points;

I employing second-order methods;

I attaining global and fast local (i.e., quadratic) convergence;

I attaining good worst-case iteration (evaluation, etc.) complexity bounds.
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Methods of interest in this talk

Trust region methods

I Decades of algorithmic development

I Levenberg (1944); Marquardt (1963); Powell (1970); many more!

I Global convergence, local quadratic rate when ∇2f(x∗) � 0

I O(ε−2) complexity to first-order ε-criticality

Cubic regularization methods

I Relatively recent algorithmic development; fewer variants

I Griewank (1981); Nesterov & Polyak (2006); Cartis, Gould, & Toint (2011)

I Global convergence, local quadratic rate when ∇2f(x∗) � 0

I O(ε−3/2) complexity to first-order ε-criticality, O(ε−3) to second-order

Theoretical guarantees to assess a nonconvex optimization algorithm:

I Global convergence, i.e., ∇f(xk)→ 0 and maybe min(eig(∇2f(xk)))→ ζ > 0

I Local convergence rate, i.e., ‖∇f(xk+1)‖2/‖∇f(xk)‖2 → 0 (or more)

I Worst-case complexity, i.e., upper bound on number of iterations to achieve

‖∇f(xk)‖2 ≤ ε and perhaps min(eig(∇2f(xk))) ≥ −ε for some ε > 0
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Goals and contributions

What are our goals in this work?

I Question: Can we design a TR method with improved complexity?

I . . . and does this lead to improved performance?

What are our contributions? A TR method that has

I global and quadratic local convergence rate guarantees;

I a worst-case iteration complexity of O(ε−3/2) to first-order ε-criticality;

I . . . and of O(ε−3) to second-order ε-criticality.

How is this achieved?

I new step acceptance criteria;

I new mechanism for rejecting a step while expanding the TR radius;

I new updates that may involve sublinear TR radius decrease.

We discuss three algorithms:

I ttr: “Traditional” Trust Region algorithm
I arc: Adaptive Regularisation algorithm using Cubics

I Cartis, Gould, & Toint (2011)

I trace: Trust Region Algorithm with Contractions and Expansions
I Curtis, Robinson, & Samadi (2014)
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Algorithm basics

: Subproblem solution correspondence

1: Solve to compute sk:

min
s∈Rn

qk(s)

:= fk + gTk s+ 1
2
sTHks

s.t. ‖s‖2 ≤ δk (dual: λk)

2: Compute ratio:

ρqk ←
fk−f(xk+sk)
fk−qk(sk)

3: Update radius:

ρqk ≥ η: accept and δk ↗

ρqk < η: reject and δk ↘

ttr

1: Solve to compute sk:

min
s∈Rn

ck(s)

:= fk + gTk s+ 1
2
sTHks

+ 1
3
σk‖s‖32

2: Compute ratio:

ρck ←
fk−f(xk+sk)
fk−ck(sk)

3: Update regularization:

ρck ≥ η: accept and σk ↘

ρck < η: reject and σk ↗

arc

σk = λk
δk

δk = ‖sk‖2
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Discussion

What are the similarities?

I algorithmic frameworks are almost identical

I one-to-one correspondence (except λk = 0) between subproblem solutions

What are the key differences?

I step acceptance criteria

I trust region vs. regularization coefficient updates

Recall that a solution sk of the TR subproblem is also a solution of

min
s∈Rn

fk + gTk s+ 1
2
sT (Hk + λkI)s,

so the dual variable λk can be viewed as a quadratic regularization coefficient.
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Regularization/stepsize trade-off: ttr

0

max{0,−min(eig(Hk))}
λk(δ)

‖sk(δ)‖2
(= δ)

(λk(δk), ‖sk(δk)‖2)

At a given iterate xk,

curve illustrates dual variable

(i.e., quadratic regularization)

and norm of corresponding step

as a function of TR radius
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Regularization/stepsize trade-off: ttr

0

max{0,−min(eig(Hk))}
λk(δ)

‖sk(δ)‖2
(= δ)

(λk(δk), ‖sk(δk)‖2)

(λk+1(δk+1), ‖sk+1(δk+1)‖2)

After a rejected step

(i.e., with xk+1 = xk)

we set δk+1 ← γδk

(linear rate of decrease)

while λk+1 > λk
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Regularization/stepsize trade-off: ttr

0

max{0,−min(eig(Hk))}
λk(δ)

‖sk(δ)‖2
(= δ)

(λk(δk), ‖sk(δk)‖2)

(λk+1(δk+1), ‖sk+1(δk+1)‖2)

In fact, the increase in the dual

can be quite severe in some cases!

(We have no direct control over this.)

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization 10 of 32



Motivation ttr and arc trace Numerical Experiments Summary

Intuition, please!

Intuitively, what is so important about λk
‖sk‖2

= λk
δk

?

I Large δk implies sk may not yield objective decrease.

I Small δk prohibits long steps.

I Small λk suggests the TR is not restricting us too much.

I Large λk suggests more objective decrease is possible.

So what is so bad (for complexity’s sake) with the following?

λk
δk
≈ 0 and

λk+1
δk+1

� 0.

It’s that we may go from a

I large, but unproductive step to a

I productive, but (too) short step!
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arc magic

So what’s the magic of arc?

I It’s not the types of steps you compute (since TR subproblem gives the same).

I It’s that a simple update for σk gives a good regularization/stepsize balance.

In arc, restricting σk ≥ σmin for all k and proving that σk ≤ σmax for all k
ensures that all accepted steps satisfy

fk − fk+1 ≥ c1σmin‖sk‖32 and ‖sk‖2 ≥
„

c2

σmax + c3

«2

‖gk+1‖
1/2
2 .

One can also show that, at any point, the number of rejected steps that can occur
consecutively is bounded above by a constant (independent of k and ε).

I Important to note that arc always has the regularization “on.”
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Regularization/stepsize trade-off: arc

0

max{0,−min(eig(Hk))}
λk(σ)

‖sk(σ)‖2 slope = 1/σk

All points on the dashed line

yield the same ratio σ = λ/‖s‖2
so, given σk, the properties of sk
are determined by the intersection

of the dashed line and the curve
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Regularization/stepsize trade-off: arc

0

max{0,−min(eig(Hk))}
λk(σ)

‖sk(σ)‖2 slope = 1/σk

1/σk+1

1/σk+2

1/σk+3

1/σk+4

1/σk+5
1/σk+6

1/σk+7

A sequence of rejected steps follow

the curve much differently than ttr;
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Regularization/stepsize trade-off: arc

0

max{0,−min(eig(Hk))}
λk(σ)

‖sk(σ)‖2

A sequence of rejected steps follow

the curve much differently than ttr;

in particular, for sufficiently large σ,

the rate of decrease in ‖s‖ is sublinear
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From ttr to trace

trace involves three key modifications of ttr.

1: Different step acceptance ratio

2: New expansion step: May reject step while increasing TR radius

3: New contraction procedure: Explicit or implicit (through update of λ)

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization 15 of 32
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Step acceptance ratio

1: Different step acceptance ratio

ttr: ρqk =
fk − f(xk + sk)

fk − qk(sk)
⇒ trace: ρk =

fk − f(xk + sk)

‖sk‖32

Motivations:

I With second-order model, error is third-order.

I Recall the first guarantee of accepted steps in arc:

fk − fk+1 ≥ c1σmin‖sk‖32.

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization 16 of 32



Motivation ttr and arc trace Numerical Experiments Summary

Expansion steps

2: New expansion step: May reject step while increasing TR radius

I We define a monotonically increasing sequence {σk}.
I (Plays a similar theoretical role as the regularization coefficients in arc.)

I If objective decrease is good, but dual suggests more decrease is possible, i.e.,

ρk ≥ η but λk > σk‖sk‖2,

then reject the step and increase the TR radius to allow more decrease.

I With δk+1 ← λk/σk, need at most one expansion between accepted steps.

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization 17 of 32
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Regularization/stepsize trade-off: “Off” to “on”

0

0

λk

‖sk‖2

λ?

δ/λ?
δ?

How to go from “off” to “on”

in terms of regularization?

Easy to undershoot or overshoot!

(Recall that, in arc,

regularization is never “off.”)
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Contraction steps

3: New contraction procedure: Explicit or implicit (through update of λ)

λk < σ‖sk‖2
I set λk+1 ← λk + (σ‖gk‖2)1/2, or

I set λk+1 ∈ (λk, λk + (σ‖gk‖2)1/2) so σ ≤ λk+1/‖sk+1‖2 ≤ σ
λk ≥ σ‖sk‖2

I set λk+1 ← γλλk (with γλ > 1), or

I set δk+1 ← γcδk (with γc ∈ (0, 1))

Update based on dual variable only requires a linear system solve!

(Hk+1 + λk+1I)s = −gk+1

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization 19 of 32
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Main algorithm

Algorithm 1 Trust Region Algorithm with Contraction and Expansion (trace)

Require: an acceptance constant η ∈ R++ with 0 < η < 1/2

Require: update constants {γc, γe, γλ} ⊂ R++ with 0 < γc < 1 < γe and γλ > 1

Require: bound constants {σ, σ} ⊂ R++ with 0 < σ ≤ σ

1: procedure trace
2: choose x0 ∈ Rn, {δ0,∆0} ⊂ R++ with δ0 ≤ ∆0, and σ0 ∈ R++ with σ0 ≥ σ
3: compute (s0, λ0) by TR subproblem, then compute ρ0
4: for k = 0, 1, 2, . . . do
5: if ρk ≥ η and either λk ≤ σk‖sk‖2 or ‖sk‖2 = ∆k then
6: set xk+1 ← xk + sk
7: set ∆k+1 ← max{∆k, γe‖sk‖2}
8: set δk+1 ← min{∆k+1,max{δk, γe‖sk‖2}}
9: set σk+1 ← max{σk, λk/‖sk‖2}

10: else if ρk < η then
11: set xk+1 ← xk
12: set ∆k+1 ← ∆k
13: set δk+1 ← contract(xk, δk, σk, sk, λk)
14: else (i.e., if ρk ≥ η, λk > σk‖sk‖2, and ‖sk‖2 < ∆k)
15: set xk+1 ← xk
16: set ∆k+1 ← ∆k
17: set δk+1 ← min{∆k+1, λk/σk}
18: set σk+1 ← σk

19: compute (sk+1, λk+1) by TR subproblem, then compute ρk+1
20: if ρk < η then
21: set σk+1 ← max{σk, λk+1/‖sk+1‖2}
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Motivation ttr and arc trace Numerical Experiments Summary

Contraction subroutine

Algorithm 2 Trust Region Contraction Subroutine

1: procedure contract(xk, δk, σk, sk, λk)
2: if λk < σ‖sk‖2 then

3: set λ← λk + (σ‖gk‖2)1/2

4: set s as the solution of (Hk + λI)s = −gk
5: set δ ← ‖s‖2
6: if λ/δ ≤ σ then
7: return δk+1 ← δ
8: else
9: compute λ̂ ∈ (λk, λ) so (Hk + λ̂I)ŝ = −gk yields σ ≤ λ̂/‖ŝ‖2 ≤ σ

10: set δ̂ ← ‖ŝ‖2
11: return δk+1 ← δ̂

12: else (i.e., if λk ≥ σ‖sk‖2)
13: set λ← γλλk
14: set s as the solution of (Hk + λI)s = −gk
15: set δ ← ‖s‖2
16: if δ ≥ γc‖sk‖2 then
17: return δk+1 ← δ
18: else
19: return δk+1 ← γc‖sk‖2
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Global and local quadratic convergence

Assumption 1
I f twice continuously differentiable and bounded below by fmin

I g Lipschitz continuous in open convex set containing {xk} and {xk + sk}
I {gk} has nonzero elements and bounded above

I {Hk} bounded above

Theorem 2
‖gk‖2 → 0

Assumption 3 (in addition to Assumption 1)
{xk}S → x∗ around which H is positive definite and locally Lipschitz

Theorem 4
{xk} → x∗ with g(x∗) = 0 and, for sufficiently large k,

‖gk+1‖2 = O(‖gk‖22) and ‖xk+1 − x∗‖2 = O(‖xk − x∗‖22)
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Worst-case iteration complexity to first-order ε-criticality

Assumption 5 (in addition to Assumption 1)
H Lipschitz continuous in open convex set containing {xk} and {xk + sk}

Lemma 6
I fk − fk+1 ≥ η‖sk‖32 for all accepted steps

I {σk} bounded by σmax > 0

I ‖sk‖2 ≥ (HLip + σmax)−1/2‖gk+1‖
1/2
2

Theorem 7
Total number of iterations with ‖gk‖2 > ε is

O
„—

f0 − fmin

η∆3
0

�
+

—„
f0 − fmin

η(HLip + σmax)−3/2

«
ε−3/2

�«
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Worst-case iteration complexity to second-order ε-criticality

Under the same assumptions. . .

Lemma 8
lim inf
k→∞

min(eig(Hk)) ≥ 0

Theorem 9
Total number of iterations with

‖gk‖2 > ε or min(eig(Hk)) < −ε

is

O
„—

f0 − fmin

η∆3
0

�
+

—„
f0 − fmin

η(HLip + σmax)−3/2

«
ε−3/2

�«
+O

„‰„
f0 − fmin

ησ−3
max

«
ε−3

ı«
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Implementation

Implemented trace, ttr, and arc together in Matlab

I “Same” subproblem solver for all algorithms; Conn, Gould, Toint (2000)

I Matlab’s eigs for leftmost eigenvalues

I Radius and regularization updates:

(ttr) δk+1 ←

8><>:
max{δk, 2‖sk‖2} if ρqk ≥ η2

δk if ρqk ∈ [η1, η2)

δk/2 if ρqk < η1

(arc) σk+1 ←

8><>:
σk/2 if ρck ≥ η2

σk if ρck ∈ [η1, η2)

2σk if ρck < η1

I Termination criterion:

‖gk‖∞ ≤ 10−6 ·max{‖g0‖∞, 1}
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trace implementation details

I Reduction ratio:

ρk =
fk − f(xk + sk)

min{‖sk‖32, fk − ck(sk;σ)}
I Radius and regularization updates:

(trace) δk+1 ←

8><>:
max{δk, 2‖sk‖2} if ρk ≥ η2

δk if ρk ∈ [η1, η2)

contract if ρk < η1

where contract uses

σ = 10−10, σ = 1010, γλ = 2, γc = 10−2
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Motivation ttr and arc trace Numerical Experiments Summary

Test set

Unconstrained problems from the CUTEr collection

I Removed 9 problems due to memory or decoding errors

I Removed 21 problems on which all algorithms failed

I Remaining set includes 130 problems

Step types taken (normalized by iterations per problem):

Accepted Contraction Expansion
60.07% 39.11% 0.82%

Contraction types taken (normalized by contractions per problem):

λk + (σ‖gk‖2)1/2 σ ≤ λ/‖s‖2 ≤ σ γλλk δ ← γc‖sk‖2
5.43% 0.00% 84.43% 10.14%
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Performance profiles: Iterations
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Performance profiles: Function evaluations
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Performance profiles: Gradient evaluations

A Trust Region Algorithm with Improved Iteration Complexity for Nonconvex Smooth Optimization 29 of 32



Motivation ttr and arc trace Numerical Experiments Summary

Performance profiles: Matrix factorizations
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Contributions

Question: Can we design a TR method with improved complexity?

I Yes, trace achieves the same convergence/complexity guarantees as arc

I New step acceptance criteria

I New mechanism for rejecting a step while expanding the TR radius

I New updates that may involve sublinear TR radius decrease

Numerical experiments show algorithm is at least competitive with ttr and arc

F. E. Curtis, D. P. Robinson, and M. Samadi, “A Trust Region Algorithm with a
Worst-Case Iteration Complexity of O(ε−3/2) for Nonconvex Optimization,”
COR@L Laboratory, Department of ISE, Lehigh University, 14T-009, 2014.
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Future work

Next questions: Does trace offer new insights for improved performance?

I Competitive performance is not surprising, but can it be better?

I Note that an iteration of trace may only need a linear system solve!

I One may imagine algorithms like trace and arc that achieve the same
convergence/complexity guarantees and never fully solve a subproblem

I . . . worst-case (approximate) linear system solve complexity?

I Does trace offer new insights for constrained optimization?
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