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ML applications 
l  Computer vision 
l  Machine translation 
l  Speech recognition 
l  Text categorization  
l  Recommender systems 
l  Ranking web search results 
l  Next word prediction 
l  Video content classification 
l  Anomaly detection 
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Popular applications of deep 
learning models 
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Data on Google scale today 
l  ImageNet Large Scale Visual Recognition 

Competition: 1.2 million 224x224 images  
l  300 hours of video are uploaded to YouTube 

every minute! 819,417,600 hours of video 
total > 93,000 years.  

l  Google’s big initiative is: next billion users.  
l  Next word prediction in texts.  
l  Machine translation 
l  Image classification and recognition 
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LEARNING PROBLEM, SETUP 
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Supervised learning problem 
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For example, x is the image of a letter and y is the letter label.  
                              What should p(w,x) be? 



Binary classification problem 
Y2{-1,+1} 

+ 
- 

Two sets of 
labeled points 
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+ 
- 

Like this: 

Linear classifier 
y2 {-1,+1} 
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Binary Classification Objective 
Expected risk: ideal objective  

Usually an intractable problem 
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Binary Classification Objective 
Expected risk: ideal objective  

Empirical risk: realizable objective  

Finite, but NP hard problem 
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Handling outliers, logistic regression 

+ 
- 
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Logistic Regression Model 
Expected loss: ideal objective  

Empirical loss: realizable objective  

This is a convex function when p(w,x) is linear in w   
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Linear classifier, generalization 

+ 
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Learning guarantees 
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Problem is well defined, even if it may be difficult to solve 
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How does          behave on the unseen data?   
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is a measure of complexity of the class of predictors   
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How do          and          relate?  
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is a measure of complexity of the class of predictors   



Learning guarantees via Vapnik-
Chervonenkis (VC)-dimension  
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•  VC(p(·,·) - VC dimension of a set of classifiers  – is the maximum  
number of points x such that any labeling can be separated by 
a classifier from this set.  
 



Vapnik-Chervonenkis (VC)-
dimension, example 
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Learning guarantees via Vapnik-
Chervonenkis (VC)-dimension  
   

 
   

•  VC(p(·,·) - VC dimension of a set of classifiers  – is the maximum  
number of points x such that any labeling can be separated by 
a classifier from this set.  
 

•  VC(linear classifiers) = m+1 

•  Conclusion: large dimension of w require large data sets.  
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OPTIMIZATION METHODS FOR 
LOGISTIC REGRESSION 
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Gradient descent with line search 
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Gradient descent with line search 
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Convergence rate O(log(1/²)) (strongly convex case) 



Stochastic Gradient Descent 
Choose a subset of {1, �, n}, Sk, uniformly at random 
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Stochastic Gradient Descent 
Choose a subset of {1, �, n}, Sk, uniformly at random 

Work per-iteration is O(sm)<<O(nm), but convergence sensitive to ´k and s  
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Convergence rate O(1/²) (strongly convex case) 
 



Stochastic Gradient Descent with Momentum 
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Work per-iteration is O(sm), less sensitive to ´ but no convergence theory   



Stochastic Variance Reducing Gradient 
method 
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Outer Loop 

Inner Loop 

[Johnson & Zhang, 2013] 
 



SARAH (momentum version of SVRG) 
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Outer Loop 

Inner Loop 

 [Nguyen, Liu, S & Takac, 2017] 



 
Regular SG vs. Momentum SG 

7/18/17 FOCM 2017, Bacelona 



Convergence rates comparisons 
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For strongly 
convex functions, 
· is the condition  
number 

For convex functions 



What’s so good about stochastic gradient method?  
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Strongly convex case 

Bousquet and Bottou ’08 



What’s so good about stochastic gradient method?  
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Convex case 



Is stochastic gradient the best 
we can do? And what about 
nonconvex problems...? 
 
To be continued by Frank Curtis 
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What is a neural network?

I A computer brain (artificial intelligence!)
I A computational graph

I
. . . defined using neuroscience jargon (e.g., node ⌘ neuron)

I A function! . . . defined by some parameters
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What is a neural network?

I A computer brain (artificial intelligence!)
I A computational graph
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https://www.extremetech.com/extreme/151696-ibm-on-track-to-building-artificial-synapses
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What is a neural network?

I A computer brain (artificial intelligence!)
I A computational graph

I
. . . defined using neuroscience jargon (e.g., node ⌘ neuron)

I A function! . . . defined by some parameters

x
(input)

(deep) neural network
with parameters w

p(w, x)
(output)
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Learning

Neural networks do not learn on their own.

I In supervised learning, we train them by giving them inputs. . .

I . . . and use optimization to better match their outputs to known outputs.

I (After, we hope they give the right outputs when they are unknown!)

We optimize the parameters ⌘ weights ⌘ decision variables.

Optimization Methods for Supervised Machine Learning, Part II 5 of 29
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Feed forward network, fully connected
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Training

As before, we have an optimization problem of the form

min
w2W

E[`(p(w, x), y)]

or, with training data, of the form

min
w2W

1

n

nX

i=1

`(p(w, xi), yi)

where
p(w, x) = s

3
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Example: Image classification

Humans can easily determine digits/letters from arrangements of pixels

. . . for the most part.

(I’m told there’s a number there!)

Bottou et al., Optimization Methods for Large-Scale Machine Learning, SIAM Review (to appear)
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Example: Image classification

Humans can easily determine digits/letters from arrangements of pixels

. . . for the most part.

(I’m told there’s a number there!)

https://colormax.org/color-blind-test/
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Convolutional neural networks

A modern tool for image classification is a convolutional neural network (CNN)

I These work by trying to capture spatial relationships between input values

I For example, in the example below, a filter is applied—to compute the sum of
elementwise products—to look for a diagonal pattern

1 0 9 2

2 8 0 8

9 1 7 0

1 8 0 2

1 0 9 2

2 8 0 8

9 1 7 0

1 8 0 2

9 0 17

3 15 0

17 1 9

1 0

0 1

I Here, the data is a matrix, but these can be translated to vector operations.
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Anjelica Huston (not Houston!)

A random filter simply blurs the data, which doesn’t help

(There are plenty of Python tools for playing around like this.)

https://www.filmcomment.com/article/interview-anjelica-huston
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Anjelica Huston (not Houston!)

. . . but certain filters can reveal edges and other features

(There are plenty of Python tools for playing around like this.)

https://www.filmcomment.com/article/interview-anjelica-huston
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Large-scale network

A full large-scale network involves various other components/tools:

I rectification, normalization, pooling, regularization, etc.

This network involves over 60 million parameters. Need good algorithms!

Bottou et al., Optimization Methods for Large-Scale Machine Learning, SIAM Review (to appear)
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Recurrent neural networks

These try to capture temporal relationships between input values.

x
1

(input 1)
(deep) neural network
with parameters w

x
2

(input 2)
(deep) neural network
with parameters w

x
3

(input 3)
(deep) neural network
with parameters w

p
1

(output 1)

p
2

(output 2)

p
3

(output 3)

I Video classification, speech recognition, text classification, etc.
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Back propagation

How do we optimize?

I Same as always!

I Compute derivatives, but how?

I Back propagation, i.e., automatic di↵erentiation

I Then we need an optimization algorithm in which to use them.

Main challenges:

I “Full gradient” involves loop over all data, which is expensive

I . . . so consider stochastic methods, as previously mentioned.

I However, these problems are large-scale and nonconvex.
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Global minima, local minima, saddle points, etc.

x

f(x)

strict

local

minimum

local

minima

strict

global

minimum

I These textbook illustrations might be misleading.

I The “landscape” of the objective function defined by a deep neural network is
something of great interest these days.

https://upload.wikimedia.org/wikipedia/commons/4/40/Saddle point.png
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How to optimize?

It is not clear where a gradient-based method might converge.

I However, (stochastic) gradient-based methods seem to work well!

I They provably avoid saddle points with high probability.

I . . . and often converge to “good” stationary points.

Open questions:

I How to characterize the behavior of di↵erent methods?

I How to characterize the generalization properties of solutions?

I What algorithms are the most e↵ective at finding points with good
generalization properties?

We will not answer these; instead, we’ll simply describe/motivate some methods.
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First- versus second-order

First-order methods follow a steepest descent methodology:

wk+1

 wk � ↵krf(wk)

Second-order methods follow Newton’s methodology:

wk+1

 wk � ↵k[r2f(wk)]
�1rf(wk),

which one should view as minimizing a quadratic model of f at wk:

f(wk) +rf(wk)
T (w � wk) +

1

2

(w � wk)
Tr2f(wk)(w � wk)

Might also replace the Hessian with an approximation Hk with inverse Mk
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First- versus quasi-second-order

First-order methods follow a steepest descent methodology:

wk+1

 wk � ↵krf(wk)

Second-order methods follow Newton’s methodology:

wk+1

 wk � ↵kMkrf(wk),

which one should view as minimizing a quadratic model of f at wk:

f(wk) +rf(wk)
T (w � wk) +

1

2

(w � wk)
THk(w � wk)

Might also replace the Hessian with an approximation Hk with inverse Mk
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Why second-order?

Second-order methods are expensive!

I Yes, but judicious use of second-order information can help

I . . . and the resulting methods can be made nearly as cheap as SG.

Overall, there are various ways to improve upon SG. . .

Optimization Methods for Supervised Machine Learning, Part II 19 of 29
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What can be improved?

stochastic
gradient

better
rate

better
constant

better rate and
better constant
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Two-dimensional schematic of methods

stochastic
gradient

batch
gradient

stochastic
Newton

batch
Newton

noise reduction
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co
nd
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2D schematic: Noise reduction methods

stochastic
gradient

batch
gradient

stochastic
Newton

noise reduction

dynamic sampling

gradient aggregation

iterate averaging
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2D schematic: Second-order methods

stochastic
gradient

batch
gradient

stochastic
Newton

se
co
nd
-o
rd
er

diagonal scaling

natural gradient

Gauss-Newton

quasi-Newton

Hessian-free Newton
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So, why second-order?

Traditional motivation: fast local convergence guarantees

I Hard to achieve in large-scale stochastic settings

Recent motivation (last few years): better complexity properties

I Many are no better than first-order methods in terms of complexity

I . . . and ones with better complexity aren’t necessarily best in practice (yet)

Other reasons?

I Adaptive, natural scaling (gradient descent ⇡ 1/L while Newton ⇡ 1)

I Mitigate e↵ects of ill-conditioning

I Easier to tune parameters(?)

I Better at avoiding saddle points(?)

I Better trade-o↵ in parallel and distributed computing settings

I New algorithms! Not analyzing the same old
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Framework #1: Matrix-free (Gauss-)Newton

Compute each step by applying an iterative method to solve

Hksk = �gk

potentially with regularization, within a trust region, etc.

This can be computationally e�cient since

I Hk can be defined by a subsample of data.

I Matrix-vector products can be computed without forming the matrix

I . . . using similar principles as in back propagation.

I The linear system need not be solved exactly.

Optimization Methods for Supervised Machine Learning, Part II 25 of 29



Deep Neural Networks Nonconvex Optimization Second-Order Methods Thanks

Quasi-Newton (deterministic setting)

Only approximate second-order information with gradient displacements:

x

xkxk+1

Secant equation Hkyk = sk to match gradient of f at wk, where

sk := wk+1

� wk and yk := rf(wk+1

)�rf(wk)
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Framework #2: Quasi-Newton

How can this idea be adapted to the stochastic setting?

I Idea #1: Replace yk by displacement using the same sample, i.e.,

rSk
f(wk+1

)�rSk
f(wk).

(This doubles the number of stochastic gradients, but maybe worthwhile?)

I Idea #2: Replace yk by action on a (subsampled) Hessian, i.e.,

r2

SH
k
f(wk+1

)sk

(This requires matrix-vector products with a Hessian.)

I . . . other ideas?

Optimization Methods for Supervised Machine Learning, Part II 27 of 29



Deep Neural Networks Nonconvex Optimization Second-Order Methods Thanks

Outline

Deep Neural Networks

Nonconvex Optimization

Second-Order Methods

Thanks

Optimization Methods for Supervised Machine Learning, Part II 28 of 29



Deep Neural Networks Nonconvex Optimization Second-Order Methods Thanks

OptML @ Lehigh

Please visit the OptML @ Lehigh website!

I http://optml.lehigh.edu
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