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Main concern / focus of this talk

Contemporary worst-case analyses for nonconvex optimization are

I overly conservative,

I not representative of actual performance, and

I too simplistic(?)

We should characterize complexity in a different way.

I Purpose of this talk is to convince you.

I (Otherwise, e.g., we may turn people off from second-order methods.)
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Problem statement

Let’s talk about the problem to minimize f : Rn → R:

min
x∈Rn

f(x).

We’ll focus on iterative algorithms of the form

xk+1 ← xk + sk for all k ∈ N,

where {xk} is the iterate sequence and {sk} is the step sequence.

For the purposes of this talk. . .

I local search (not global optimization)

I deterministic methods (could extend to stochastic)

Let’s use fk := f(xk), gk := ∇f(xk), and Hk := ∇2f(xk).
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Worst-case complexity: Contemporary approach

Worst-case complexity: Upper limit on the resources an algorithm will require
to (approximately) solve a given problem

. . . convex optimization: Bound on the number of iterations (or function or
derivative evaluations) until

‖xk − x∗‖ ≤ εx
or fk − f∗ ≤ εf ,

where x∗ (f∗) is some global minimizer (minimum).

. . . nonconvex optimization: Bound on the number of iterations (or function or
derivative evaluations) until

‖gk‖ ≤ εg
and maybe Hk � −εHI.
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Worst-case complexity for nonconvex optimization

For example, it is said that for first-order stationarity we have the bounds. . .

Algorithm ‖gk‖ ≤ εg
Gradient descent O(ε−2

g )

Second-order trust region (TR) O(ε−2
g )

Cubic regularization (e.g., ARC) O(ε
−3/2
g )

(For “short-step versions”, second-order TR is O(ε
−3/2
g ), but anyway. . . )

This should be surprising to anyone who has used these methods!
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TR vs. ARC

1: Solve to compute sk:

min
s∈Rn

qk(s)

:= fk + gTk s+ 1
2
sTHks

s.t. ‖s‖ ≤ δk (dual: λk)

2: Compute ratio:

ρqk ←
fk−f(xk+sk)
fk−qk(sk)

3: Update radius:

ρqk ≥ η: accept and δk ↗

ρqk < η: reject and δk ↘

TR

1: Solve to compute sk:

min
s∈Rn

ck(s)

:= fk + gTk s+ 1
2
sTHks

+ 1
3
σk‖s‖3

2: Compute ratio:

ρck ←
fk−f(xk+sk)
fk−ck(sk)

3: Update regularization:

ρck ≥ η: accept and σk ↘

ρck < η: reject and σk ↗

ARC

σk = λk
δk

δk = ‖sk‖
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Experiments with CUTEr
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Complexity: Take-home message #1

Contemporary complexity theory for nonconvex optimization. . .

I might not be showing a deficiency of certain methods (e.g., 2nd-order TR);

I might be showing a deficiency of the characterization strategy.

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our new approach

I local convergence rate

We’re admitting: Our approach does not always give the complete picture.

But the contemporary approach can give a misleading picture.
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Conservatism of contemporary analyses

Suppose g := ∇f is Lipschitz continuous with constant L > 0. Then,

fk+1 ≤ fk + gTk sk + 1
2
L‖sk‖2.

Let finf := minx∈Rn f(x). Suppose also that ‖gk‖2 ≥ 2c(fk − finf).

fk − fk+1 ≥
1

2L
‖gk‖2 fk − fk+1 ≥

1

2L
‖gk‖2

≥
c

L
(fk − finf)

f0 − finf ≥
1

2L
|Kg |ε2g f0 − finf ≥

(
1−

c

L

)−k
(fk − finf)

|Kg | ≤ O
(
f0 − finf

ε2g

)
|Kf | ≤ O

(
log

(
f0 − finf

εf

))
where

Kg := {k ∈ N : ‖gk‖ ≥ εg} and Kf := {k ∈ N : fk − finf ≥ εf}.
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Upper bounds on |Kf | versus |Kg|

Setting with {x ∈ Rn : fk − finf ≤ εf} = {x ∈ Rn : ‖gk‖ ≤ εg}.
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Worst-case examples
Worst-case performance bounds are tight; Cartis, Gould, Toint (2010).

However, these examples for nonconvex optimization are. . . strange.

I Compared to convex optimization, for nonconvex. . .

I there is a much wider gap between theory and practice.
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Introduction Contemporary Analyses RC: Step 1 RC: Step 2 Summary

Motivation

We want a characterization strategy that

I attempts to capture behavior in actual practice

I i.e., is not “bogged down” by pedogogical examples

I can be applied consistently across different classes of functions

Our idea is to

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

I combine results to give complete perspectives on function classes

For some functions, there will be holes, but for many of interest there are none!

We call this regional complexity analysis (RC analysis, for short).
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Main idea

Algorithm f class
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Main idea
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Intuition

Think about an arbitrary point in the search space, i.e.,

L := {x ∈ Rn : f(x) ≤ f0}.

I If ‖gk‖ � 0, then “a lot” of progress can be made.

I If ‖gk‖ ≈ 0, but λ(Hk)� 0, then again “a lot” of progress can be made.
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“Region 1”

Given κ ∈ (0,∞) and fref ∈ [finf, f0]. . .

Let “Region 1” be points where the gradient is large relative to optimality error:

R1 := {x ∈ L : ‖g(x)‖τ ≥ κ(f(x)− fref) ≥ 0 for some τ ∈ [1, 2]}. (?1)

These are points with gradient domination.

I Let R2
1 be points where (?1) holds with τ = 2.

I Let R1
1 be all other points in R1.

Theorem

If f satisfies the Polyak- Lojasiewicz condition, then R2
1 = R1 = L.

Theorem

If f is convex, then (over a ball containing its minimizers) R1 = L.

Nesterov & Polyak (2006); Karimi, Nutini, and Schmidt (2016)
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Region 1: Illustration

The set R1 (black line) covers almost the entire domain.
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Example “Step 1–R1” result

Suppose ∇f is Lipschitz continuous with constant L1.

Theorem

For a given algorithm, if xk ∈ R1 implies that

fk − fk+1 ≥
1

ζ
‖gk‖2 for some ζ ∈ [L1,∞),

then the following hold.

(a) If xk ∈ R2
1, then (as in a linear rate)

fk+1 − fref ≤
(

1−
κ

ζ

)
(fk − fref) where

κ

ζ
∈ (0, 1].

(b) If xk ∈ R1
1, then (as in a sublinear rate)

fk+1 − fref ≤
(

1−
κ2

ζ
(fk − fref)

)
(fk − fref).

Characterizes gradient descent methods, second-order trust region methods, etc.
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Example “Step 1–R1” result

Theorem

For a given algorithm, if xk+1 ∈ R1 implies that

fk − fk+1 ≥
1

ζ
‖gk+1‖3/2 for some ζ ∈ (0,∞),

then the following hold.

(a) If xk+1 ∈ R2
1 and fk − fref ≥ κ3/ζ4, then (as in a linear rate)

fk+1 − fref ≤

 (f0 − fref)1/4
κ3/4

ζ
+ (f0 − fref)1/4

 (fk − fref)

whereas, if xk+1 ∈ R2
1 and fk − fref < κ3/ζ4, then (as in a superlinear rate)

fk+1 − fref ≤
(
ζ4(fk − fref)

κ3

)1/3

(fk − fref).

Characterizes regularized Newton methods, etc.
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Example “Step 1–R1” result

Theorem

(b) If xk+1 ∈ R1
1 and fk − fref ≥ ζ2/κ3, then (as in a superlinear rate)

fk+1 − fref ≤
(

ζ2

κ3(fk − fref)

)1/3

(fk − fref),

whereas, if xk+1 ∈ R1
1 and fk − fref < ζ2/κ3, then (as in a sublinear rate)

fk+1 − fref ≤

 1

1 + κ3/2

ζ

(√
2−1√
2

)√
fk − fref

2

(fk − fref).
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“Region 2”

Let “Region 2” be points not in R1 where negative curvature is large:

R2 := {x ∈ L : (λ(H(x)))τ− ≥ κ(f(x)− fref) ≥ 0 for some τ ∈ [1, 3]} \ R1. (?2)

These are points with negative curvature domination.

I Let R3
2 be points where (?2) holds with τ = 3.

I Let R2
2 be points where (?2) holds with τ = 2 (but not τ = 3).

I Let R1
2 be all other points in (?2).

Theorem

If f has the property that, for some κ ∈ (0,∞), one has

max{‖∇f(x)‖2,−λ(∇2f(x))3} ≥ κ(f(x)− finf),

then R1 ∪R2 = R2
1 ∪R3

2 = L.

This is a strict-saddle property.

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 24 of 34
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Illustration

(p = 2) R1: black R2: gray R: white
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Example “Step 1–R2” result

Suppose ∇f and ∇2f are Lipschitz continuous with constants L1 and L2.

Theorem
For a given algorithm, if xk ∈ R2 implies that

fk − fk+1 ≥
1

ζ
(λ(Hk))

3
− for some ζ ∈ [L2,∞),

then the following hold.

(a) If xk ∈ R3
2, then (as in a linear rate)

fk+1 − fref ≤
(
1−

κ

ζ

)
(fk − fref) where

κ

ζ
∈ (0, 1].

(b) If xk ∈ R2
2, then (as in a sublinear rate)

fk+1 − fref ≤
(
1−

(
κ3/2

ζ

)√
fk − fref

)
(fk − fref).

(c) If xk ∈ R1
2, then (as in a sublinear rate)

fk+1 − fref ≤
(
1−

κ3

ζ
(fk − fref)

2

)
(fk − fref).

Characterizes (some!) second-order trust region methods, regularized Newton, etc.
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Higher-order regions

This can be extended in a natural way to higher-order regions/algorithms.

If f is p-times continuously differentiable, then we have the regions

R1 := {x ∈ L : ∆1(x)τ ≥ κ(f(x)− finf) ≥ 0 for some τ ∈ [1, 2]},

Rp := {x ∈ L : ∆2(x)τ ≥ κ(f(x)− finf) ≥ 0 for some τ ∈ [1, p+ 1]} \

p−1⋃
j=1

Rj


for all p ∈ {2, . . . , p},

and R := L \

 p⋃
j=1

Rj

 .

Regions could be defined in other ways as well; key idea is to partition!
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Function classes

Definition ((g,H)-dominated function of degree (τ1, τ2))

A twice continuously differentiable function f is (g,H)-dominated of degree
(τ1, τ2) ∈ [1, 2]× [1, 3] over L if for some constant κ ∈ (0,min{L1, L2}]

max{‖g(x)‖τ1 , (λ(H(x)))τ2− } ≥ κ(f(x)− finf) for all x ∈ L.

Definition (gradient-dominated function of degree τ)

A continuously differentiable function f is gradient-dominated of degree τ ∈ [1, 2]
over L if for some constant κ ∈ (0, L1] it holds that

‖g(x)‖τ ≥ κ(f(x)− finf) for all x ∈ L.

Note: gradient-dominated =⇒ (g,H)-dominated, but not vice versa

Characterizing Worst-Case Complexity of Algorithms for Nonconvex Optimization 29 of 34
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“Step 2” result

The following applies if f is (g,H)-dominated of degree (2, 3).

Theorem

If xk ∈ R2
1 ∪R3

2 for all k ∈ N, then

2nd-order TR : linear =⇒ quadratic(?)

|{k : fk − finf > ε}| = O
(

log

(
f0 − finf

ε

))

whereas

regularized Newton : linear =⇒ superlinear =⇒ quadratic(?).

|{k : fk − finf > ε}| = O
(

log

(
f0 − finf
κ3/ζ4

))
+O

(
log

(
log

(
κ3/ζ4

ε

)))

(Compare with |{k : ‖gk‖ > εg}| = O(ε−2
g ) and O(ε

−3/2
g ), respectively.)
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“Step 2” result
The following holds if f is (g,H)-dominated of degree (1, 1).

Theorem
If xk ∈ R1 ∪R2 for all k ∈ N, then the following hold.

I xk ∈ R2
1 ∪R

3
2 for all large k ∈ N, same as previous result.

I xk ∈ R2
1 ∪ (R2

2 ∪R
3
2) for all large k ∈ N, then

2nd-order TR and regularized Newton: linear =⇒ superlinear

O
(
log

(
f0 − finf

1/κ

))
+O

(
1/κ
√
ε

)
I xk ∈ (R1

1 ∪R
2
1) ∪ (R2

2 ∪R
3
2) for all large k ∈ N, then

2nd-order TR and regularized Newton: linear =⇒ superlinear

O
(
log

(
f0 − finf

1/κ

))
+O

(
1/κ

ε

)
︸ ︷︷ ︸
2nd-order TR

vs. +O
(

1/κ
√
ε

)
︸ ︷︷ ︸

regularized Newton

I xk ∈ R1
2 for infinite number of k ∈ N, then

2nd-order TR and regularized Newton: linear =⇒ superlinear

O
(
log

(
f0 − finf

1/κ

))
+O

(
1/κ

ε2

)
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Summary & Perspectives
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Summary & Perspectives

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + RC analysis

I local convergence rate

Our idea is to

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

I combine results to give complete perspectives on function classes

For some functions, there are holes, but for others the characterization is complete.

F. E. Curtis and D. P. Robinson, “How to Characterize the Worst-Case
Performance of Algorithms for Nonconvex Optimization,” Lehigh ISE/COR@L
Technical Report 18T-003, February 3, 2018. New version coming soon.
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Back to take-home message #2
Strongly convex quadratic

I gradient descent with a fixed stepsize (black)

I gradient descent with adaptive stepsizes / line searches (blue)

I conjugate gradient with adaptive stepsizes (red)

Focus on worst-case performance. . .

I is a self-fulfilling prophecy!

I Let’s emphasize worst-case performance less when actual behavior is better!
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