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PDE Optimization Inexact Newton methods Experimental results Conclusion

Hyperthermia treatment

» Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption

» Results in the killing of tumor cells and makes them more susceptible to
other accompanying therapies; e.g., chemotherapy
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Hyperthermia treatment planning

» Computer modeling can be used to help plan the therapy for each
patient, and it opens the door for numerical optimization

» The goal is to heat the tumor to a target temperature of 43°C while
minimizing damage to nearby cells
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The problem is to

Conclusion
Hyperthermia treatment as an optimization problem

. 2 _ 37 in Q\Qo
min /Q(y—yt) dV  where y; —{ 43 in Q
subject to the bio-heat transfer equation (Pennes (1948))
- V-(Vy) 4wy —w)
———— —_———
thermal conductivity

2 .

= %|Z: u,-E,-| 3 in Q
—————

effects of blood flow  electromagnetic field
and the bound constraints

y <37.5, on9Q
y >41.0, in Qo
where € is the tumor domain
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Applications

Model calibration

Optimal design/control

Joower = 0.321651, Q = 0.136036 Jpowsr = 0.243232, 0 = 0136021

(Walker et a
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:
PDE-constrained optimization
min f(x)
s.t. ce(x) =0

cz(x) >0
» Problem is infinite-dimensional

» Controls and states: x = (u, y)

» Solution methods integrate

> numerical simulation
> problem structure

» optimization algorithms
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Algorithmic frameworks

We hear the phrases:

Conclusion

» Discretize-then-optimize

» Optimize-then-discretize
| prefer:

» Discretize the optimization problem

min f(x) min f4(x)
=
st c(x)=0 s.t. ch(x) =0
» Discretize the optimality conditions
min f(x
() | [VEHAN] o o {(Vf+(A,)\))h]:0
sit. ¢(x) =0 c ] Ch
» Discretize the search direction computation
o = = = = 9ac
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Algorithms

Conclusion

» Nonlinear elimination

min f(u,y
oy f() = | min f(u,y(v))
s.t. c(u,y) =0 !

=

Vuf +VuyTV,f=0
» Reduced-space methods

dy : toward satisfying the constraints

A . Lagrange multiplier estimates
d,:

toward optimality
» Full-space methods

Hi 0 Al [d Vuf + AJX
T T
0 H, Al ld|=—|V,Ff+AlA
As A 0 é c
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Large-scale primal-dual algorithms

» Computational issues:

> Large matrices to be stored

» Large matrices to be factored
» Algorithmic issues:
» The problem may be nonconvex

» The problem may be ill-conditioned
» Computational/Algorithmic issues:

o = = E E 9ace
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Experimental results

Conclusion

» Unconstrained optimization

mXin f(x)

» Nonlinear equations

=| Vf(x)=0 |=> | V2 f(xi)di = =V F(xk) |

| FO) =0 | =] VF(x)d = —F(x) |

in either case we solve a linear system of equations

VF(xk)dk = —F(xx)

» Progress judged by the merit function

(2.1)

#(x) = 31|17 ()|
note the consistency between (2.1) and (2.2):

(22)

Vo(xe) de = F(x) T VF(xi)de = —[|F(x)|I* < 0
] = =
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Inexact Newton methods

Conclusion

» Compute

V]:(Xk)dk = —.7:(Xk) + rk
requiring (Dembo, Eisenstat, Steihaug (1982))

(2.3)
llricll < KlIF (el

k€ (0,1)
» Progress judged by the merit function

(2.4)
o(x) £ FIIF )|

note the consistency between (2.3)-(2.4) and (2.5):

(2.5)

V(i) di = F(xi) T VF(a)de = || F (xi) IP+F () "rie < (6—1)|F ()| < 0
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Equality constrained optimization

» Consider

2 f)

stt.c(x)=0
» Lagrangian is

L(x,A) 2 f(x) + AT c(x)
so the first-order optimality conditions are

VL(x,A) = W(X)CJEXC(X)’\ 2 F(x,\) =0
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Inexact Newton Methods for Nonlinear Constrained Optimization

Conclusion
Newton methods and sequential quadratic programming

H(Xk, )\k) VC(Xk)

d —_
Ve(x)" 0 5| -
is equivalent to

Vi(xk) + Ve(x) Mk

c(x)

If H(xk, \«) is positive definite on the null space of Vc(xx)”, then

min f(x) + V() d + 1d"H(xe, Ae)d
sit. c(xx) + Ve(x) d =0

X

=
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Merit function

Experimental results

Conclusion

» Simply minimizing

90, ) = FIIFCN* = 3

VF(x) + Ve(x)A]|]?
c(x)
is generally inappropriate for constrained optimization
» We use the merit function

¢(xim) £ f(x) + mllc(x)]|
where 7 is a penalty parameter
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Minimizing a penalty function

Consider the penalty function for
min (x — 1), st. x=0 ie ¢(x;7) = (x —1)° +7x|

for different values of the penalty parameter m

25
25|
2
2 15
< <
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0
5.5 ] 05 1 —0'—85 0 05 1
X X
Figure: 7 =1 Figure: m =2
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Algorithm 0: Newton method for optimization

(Assume the problem is convex and regular)
for k=0,1,2,...

» Solve the primal-dual (Newton) equations

H(Xk,Ak) VC(Xk)

Ve(x)" 0 ] [gk] == [Vf(xk) + Ve(xi)Ak

c(xk)

» Increase 7, if necessary, so that mx > || Ak + d«|| (yields Dex(dk; mi) < 0)
» Backtrack from ay «— 1 to satisfy the Armijo condition

O(xk + audi; mk) < d(xi; ) + nak Do (dic; i)
» Update iterate (Xk41, Akt1) < (Xk, Ak) + a(dk, 0k)

=
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:
Convergence of Algorithm 0
Assumption

The sequence {(xk, \«)} is contained in a convex set Q over which f, ¢, and
their first derivatives are bounded and Lipschitz continuous. Also,

> (Regularity) Vc(xk)" has full row rank with singular values bounded
below by a positive constant
u#0and Ve(x) 'u=0

> (Convexity) u” H(xk, Ak )u > pl|ul|® for 1 > 0 for all u € R" satisfying
T
heorem

(Han (1977)) The sequence {(xx, \«)} yields the limit

k“m H {Vf(xk) + VC(Xk))\k

c(xk) }

=0
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Incorporating inexactness

Conclusion

» Compute

» [terative as opposed to direct methods

[ (Xk, )\k) VC(Xk)
VC(Xk)T

de|
0 Ok
satisfying

Vf(Xk) + VC(Xk))\k

o 4[]
el <+

Vf(xk) + VC(Xk))\k

(%) ] k€ (0,1)

» If k is not sufficiently small (e.g., 1073 vs. 10 12) then dx may be an
ascent direction for our merit function; i.e

I

Doi(di; mx) >0 for all mx > mx—1
» Our work begins here
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Model reductions

Experimental results

Conclusion

» Define the model of ¢(x; 7):

m(d; ) £ f(x) + VF(x)"d +7([[e(x) + Ve(x)"d]])
» dj is acceptable if

Am(dy; k) 2 m(0; k) — m(dk; k)

= —VF0a) di+ mi(llcCadll = le(xe) + Ve(xe) dil)) > 0
» This ensures D¢ (dk; mx) < 0 (and more)
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Termination test 1

Experimental results

Conclusion

The search direction (dx, dx) is acceptable if

Inexact Newton Methods for Nonlinear Constrained Optimization

‘ m ‘ . HW(Xk)wC(xk)Ak

C(Xk) :|
and if for mx = m¢—1 and some o € (0,1) we have

‘, k€ (0,1)

Am(dy; mi) = max{5dy H(xe, \e)di, 0} + ome max{||c(x) I, [[rill = le(xi) I}
> 0 for any d

X
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Termination test 2

Experimental results

Conclusion
The search direction (dk, dx) is acceptable if

lloxll < BlleGe)ll,  5>0
and [ndl < efle(xe)ll;

e€(0,1)

Increasing the penalty parameter 7 then yields

Am(di; mi) > max{1dy H(xi, A\e)dk, 0} + oml|c(x)]|

>0 for any d
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(Byrd, Curtis, Nocedal (2008))
for k =0,1,2,...

Algorithm 1: Inexact Newton for optimization

> |teratively solve

{H(xk, k)

Ve(xk)]| [dk _ V(xk) + Ve(xk)Ak
VC(Xk)T 0 (51( - C(Xk)
until termination test 1 or 2 is satisfied
» If only termination test 2 is satisfied, increase 7 so

{ VF(xe) " di + max{2d] H(xx, Ae)dk, 0}
Tk > Max< Tk_1,

(T =7)UeGall = [Irell) }
» Backtrack from ay < 1 to satisfy

d(xk + audi; k) < d(xi; Th) — naxkAm(di; i)
» Update iterate (Xk+1, )\k+1) — (Xk7 )\k) + ak(dk,ék)
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:
Convergence of Algorithm 1
Assumption

The sequence {(xx, Ak)} is contained in a convex set Q2 over which f, ¢, and
their first derivatives are bounded and Lipschitz continuous. Also

» (Regularity) Ve(xk)" has full row rank with singular values bounded
below by a positive constant

> (Convexity) u” H(xi, \)u > pl|ul|® for > 0 for all u € R" satisfying
u#0and Ve(x) u=0
Theorem

(Byrd, Curtis, Nocedal (2008)) The sequence {(xx, Ax)} yields the limit

k“m H |:Vf Xk) + VC(Xk))\k

c(xk) }
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Conclusion
Handling nonconvexity and rank deficiency

» There are two assumptions we aim to drop:
» (Regularity) Vc(xx)T has full row rank with singular values
bounded below by a positive constant
> (Convexity) u™ H(xi, \c)u > pul|ul|? for n > 0 for all u € R”
satisfying u # 0 and Vc(xx)Tu =0
e.g., the problem is not regular if it is infeasible, and it is not convex if
there are maximizers and/or saddle points
» Without them, Algorithm 1 may stall or may not be well-defined
:
Inexact Newton Methods for Nonlinear Constrained Optimization
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Experimental results
No factorizations means no clue

» We might not store or factor

0

ey T

so we might not know if the problem is nonconvex or ill-conditioned
» Common practice is to perturb the matrix to be

|:H(Xk,)\k)-|—§1l VC(Xk):|
Velx)T —&l

o = = E E 9ace
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» Poor choices of £ and & can have terrible consequences in the algorithm
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Conclusion

Our approach for global convergence

» Decompose the direction dj into a normal component (toward the

V,

constraints) and a tangential component (toward optimality)
k

» Without convexity, we do not guarantee a minimizer, but our merit
function biases the method to avoid maximizers and saddle points

Inexact Newton Methods for Nonlinear Constrained Optimization
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Experimental results

Normal component computation

Conclusion

> (Approximately) solve
min 3 c(x) + Ve(x) v
st v S wll(Velx)) ()l
for some w > 0
» We only require Cauchy decrease:
lleCGadll = lle(a) + Ve(x) vl
> eu([le(x)ll = le(xk) + aVe(xe) )

for e, € (0,1), where 7 = —(Vc(xk))c(xk) is the
direction of steepest descent

Inexact Newton Methods for Nonlinear Constrained Optimization
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Conclusion
Tangential component computation (idea #1)

» Standard practice is to then (approximately) solve

min (V£ (xi) + H(xe, Mde)vie) w4+ Su” H(xw, M)
sit. VeOu) u=0, |u| < Ak

» However, maintaining

U

Ve(x) u~0 and

[[ull < Ak
can be expensive

o = = E A
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Conclusion

Tangential component computation

» Instead, we formulate the primal-dual system
H(xi, M) Ve(xk)] [uk
Ve(x)" 0 [
__ [Vf(xk) + VC(Xk))\k + H(Xk7 )\k)vk

k
0
» Our ideas from before apply!

o = = E E 9ace
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Experimental results
Handling nonconvexity

Conclusion

» Convexify the Hessian as in

H(xi, M) + &1 Ve(xx)
Velx)" 0
by monitoring iterates

» Hessian modification strategy: Increase {1 whenever

luel? > llvil®, ¥ >0
2ul (H(a, M) + &l < 0],

0>0

Inexact Newton Methods for Nonlinear Constrained Optimization
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Experimental results

Inexact Newton Algorithm 2

Conclusion
(Curtis, Nocedal, Wachter (2009))
for k=0,1,2,...

»  Approximately solve

min 3lle(xi) + Vela) Tv]?, st [|v]] < wll(Vel)) ()l
to compute vy satisfying Cauchy decrease
» Iteratively solve

|:H(Xk»)\k) + &l Velx)
Velx)

dk _ Vf(Xk) + VC(Xk))\k
0 o —VC(Xk)TVk
until termination test 1 or 2 is satisfied, increasing &; as described
» If only termination test 2 is satisfied, increase 7 so
{ V() T dic + max{ Lu] (H(xic, M) + &), 0] ui |2}
Tk > Max § Tg—1,
P> Backtrack from ay < 1 to satisfy

(T =) lleGi)ll = lle(xic) + Velxi) T dill)

d(xic + cucdic; mi) < d(xs i) — o Am(dy; i)

> Update iterate (xci1, Ak1) < O, M) +awldio o) -
:
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PDE Optimization Inexact Newton methods Experimental results Conclusion
:

Convergence of Algorithm 2

Assumption

The sequence {(xx, Ak)} is contained in a convex set Q2 over which f, c, and
their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Nocedal, Wichter (2009)) If all limit points of {Vc(xx)"} have full
row rank, then the sequence {(xx, A«)} yields the limit

H [Vf(xk + Vc(xk)/\k]

lim c(x)

k—o0

-o

Otherwise,
Jim [(Ve(x))c(x0)]) =0
and if {m} is bounded, then

lim V£ () + Te(x)A] = 0

] = = =

2a¢
:
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Experimental results
Handling inequalities

Conclusion

» Interior point methods are attractive for large applications
» Line-search interior point methods that enforce

c(x) + Velu) de =0
may fail to converge globally (Wa&chter, Biegler (2000))

» Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!
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Conclusion

Algorithm 2 (Interior-point version)

»  Apply Algorithm 2 to the logarithmic-barrier subproblem

q
min f(x) — “Z Ins',
i=1

sit. cg(x) =0, cz(x) —s=0
for u — 0
» Define

H(xk, Ae ks Az k) 0 Veg(xw) Vez(x)| [ df

0 wl 0 —Sk d;

VCg(Xk)T 0 0 0 657/(

VCI(Xk)T —Sk 0 0 5I,k

so that the iterate update has
Xk+1 Xk d;:
[5k+1] - Lk} ek {Skdi
:

» Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in
the algorithm to maintain s > max{0, cz(x)}

o = = E E 9ace
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PDE Optimization Inexact Newton methods Experimental results Conclusion
:

Convergence of Algorithm 2 (Interior-point)

Assumption

The sequence {(x«, Ae .k, Az ,k)} is contained in a convex set 0 over which f,
ce, ¢z, and their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Schenk, Waichter (2009))

» For a given u, Algorithm 2 yields the same limits as in the equality
constrained case

» If Algorithm 2 yields a sufficiently accurate solution to the barrier
subproblem for each {y;} — 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point X of {x;}, then there exist
Lagrange multipliers X such that the first-order optimality conditions of
the nonlinear program are satisfied

:
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Experimental results
Implementation details

Conclusion

> Incorporated in IPOPT software package (Wachter)
> inexact_algorithm yes

» Linear systems solved with PARDISO (Schenk)
» SQMR (Freund (1994))
» Preconditioning in PARDISO

> stabilized by symmetric-weighted matchings
» Optimality tolerance: le-8

» incomplete multilevel factorization with inverse-based pivoting

o = = E A
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Inexact Newton methods

Experimental results
CUTEr and COPS collections

Conclusion

» 745 problems written in AMPL

» Robustness between 87%-94%
» Original IPOPT: 93%

o = = E E 9ace
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Helmholtz

True ke

Peconsiicies kix)

28

2¢

24

22

56

£

N | n | p | q | # iter | CPU sec (per iter)

32 14724 13824 1800 37 807.823 (21.833)

64 56860 53016 7688 25 3741.42 (149.66)

128 | 227940 | 212064 | 31752 20 54581.8 (2729.1)
o 9 = = 9
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Helmholtz

True k|

52
50
28
2
2a
&
20
&
0 02 02 e [X) 1 -

Remember what | said about nonconvexity!

Paconsruces ki)

: :
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Boundary control

min 3 [ (y(x) — yr(x))?dx

st. =V (™. Vy(x)) =20 in Q
y(x) = u(x) on 9Q
2.5 < u(x) < 3.5 on 00

where
ye(x) = 3 4+ 10x1(x1 — 1)x2(x2 — 1) sin(27x3)

N | n | p | q | # iter | CPU sec (per iter)
16 4096 2744 2704 13 2.8144 (0.2165)
32 32768 27000 | 11536 13 103.65 (7.9731)
64 | 262144 | 238328 | 47632 14 5332.3 (380.88)

Original IPOPT with N = 32 requires 238 seconds per iteration

o = = E E 9ace
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PDE Optimization Inexact Newton methods Experimental results Conclusion

Hyperthermia treatment planning

min 3 Jo(y(x) = ye(x))?dx

sit. — Ay(x) —10(y(x) — 37) = u"M(x)u in Q
37.0 < y(x) < 37.5 on 022
42.0 < y(x) <44.0 in Qo

where )
u = a;e'®, My (x) =< Ej(x), Ex(x) >, E; = sin(jxixox3m)

N | n | p | q | # iter | CPU sec (per iter)
16 | 4116 | 2744 | 2994 68 | 22.803 (0.3367)
32 | 32788 | 27000 | 13034 51 3055.9 (59.920)

Original IPOPT with N = 32 requires 408 seconds per iteration

o 5 = = DA

:
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Conclusion
: :
: :
Groundwater modeling
min 3 [o(y(x) = ye(x))?dx + 3 [o[B(u(x) — ue(x))? + [V (u(x) — ue(x))[PJdx
st. —V- ("™ . Vy(x) =qi(x) nQ, i=1,...,6
Vyi(x)-n=0 on dQ
/y;(x)dx:O, i=1,...,6
Q
—1<u(x)<2 inQ
where
g; = 1005sin(27mxy) sin(2mx2) sin(27wx3)
N | n | p | q | # iter | CPU sec (per iter) |
16 28672 24576 8192 18 | 206.416 (11.4676)
32 229376 196608 65536 20 | 1963.64 (98.1820)
64 | 1835008 | 1572864 | 524288 21 | 134418. (6400.85)
Original IPOPT with N = 32 requires approx. 20 hours for the first iteration
= = = = = 9ac
: :
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Conclusion and final remarks
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:

Conclusion and final remarks

» PDE-Constrained optimization is an active and exciting area

» Inexact Newton method with theoretical foundation

» Convergence guarantees are as good as exact methods, sometimes better

» Numerical experiments are promising so far, and more to come
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