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» Large-scale optimization (PDE-constrained problems, today’s talk)

» Methods with fast detection of infeasibility (MINLP problems)
» Global convergence mechanisms
:

[=] = = = o
:

An Inexact Newton Method for Optimization Frank E. Curtis
s




Motivation
:

Algorithms and Theory

QOutline

Experiments

Conclusion

Motivational Example

Algorithm development and theoretical results

Experimental results

Conclusion and final remarks

[=] = = QA
:

An Inexact Newton Method for Optimization Frank E. Curtis
s




Motivation
:

Algorithms and Theory

QOutline

Experiments

Conclusion

Motivational Example

[=] = = QA
:

An Inexact Newton Method for Optimization Frank E. Curtis
s




Motivation Algorithms and Theory Experiments Conclusion

Hyperthermia treatment

» Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption

» Results in the killing of tumor cells and makes them more susceptible to
other accompanying therapies; e.g., chemotherapy

:
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Hyperthermia treatment planning

» Computer modeling can be used to help plan the therapy for each
patient, and it opens the door for numerical optimization

> The goal is to heat the tumor to the target temperature of 43°C while
minimizing damage to nearby cells

> sz
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Experiments

The problem is to

Conclusion
Hyperthermia treatment as an optimization problem

37 in Q\Qo
m|n /(y ve)’dV  where y, = { 43 in Q
subject to the bio-heat transfer equation (Pennes (1948))
- V-Vy) o+ wWrly-w) = S uEl
———— —_———
thermal conductivity effects of blood flow
and the bound constraints

, in Q
electromagnetic field
37.0 < y <37.5, on 9
41.0< y <450, inQo
where Qg is the tumor domain
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Experiments

Large-scale optimization

Conclusion

» Consider

i, £
sit. ce(x) =0
cz(x) >0
where f : R" = R, ¢¢ : R" — RP and ¢z : R" — RY are smooth functions
» The best contemporary methods are limited by problem size; e.g.,
» sequential quadratic programming (small to moderate sizes)
> interior-point methods (moderate to large sizes)
» We want the fast solution of problems with millions of variables
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Experiments

Conclusion

Challenges in large-scale optimization

» Computational issues:

> Large matrices may not be stored

> Large matrices may not be factored
» Algorithmic issues:
» The problem may be nonconvex

» The problem may be ill-conditioned
» Computational/Algorithmic issues:
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Main contributions

» ALGORITHMS: Inexact Newton methods for constrained optimization,
broadening the potential application of fast optimization algorithms

» THEORY: Global convergence and the potential for fast local convergence
» SOFTWARE: new release of Ipopt (Wachter) with Pardiso (Schenk)

» ARTICLES:

> “An Inexact SQP Method for Equality Constrained Optimization,” SIAM
Journal on Optimization, 19(1):351-369, with R. H. Byrd and J. Nocedal

> “An Inexact Newton Method for Nonconvex Equality Constrained
Optimization,” Mathematical Programming, Series A, to appear, with
R. H. Byrd and J. Nocedal

> “A Matrix-free Algorithm for Equality Constrained Optimization Problems
with Rank-Deficient Jacobians,” SIAM Journal on Optimization, to
appear, with J. Nocedal and A. Wachter

> “An Interior-Point Algorithm for Large-Scale Nonlinear Optimization with
Inexact Step Computations,” submitted to SIAM Journal on Scientific
Computing, with O. Schenk and A. Wachter
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Equality constrained optimization

:
» Consider

2 f)

stt.c(x)=0
» The Lagrangian is

L(x,A) 2 f(x) + AT c(x)
so the first-order optimality conditions are
VL(x,\) = V£(x)+ Ve(x)A

c(x)

2 F(x,\)

Il
o
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Inexact Newton methods

Conclusion

» Solve

F(x,A)=0 or

min (x,A) £ 1 F(x, )2
» |nexact Newton methods compute

V}-(Xk, )\k)dk = —}-(Xk, )\k) =+ r
requiring (Dembo, Eisenstat, Steihaug (1982))

l[rell < & l1F (i Al w € (0,1)
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A naive Newton method for optimization
» Consider the problem
min f(x) =xi+x, st c(x)=x+x3—-1=0
that has the first-order optimality conditions
1+ 2x1A
Fx,A)= | 14+2xX | =0

X —1

» A Newton method applied to this problem yields

K [ 17 G AT
0 | +3.5358e+00
1 +2.9081e-02
2 | +4.8884e-04
3 | +7.9028e-08
4 +2.1235e-15
o = = E E 9ace
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00
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: :
: :
A naive Newton method for optimization
» Consider the problem
min f(x) =xi+x, st c(x)=x+x3—-1=0
that has the first-order optimality conditions
1+2xA
Fx,A)= | 14+2xX | =0
X —1
» A Newton method applied to this problem yields
k| SF O M) k f () (el
0 +3.5358e+00 0 | +1.3660e+00 | +1.1102e-16
1 +2.9081e-02 1 | +1.3995e+00 | +8.3734e-03
2 +4.8884e-04 2 | +1.4358e+00 | +3.0890e-02
3 | +7.9028e-08 3 | +1.4143e+00 | +2.4321e-04
4 +2.1235e-15 4 | +1.4142e+00 | +1.7258e-08
o =) = = z 9ac
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Experiments

Conclusion
A naive Newton method for optimization fails easily
» Consider the problem
min f(x) =xi+x, st.c(x)=x +x -1=0

Ve .

vf
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Merit function

Experiments

Conclusion

» Simply minimizing

90, ) = FIIFCN* = 3

VF(x) + Ve(x)A]|]?
c(x)
is generally inappropriate for optimization

» We use the merit function

¢(xim) £ f(x) + mllc(x)]|
where 7 is a penalty parameter
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Experiments

Conclusion

Algorithm 0: Newton method for optimization

(Assume the problem is convex and regular)
for k=0,1,2,...

» Solve the primal-dual (Newton) equations

fé(;(k),(kx)kT) VC(()Xk)] [gf:] _ [Vf(xk) CJEXY)C(Xk)Ak

» Increase 7, if necessary, so that mix > || Ak + d«|| (yields Dex(dk; mi) < 0)
» Backtrack from ay «— 1 to satisfy the Armijo condition

O(xk + audi; mk) < d(xi; ) + nak Do (dic; i)
» Update iterate (Xk41, Akt1) “— (Xk, k) + ax(dk, 0k)
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Conclusion
Newton methods and sequential quadratic programming

H(Xk, )\k) VC(Xk)

d —_
Ve(x)" 0 5| -
is equivalent to

Vi(xk) + Ve(x) Mk

c(x)

If H(xk, \«) is positive definite on the null space of Vc(xx)”, then

min f(x) + V() d + 1d"H(xe, Ae)d
sit. c(xx) + Ve(x) d =0

X
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Conclusion
: :
Minimizing a penalty function
Consider the penalty function for
min (x — 1), st. x=0 ie ¢(x;7) = (x —1)° +7x|
for different values of the penalty parameter m
25 =
2
2 15
05
;8.5 ] 05 1 —0'—85 0 05 1
X X
Figure: 7 =1 Figure: m =2
CIRY- = = z 9ac
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Motivation Algorithms and Theory

Experiments

Convergence of Algorithm 0

Conclusion

Assumption

The sequence {(xk, \«)} is contained in a convex set Q over which f, ¢, and
their first derivatives are bounded and Lipschitz continuous. Also,

> (Regularity) Vc(xk)" has full row rank with singular values bounded
below by a positive constant

> (Convexity) u” H(xk, Ak )u > pl|ul|® for 1 > 0 for all u € R" satisfying
u#0and Ve(x) u=0
Theorem

(Han (1977)) The sequence {(xx, \«)} yields the limit

k“m H {Vf(xk) + VC(Xk))\k

c(xk) }

An Inexact Newton Method for Optimization
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Experiments

Incorporating inexactness

Conclusion

> [terative as opposed to direct methods
» Compute

|:V f(Xk) + VC(Xk))\k

c(xk) } [ekk]

satisfying

Ry e
H [Vf(xk) + Vc(xk))\k]

0
[ ] (%) ’, k€ (0,1)

» If k is not sufficiently small (e.g., 1073 vs 10_12) then dx may be an
ascent direction for our merit function; i.e

Doi(di; mx) >0 for all mx > mh—1
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Model reductions

Conclusion

» Define the model of ¢(x; 7):

m(d; ) £ f(x) + VF(x)"d +7([[e(x) + Ve(x)"d]])
» dj is acceptable if

Am(dy; k) 2 m(0; k) — m(dk; k)

= —VF0a) di+ mi(llcCadll = le(xe) + Ve(xe) dil)) > 0
» This ensures D¢ (dk; mx) < 0 (and more)
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Experiments
Termination test 1

Conclusion
The search direction (dx, dx) is acceptable if

‘ m ‘ . HW(Xk)wC(xk)Ak

C(Xk) :|
and if for mx = m¢—1 and some o € (0,1) we have

‘, k€ (0,1)

Am(di; me) > max{ 5 di Hxi, M), 0} + ome max{ || (), [l = lle(x)ll}

> 0 for any d

X
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Experiments
Termination test 2

Conclusion
The search direction (dk, dx) is acceptable if

lloxll < BlleGe)ll,  5>0
and [ndl < efle(xe)ll;

e€(0,1)

Increasing the penalty parameter 7 then yields

Am(di; mi) > max{1dy H(xi, A\e)dk, 0} + oml|c(x)]|

An Inexact Newton Method for Optimization
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Conclusion

(Byrd, Curtis, Nocedal (2008))
for k =0,1,2,...

Algorithm 1: Inexact Newton for optimization

> |teratively solve

{H(xk, k)

Ve(xk)]| [dk _ V(xk) + Ve(xk)Ak
VC(Xk)T 0 (51( - C(Xk)
until termination test 1 or 2 is satisfied
» If only termination test 2 is satisfied, increase 7 so

{ VF(xe) " di + max{2d] H(xx, Ae)dk, 0}
Tk > Max< Tk_1,

(T =7)UeGall = [Irell) }
» Backtrack from ay < 1 to satisfy

d(xk + audi; k) < d(xi; Th) — naxkAm(di; i)

» Update iterate (Xk+1, )\k+1) — (Xk7 )\k) + ak(dk,ék)
o
An Inexact Newton Method for Optimization
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Motivation Algorithms and Theory

Experiments

Convergence of Algorithm 1

Conclusion

Assumption

The sequence {(xx, Ak)} is contained in a convex set Q2 over which f, ¢, and
their first derivatives are bounded and Lipschitz continuous. Also

» (Regularity) Ve(xk)" has full row rank with singular values bounded
below by a positive constant

> (Convexity) u” H(xi, \)u > pl|ul|® for > 0 for all u € R" satisfying
u#0and Ve(x) u=0
Theorem

(Byrd, Curtis, Nocedal (2008)) The sequence {(xx, Ax)} yields the limit

k“m H |:Vf Xk) + VC(Xk))\k

c(xk) }
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Conclusion
Handling nonconvexity and rank deficiency

» There are two assumptions we aim to drop:
» (Regularity) Vc(xx)T has full row rank with singular values
bounded below by a positive constant
> (Convexity) u™ H(xi, \c)u > pul|ul|? for n > 0 for all u € R”
satisfying u # 0 and Vc(xx)Tu =0
e.g., the problem is not regular if it is infeasible, and it is not convex if
there are maximizers and/or saddle points
» Without them, Algorithm 1 may stall or may not be well-defined

An Inexact Newton Method for Optimization
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Conclusion

No factorizations means no clue

» We might not store or factor

0

ey T

so we might not know if the problem is nonconvex or ill-conditioned
» Common practice is to perturb the matrix to be

|:H(Xk,)\k)-|—§1l VC(Xk):|
Velx)T —&l
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» Poor choices of £ and & can have terrible consequences in the algorithm
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Experiments

Conclusion

Our approach for global convergence

» Decompose the direction dj into a normal component (toward the

V,

constraints) and a tangential component (toward optimality)
k

» Without convexity, we do not guarantee a minimizer, but our merit
:

function biases the method to avoid maximizers and saddle points
An Inexact Newton Method for Optimization
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Experiments

Conclusion

Normal component computation

> (Approximately) solve
min 3 c(x) + Ve(x) v
st v S wll(Velx)) ()l
for some w > 0
» We only require Cauchy decrease:
lleCGadll = lle(a) + Ve(x) vl
> eu([le(x)ll = le(xk) + aVe(xe) )
for e, € (0,1), where 7 = —(Vc(xk))c(xk) is the
direction of steepest descent
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Experiments

Conclusion
Tangential component computation (idea #1)

» Standard practice is to then (approximately) solve

min (V£ (xi) + H(xe, Mde)vie) w4+ Su” H(xw, M)
sit. VeOu) u=0, |u| < Ak

» However, maintaining

Ve(x) u~0 and

[[ull < Ak
can be expensive

[=] = = = o
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Conclusion

Tangential component computation

» Instead, we formulate the primal-dual system
H(xi, M) Ve(xk)] [uk
Ve(x)" 0 [
__ [Vf(xk) + VC(Xk))\k + H(Xk7 )\k)vk

k
0
» Our ideas from before apply!
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Handling nonconvexity

Conclusion

» Convexify the Hessian as in

H(xi, M) + &1 Ve(xx)
Velx)" 0
by monitoring iterates

» Hessian modification strategy: Increase {1 whenever

luel? > llvil®, ¥ >0
2ul (H(a, M) + &l < 0],

0>0
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Experiments

Inexact Newton Algorithm 2

Conclusion
(Curtis, Nocedal, Wachter (2009))
for k=0,1,2,...

»  Approximately solve

min 1

slle(x) + Ve Tvl?

st v S wll(Ve(xi)) el
to compute v satisfy Cauchy decrease
» Iteratively solve

|:H(Xk»)\k) + &l Velx)
Velx)

dk _ Vf(Xk) + VC(Xk))\k
0 o —VC(Xk)TVk
until termination test 1 or 2 is satisfied, increasing &; as described
» If only termination test 2 is satisfied, increase 7 so
{ V() T dic + max{ Lu] (H(xic, M) + &), 0] ui |2}
Tk > Max § Tg—1,
P> Backtrack from ay < 1 to satisfy

(T =) lleGi)ll = lle(xic) + Velxi) T dill)

d(xic + cucdic; mi) < d(xs i) — o Am(dy; i)

> Update iterate (xii1, Aet1) — (o M) +anl(des ) -
:
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Convergence of Algorithm 2

Assumption
The sequence {(xx, Ak)} is contained in a convex set Q2 over which f, c, and
their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Nocedal, Wichter (2009)) If all limit points of {Vc(xx)"} have full
row rank, then the sequence {(xx, A«)} yields the limit

o [

-o

k—o0

Otherwise,
Jim [(Ve(x))c(x0)]) =0
and if {m} is bounded, then

lim V£ () + Te(x)A] = 0

] = =

2a¢
:
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Handling inequalities

Conclusion

» Interior point methods are attractive for large applications
» Line-search interior point methods that enforce

c(x) + Velu) de =0
may fail to converge globally (Wa&chter, Biegler (2000))

» Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!
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Conclusion

Algorithm 2 (Interior-point version)

»  Apply Algorithm 2 to the logarithmic-barrier subproblem

q
min f(x) — ,u.z Ins',
i=1

sit. cg(x) =0, cz(x) —s=0
for u — 0
» Define

H(xk, Ae ks Az k) 0 Veg(xw) Vez(x)| [ df

0 wl 0 —Sk d;

VCg(Xk)T 0 0 0 657/(

VCI(Xk)T —Sk 0 0 5I,k

so that the iterate update has
Xk+1 Xk d;:
[5k+1] - Lk} ek {Skdi
:

» Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in
the algorithm to maintain s > max{0, cz(x)}
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:

Convergence of Algorithm 2 (Interior-point)

Assumption

The sequence {(x«, Ae .k, Az ,k)} is contained in a convex set 0 over which f,
ce, ¢z, and their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Schenk, Waichter (2009))

» For a given u, Algorithm 2 yields the same limits as in the equality
constrained case

» If Algorithm 2 yields a sufficiently accurate solution to the barrier
subproblem for each {y;} — 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point X of {x;}, then there exist
Lagrange multipliers X such that the first-order optimality conditions of
the nonlinear program are satisfied

o
o)
I

i
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Experimental results
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Implementation details

Conclusion

» Incorporated in IPOPT software package (Waichter)
> Linear systems solved with PARDISO (Schenk)

» Symmetric quasi-minimum residual method (Freund (1994))
» PDE-constrained model problems

> 3D grid Q = [0,1] x [0,1] x [0, 1]

» Equidistant Cartesian grid with N grid points
» 7-point stencil for discretization
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Boundary control problem

min % Jo(y(x) = y(x))?dx, /] yt(x) = 34+ 10x1(x1 — 1)x2(x2 — 1) sin(27x3)
st. — V- (™. Vy(x)) =20, inQ
y(x) = u(x), on 99, // u(x) defined on 9Q

2.5 < u(x) <3.5, ondQ

N n P q # nnz f* | # iter | CPU sec
20 8000 5832 4336 95561 | 1.3368e-2 12 33.4
30 27000 21952 | 10096 339871 | 1.3039e-2 12 139.4
40 64000 54872 | 18256 827181 | 1.2924e-2 12 406.0
50 | 125000 | 110592 | 28816 | 1641491 | 1.2871e-2 12 935.6
60 | 216000 | 195112 | 41776 | 2866801 | 1.2843e-2 13 1987.2
(direct) 40 64000 54872 | 18256 827181 | 1.2924e-2 10 3196.3
o = = E E 9ace
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Hyperthermia Treatment Planning

min 3 fo(y(x) — ()2, 1v={ 5 e
uj = ajei¢f
sit. — Ay(x) —10(y(x) —37) = v*M(x)u, inQ // M (x) =< Ej(x), Ex(x) >
E; = sin(jxixox3)
37.0 < y(x) < 37.5, on 90

42.0 < y(x) < 44.0, in Qyo, // Qo = [3/8, 5/8]3
N n p q # nnz f* | # iter | CPU sec
10 1020 512 1070 20701 | 2.3037 40 15.0
20 8020 5832 4626 212411 | 2.3619 62 564.7
30 | 27020 | 21952 | 10822 779121 | 2.3843 146 4716.5
40 | 64020 | 54872 | 20958 | 1924831 | 2.6460 83 9579.7
(direct) 30 | 27020 | 21952 | 10822 779121 | 2.3719 91 10952.4
o = = E E 9ace
| An Inexact Newton Method for Optimization Frank E. Curtis |
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Sample solution for N = 40
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Experiments

Numerical experiments (currently underway)

Joint with Andreas Wichter (IBM) and Olaf Schenk (U. of Basel)

> Hyperthermia treatment planning with real patient geometry (with
Matthias Christen, U. of Basel)

> Image registration (with Stefan Heldmann, U. of Liibeck)

An Inexact Newton Method for Optimization
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Conclusion

» Inexact Newton method for optimization with theoretical foundation

» Convergence guarantees are as good as exact methods, sometimes better

» Numerical experiments are promising so far, and more to come
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