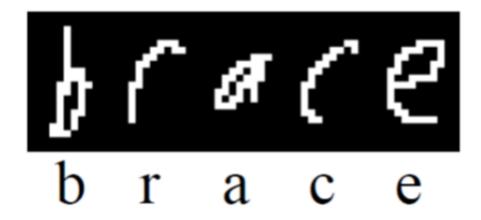
Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning. Part I

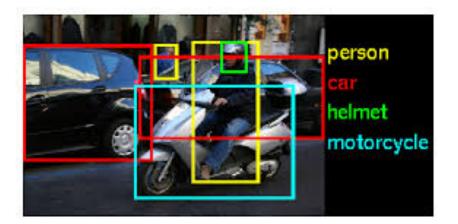
Katya Scheinberg jointly with Frank Curtis

ML applications

- Computer vision
- Machine translation
- Speech recognition
- Text categorization
- Recommender systems
- Ranking web search results
- Next word prediction
- Video content classification
- Anomaly detection

Popular applications of deep learning models





Data on Google scale today

- ImageNet Large Scale Visual Recognition Competition: 1.2 million 224x224 images
- 300 hours of video are uploaded to YouTube every minute! 819,417,600 hours of video total > 93,000 years.
- Google's big initiative is: next billion users.
 - Next word prediction in texts.
 - Machine translation
 - Image classification and recognition

LEARNING PROBLEM, SETUP

Supervised learning problem

• Given a sample data set S of n (input, label) pairs, written

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}.$$

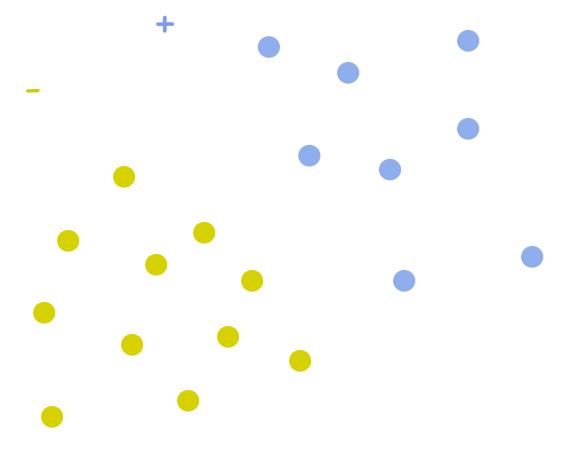
- each pair is an observation of the random variables (x, y) with some unknown distribution P(x, y) over \mathcal{X}, \mathcal{Y} .
- each pair (x_i, y_i) is an independent sample
- Find a hypothesis (predictor) $p(w,\cdot)$ such that $p(w,x)\approx y$, i.e.,

$$\max_{w} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}[p(w, x) \approx y] dP(x, y).$$

For example, x is the image of a letter and y is the letter label. What should p(w,x) be?

Binary classification problem

Two sets of labeled points



10/23/17

Informs Tutorial

Linear classifier

$$\bar{w}^{\top}x + w_0 = 0$$

$$\bar{w}^{\mathsf{T}}x + w_0 = 0$$
$$(\bar{w}, w_0) \in \mathbf{R}^{m+1},$$

Like this:

$$p(w,x_i)=ar{w}^ op x_i+w_0$$

$$\forall i \in \{1..n\}$$

Binary Classification Objective

Expected risk: ideal objective

$$\max_{w} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}[yp(w, x) > 0] dP(x, y).$$

$$\min_{w} f_{01}(w) = \mathbb{E}[\ell_{01}(p(w, x), y)]$$

$$\ell_{01}(p(w, x), y) = \begin{cases} 0 & \text{if } yp(w, x) > 0\\ 1 & \text{if } yp(w, x) \le 0, \end{cases}$$

Usually an intractable problem

Binary Classification Objective

Expected risk: ideal objective

$$\max_{w} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}[yp(w, x) > 0] dP(x, y).$$

$$\min_{w} f_{01}(w) = \mathbb{E}[\ell_{01}(p(w, x), y)]$$

$$\ell_{01}(p(w,x),y) = \begin{cases} 0 & \text{if } yp(w,x) > 0\\ 1 & \text{if } yp(w,x) \le 0, \end{cases}$$

Empirical risk: realizable objective

$$\min_{w} \hat{f}_{01}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell_{01}(p(w, x_i), y_i)$$

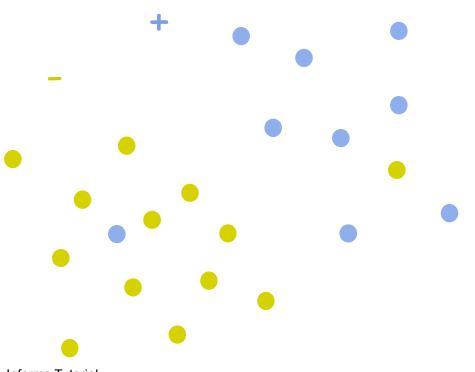
Finite, but NP hard problem

Informs Tutorial

Handling outliers, logistic regression

$$\ln\left(\frac{P(Y=y|x)}{1-P(Y=y|x)}\right) = yp(w,x).$$

$$P(Y = y|x) = \frac{e^{yp(w,x)}}{1 + e^{yp(w,x)}} = \frac{1}{1 + e^{-yp(w,x)}}.$$
 (1)



10/23/17

Informs Tutorial

Logistic Regression Model

Expected loss: ideal objective

$$\min_{w} f(w) = \int_{\mathcal{X} \times \mathcal{Y}} \ell(p(w, x), y) dP(x, y) = \mathbb{E}[\ell(p(w, x), y)], \qquad (1)$$

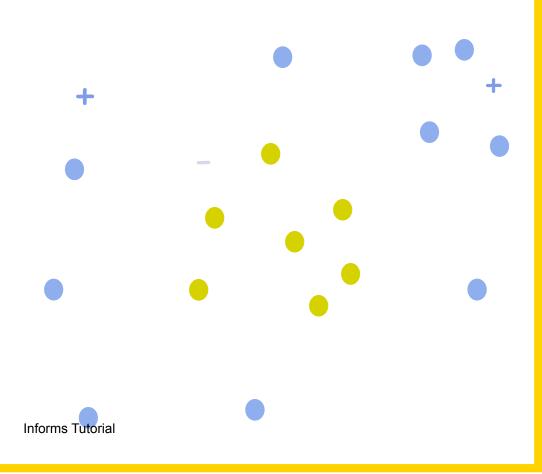
$$\ell(p(w, x), y) = \log(1 + e^{-yp(w, x)}).$$

Empirical loss: realizable objective

$$\min_{w} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-yp(w,x)})$$

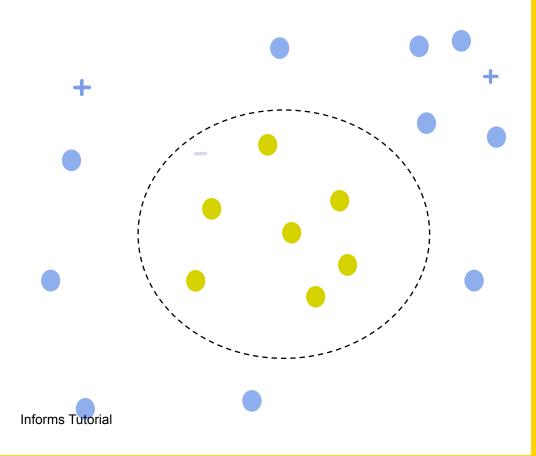
This is a convex function when p(w,x) is linear in w

Linear classifier, generalization



10/23/17

Linear classifier, generalization

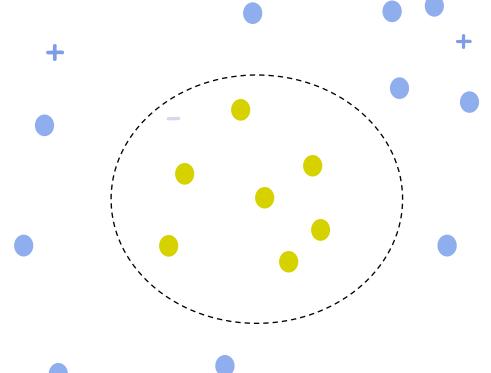


10/23/17

Linear classifier, generalization

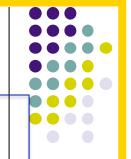
$$w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1x_2 + w_5x_2^2 + w_0$$

$$\bar{\boldsymbol{w}}^{\top} \phi(\boldsymbol{x}) + \boldsymbol{w}_0, \ \phi(\boldsymbol{x}) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2) \in \mathbf{R}^5$$



10/23/17

Informs Tutorial



$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

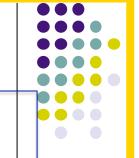
Problem is well defined, even if it may be difficult to solve

$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

Problem is well defined, even if it may be difficult to solve.

However, we are really interested in

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$



$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

Problem is well defined, even if it may be difficult to solve.

However, we are really interested in

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

How does \hat{w}_{opt} behave on the unseen data?

$$|\mathbb{E}[\ell(p(w_{opt}, x), y)] - \frac{1}{n} \sum_{i=1}^{n} \ell(p(w_{opt}, x_i), y_i)| \le O\left(\sqrt{\frac{\mathcal{C}(p(\cdot, \cdot))}{n}}\right)$$

 $\mathcal{C}(p(\cdot,\cdot))$ is a measure of complexity of the class of predictors

$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

Problem is well defined, even if it may be difficult to solve.

However, we are really interested in

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

How does \hat{w}_{opt} behave on the unseen data?

$$|\mathbb{E}[\ell_{01}(p(w_{opt}, x), y)] - \frac{1}{n} \sum_{i=1}^{n} \ell_{01}(p(w_{opt}, x_i), y_i)| \le O\left(\sqrt{\frac{\mathcal{C}(p(\cdot, \cdot))}{n}}\right)$$

 $\mathcal{C}(p(\cdot,\cdot))$ is a measure of complexity of the class of predictors

$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

Problem is well defined, even if it may be difficult to solve.

However, we are really interested in

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

How do \hat{w}_{opt} and w_{opt} relate?

$$|\mathbb{E}[\ell(p(\mathbf{w_{opt}}, x), y] - \mathbb{E}[\ell(p(\hat{\mathbf{w}_{opt}}, x), y)]| \le O\left(\sqrt{\frac{\mathcal{C}(p(\cdot, \cdot))}{n}}\right)$$

 $\mathcal{C}(p(\cdot,\cdot))$ is a measure of complexity of the class of predictors

$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

Problem is well defined, even if it may be difficult to solve.

However, we are really interested in

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

How do \hat{w}_{opt} and w_{opt} relate?

$$|\mathbb{E}[\ell_{01}(p(\mathbf{w_{opt}}, x), y] - \mathbb{E}[\ell_{01}(p(\hat{\mathbf{w}_{opt}}, x), y)]| \le O\left(\sqrt{\frac{\mathcal{C}(p(\cdot, \cdot))}{n}}\right)$$

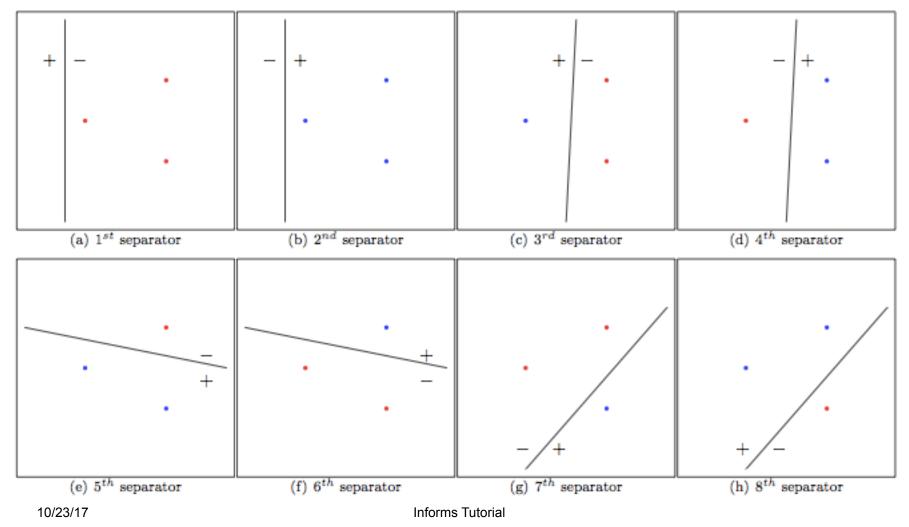
 $\mathcal{C}(p(\cdot,\cdot))$ is a measure of complexity of the class of predictors

Learning guarantees via Vapnik-Chervonenkis (VC)-dimension

$$|\mathbb{E}[\ell_{01}(p(w,x),y] - \sum_{i=1}^{n} \ell_{01}(p(w,x_i),y_i)| \le O\left(\sqrt{\frac{VC(p(\cdot,\cdot))}{n}}\right)$$

• $VC(p(\cdot,\cdot))$ - VC dimension of a set of classifiers — is the maximum number of points x such that any labeling can be separated by a classifier from this set.

Vapnik-Chervonenkis (VC)-dimension, example



Learning guarantees via Vapnik-Chervonenkis (VC)-dimension

$$|\mathbb{E}[\ell_{01}(p(w,x),y] - \sum_{i=1}^{n} \ell_{01}(p(w,x_i),y_i)| \le O\left(\sqrt{\frac{VC(p(\cdot,\cdot))}{n}}\right)$$

- $VC(p(\cdot,\cdot))$ VC dimension of a set of classifiers is the maximum number of points x such that any labeling can be separated by a classifier from this set.
- VC(linear classifiers) = m+1
- Conclusion: large dimension of w require large data sets.

OPTIMIZATION METHODS FOR LOGISTIC REGRESSION

Gradient descent with line search

$$\min_{w \in \mathbf{R}^m} F(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$\nabla F(w_k) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w) \tag{1}$$

Algorithm 1 Gradient descent with line search

Parameters: the intial step size α_0 , backtracking parameter $\gamma \in (0,1)$.

Initialize: w_0

Iterate:

for k = 1, 2, ... do

for j = 0, 1, 2, ... do

$$w_{k+1} = w_k - \gamma^j \alpha_0 \nabla F(w_k)$$

Compute $F(w_k)$, if it satisfies sufficient decrease condition, then **Break** end for

end for

10/23/17

Informs Tutorial

Gradient descent with line search

$$\min_{w \in \mathbf{R}^m} F(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$\nabla F(w_k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) \tag{1}$$

Convergence rate $O(log(1/\epsilon))$ (strongly convex case)

Algorithm 1 Gradient descent with line search

Parameters: the intial step size α_0 , backtracking parameter $\gamma \in (0,1)$.

Initialize: w_0

Iterate:

for k = 1, 2, ... do for j = 0, 1, 2, ... do $w_{k+1} = w_k - \gamma^j \alpha_0 \nabla F(w_k)$

Compute $F(w_k)$, if it satisfies sufficient decrease condition, then **Break** end for

end for

10/23/17

Informs Tutorial

Stochastic Gradient Descent

Choose a subset of $\{1, \dots, n\}$, S_{k_i} uniformly at random

$$\nabla_{S_k} F(w_k) = \frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(x)$$

$$\mathbb{E}[\nabla_{S_k} F(w_k)] = \nabla F(w_k)$$

Parameters: the step size sequence $\eta_k > 0$ and the minibatch size s

Initialize: w_0

for k = 1, 2, ... do

Generate S_k , $|S_k| = s$, uniformly from $\{1, \ldots, n\}$

$$w_{k+1} = w_k - \eta_k \nabla_{S_k} F(w_k)$$

end for

Stochastic Gradient Descent

Choose a subset of $\{1, \dots, n\}$, S_k uniformly at random

$$\nabla_{S_k} F(w_k) = \frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(x)$$

$$\mathbb{E}[\nabla_{S_k} F(w_k)] = \nabla F(w_k)$$

Parameters: the step size sequence $\eta_k > 0$ and the minibatch size s

Initialize: w_0

for k = 1, 2, ... do

Generate S_k , $|S_k| = s$, uniformly from $\{1, \ldots, n\}$

$$w_{k+1} = w_k - \eta_k \nabla_{S_k} F(w_k)$$

end for

Convergence rate $O(1/\epsilon)$ (strongly convex case)

Work per-iteration is O(sm)<<O(nm), but convergence sensitive to η_k and s

Stochastic Gradient Descent with Momentum


```
Parameters: learning rate \eta > 0; momentum weight \theta \in (0,1); mini-batch size s \in \mathbb{N}
Initialize: w_0 \in R^n; v_0 = 0 \in R^n
for k = 1, 2, \ldots do
Generate S_k with |S_k| = s uniformly from \{1, \ldots, n\}
Set v_k \leftarrow \theta v_{k-1} + \nabla_{S_k} F(w_k)
Set w_{k+1} \leftarrow w_k - \eta v_k
end for
```

Work per-iteration is O(sm), less sensitive to η but no convergence theory

Stochastic Variance Reducing Gradient method


```
Parameters: learning rate \eta > 0; mini-batch size s \in \mathbb{N}; inner loop size
m \in \mathbb{N}
Initialize: \tilde{w}_0 \in \mathbb{R}^n
for k = 1, 2, ... do .____ Outer Loop.
  Set w_0 \leftarrow \tilde{w}_{k-1}
  Set v_0 \leftarrow \nabla F(w_0)
  Set w_1 \leftarrow w_0 - \eta v_0
  for t = 1, ..., m - 1 do
                                                                          - - - Inner Loop
     Generate S_t with |S_t| = s uniformly from \{1, \ldots, n\}
     Set v_t \leftarrow \nabla_{S_t} F(w_t) - \nabla_{S_t} F(w_0) + v_0
     Set w_{t+1} \leftarrow w_t - \eta v_t
   end for
   Set \tilde{w}_k = w_t with t chosen uniformly from \{0, \ldots, m\}
```

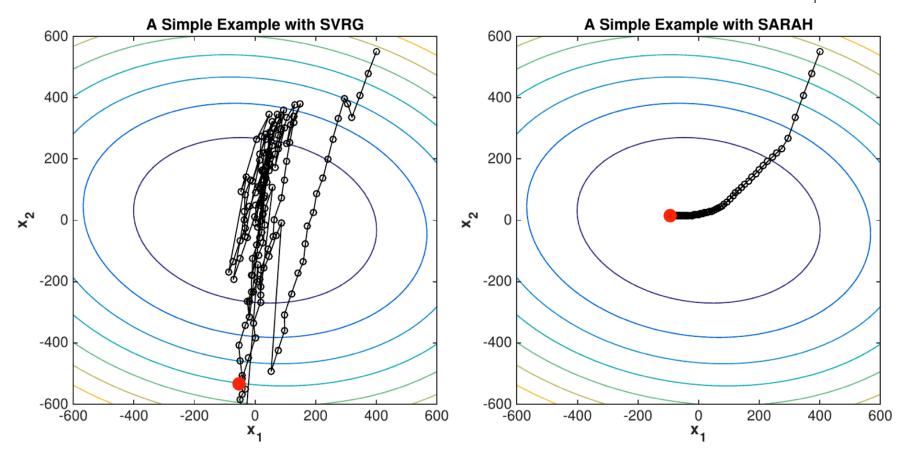
[Johnson & Zhang, 2013]

SARAH (momentum version of SVRG)


```
Parameters: learning rate \eta > 0; mini-batch size s \in \mathbb{N}; inner loop size
m \in \mathbb{N}
Initialize: \tilde{w}_0 \in \mathbb{R}^n
for k = 1, 2, \dots do.______
                                                                                  Outer Loop,
  Set w_0 \leftarrow \tilde{w}_{k-1}
   Set v_0 \leftarrow \nabla F(w_0)
   Set w_1 \leftarrow w_0 - \eta v_0
   for t = 1, ..., m - 1 do
                                                                           - - - Inner Loop
      Generate S_t with |S_t| = s uniformly from \{1, \ldots, n\}
     Set v_t \leftarrow \nabla_{S_t} F(w_t) - \nabla_{S_t} F(w_{t-1}) + v_{t-1}
     Set w_{t+1} \leftarrow w_t - \eta v_t
   end for
   Set \tilde{w}_k = w_t with t chosen uniformly from \{0, \ldots, m\}
```

[Nguyen, Liu, S & Takac, 2017]

Regular SG vs. Momentum SG



Convergence rates comparisons

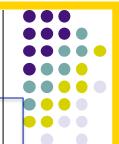
For strongly convex functions, κ is the condition number

	Method	Complexity
•	GD	$\mathcal{O}\left(n\kappa\log\left(1/\epsilon\right)\right)$
•	SGD	$\mathcal{O}\left(1/\epsilon\right)$
•	SVRG	$\mathcal{O}\left((n+\kappa)\log\left(1/\epsilon\right)\right)$
	SARAH	$\mathcal{O}\left((n+\kappa)\log\left(1/\epsilon\right)\right)$

For convex functions

Method	Complexity
GD	$\mathcal{O}\left(n/\epsilon\right)$
SGD	$\mathcal{O}\left(1/\epsilon^2\right)$
SVRG	$\mathcal{O}\left(n + (\sqrt{n}/\epsilon)\right)$
SARAH	$\mathcal{O}\left(\left(n + (1/\epsilon)\right)\log(1/\epsilon)\right)$

What's so good about stochastic gradient method?



$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

$$\hat{w}_{\epsilon}: \hat{f}(w_{\epsilon}) - \hat{f}(\hat{w}_{opt}) \leq \epsilon$$

$$|\hat{f}(\hat{w}_{\epsilon}) - f(w_{opt})| \leq |\hat{f}(\hat{w}_{\epsilon}) - f(\hat{w}_{\epsilon})| + |\hat{f}(\hat{w}_{\epsilon}) - \hat{f}(\hat{w}_{opt})| + |\hat{f}(\hat{w}_{opt}) - f(\hat{w}_{opt})| + |f(\hat{w}_{opt}) - f(w_{opt})|.$$

What's so good about stochastic gradient method?

$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

$$\hat{w}_{\epsilon}: \hat{f}(w_{\epsilon}) - \hat{f}(\hat{w}_{opt}) \leq \epsilon$$

$$|\hat{f}(\hat{w}_{\epsilon}) - f(w_{opt})| \leq O\left(\frac{1}{\sqrt{n}}\right) + \epsilon + O\left(\frac{1}{\sqrt{n}}\right) + O\left(\frac{1}{\sqrt{n}}\right)$$

Bousquet and Bottou '08

What's so good about stochastic gradient method?

$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

$$\hat{w}_{\epsilon}: \hat{f}(w_{\epsilon}) - \hat{f}(\hat{w}_{opt}) \leq \epsilon$$

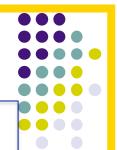
Strongly convex case

$$\epsilon \sim O\left(\frac{1}{\sqrt{n}}\right)$$
 $n \sim O\left(\frac{1}{\epsilon^2}\right)$

Method	Complexity
GD	$\mathcal{O}\left(1/\epsilon^2\kappa\log\left(1/\epsilon\right)\right)$
$\overline{\text{SGD}}$	$\mathcal{O}\left(1/\epsilon ight)$
SVRG	$\mathcal{O}\left(1/\epsilon^2 + \kappa\right)\log\left(1/\epsilon\right)$
SARAH	$\mathcal{O}\left(1/\epsilon^2 + \kappa\right)\log\left(1/\epsilon\right)$

Bousquet and Bottou '08

What's so good about stochastic gradient method?



$$\hat{w}_{opt} = \arg\min_{w \in R^m} \hat{f}(w) = \frac{1}{n} \sum_{i=1}^n \ell(p(w, x_i), y_i)$$

$$w_{opt} = \arg\min_{w} f(w) = \mathbb{E}[\ell(p(w, x), y)]$$

$$\hat{w}_{\epsilon}: \hat{f}(w_{\epsilon}) - \hat{f}(\hat{w}_{opt}) \leq \epsilon$$

Convex case

$$\epsilon \sim O\left(\frac{1}{\sqrt{n}}\right)$$
 $n \sim O\left(\frac{1}{\epsilon^2}\right)$

Method	Complexity
GD	$\mathcal{O}\left(1/\epsilon^3\right)$
$\overline{\text{SGD}}$	$\mathcal{O}\left(1/\epsilon^2\right)$
SVRG	$\mathcal{O}\left(1/\epsilon^2\right)$
SARAH	$\mathcal{O}\left((1/\epsilon^2 + 1/\epsilon)\log(1/\epsilon)\right)$

10/23/17 Informs Tutorial

Is stochastic gradient the best we can do? And what about nonconvex problems...?

To be continued by Frank Curtis

10/23/17 Informs Tutorial

Frank E. Curtis, Lehigh University

joint work with

Katya Scheinberg, Lehigh University

INFORMS Annual Meeting, Houston, TX, USA

23 October 2017

Outline

Deep Neural Networks

Nonconvex Optimization

Second-Order Methods

Thanks

Outline

Deep Neural Networks

What is a neural network?

What is a neural network?

► A computer brain (artificial intelligence!)

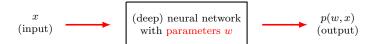
What is a neural network?

- ► A computer brain (artificial intelligence!)
- ► A computational graph
 - ▶ ...defined using neuroscience jargon (e.g., node ≡ neuron)

$$x_1 \bigcirc 0.5$$
 $x_2 \bigcirc 0.5$
 $x_3 = 0.5x_1 + 0.5x_2$

https://www.extremetech.com/extreme/151696-ibm-on-track-to-building-artificial-synapses

- ► A computer brain (artificial intelligence!)
- ► A computational graph
 - L. defined using neuroscience jargon (e.g., node ≡ neuron)
- ▶ A function! ... defined by some parameters

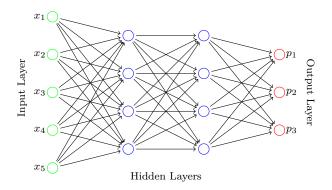


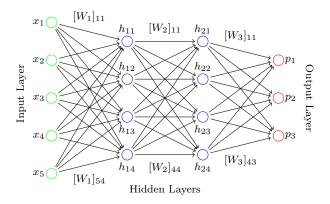
Learning

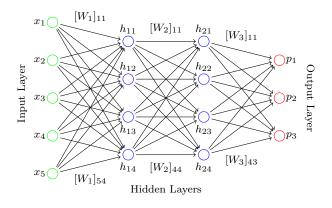
Neural networks do not learn on their own.

- ▶ In supervised learning, we train them by giving them inputs...
- ▶ ... and use optimization to better match their outputs to known outputs.
- (After, we hope they give the right outputs when they are unknown!)

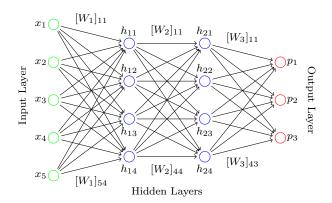
We optimize the parameters \equiv weights \equiv decision variables.







$$h_1 = s_1(W_1x + \omega_1)$$



$$p(\mathbf{w}, \mathbf{x}) = s_3(W_3(s_2(W_2(s_1(W_1\mathbf{x} + \omega_1)) + \omega_2)) + \omega_3)$$

Training

As before, we have an optimization problem of the form

$$\min_{w \in \mathcal{W}} \ \mathbb{E}[\ell(p(\mathbf{w}, \mathbf{x}), y)]$$

or, with training data, of the form

$$\min_{w \in \mathcal{W}} \frac{1}{n} \sum_{i=1}^{n} \ell(p(\mathbf{w}, x_i), y_i)$$

where

$$p(w,x) = s_3(W_3(s_2(W_2(s_1(W_1x + \omega_1)) + \omega_2)) + \omega_3)$$

Example: Image classification

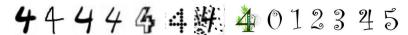
Humans can easily determine digits/letters from arrangements of pixels

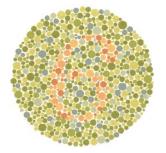
44444444

Bottou et al., Optimization Methods for Large-Scale Machine Learning, SIAM Review (to appear)

Example: Image classification

Humans can easily determine digits/letters from arrangements of pixels





... for the most part.

(I'm told there's a number there!)

https://colormax.org/color-blind-test/

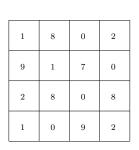
A modern tool for image classification is a convolutional neural network (CNN)

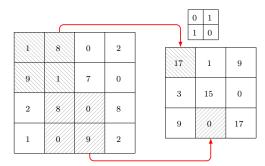
▶ These work by trying to capture spatial relationships between input values

Convolutional neural networks.

A modern tool for image classification is a convolutional neural network (CNN)

- ► These work by trying to capture spatial relationships between input values
- ▶ For example, in the example below, a filter is applied—to compute the sum of elementwise products—to look for a diagonal pattern





Here, the data is a matrix, but these can be translated to vector operations.

A random filter simply blurs the data, which doesn't help

Anjelica Huston (not Houston!)

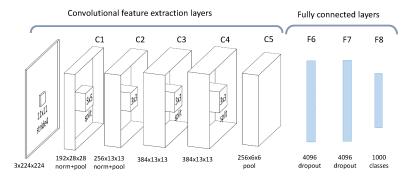
... but certain filters can reveal edges and other features

(There are plenty of Python tools for playing around like this.)

Large-scale network

A full large-scale network involves various other components/tools:

▶ rectification, normalization, pooling, regularization, etc.

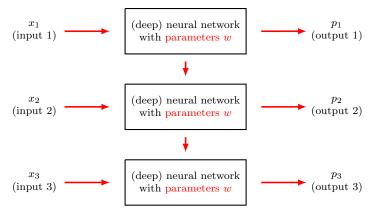


This network involves over 60 million parameters. Need good algorithms!

Bottou et al., Optimization Methods for Large-Scale Machine Learning, SIAM Review (to appear)

Recurrent neural networks

These try to capture temporal relationships between input values.



▶ Video classification, speech recognition, text classification, etc.

Outline

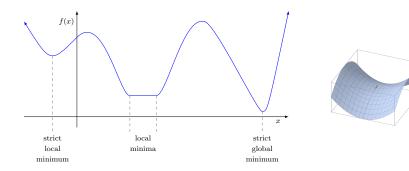
Nonconvex Optimization

How do we optimize?

- ► Same as always!
- ► Compute derivatives, but how?
- ▶ Back propagation, i.e., automatic differentiation
- ▶ Then we need an optimization algorithm in which to use them.

Main challenges:

- ▶ "Full gradient" involves loop over all data, which is expensive
- ... so consider stochastic methods, as previously mentioned.
- ▶ However, these problems are large-scale and nonconvex.



- ▶ These textbook illustrations might be misleading.
- ▶ The "landscape" of the objective function defined by a deep neural network is something of great interest these days.

https://upload.wikimedia.org/wikipedia/commons/4/40/Saddle_point.png

It is not clear where a gradient-based method might converge.

- ▶ However, (stochastic) gradient-based methods seem to work well!
- ▶ They provably avoid saddle points with high probability.
- ▶ ... and often converge to "good" stationary points.

It is not clear where a gradient-based method might converge.

- ▶ However, (stochastic) gradient-based methods seem to work well!
- ▶ They provably avoid saddle points with high probability.
- \blacktriangleright . . . and often converge to "good" stationary points.

Open questions:

- ▶ How to characterize the behavior of different methods?
- ▶ How to characterize the generalization properties of solutions?
- What algorithms are the most effective at finding points with good generalization properties?

We will not answer these; instead, we'll simply describe/motivate some methods.

Outline

Second-Order Methods

First- versus second-order

First-order methods follow a steepest descent methodology:

$$w_{k+1} \leftarrow w_k - \alpha_k \nabla f(w_k)$$

Second-order methods follow Newton's methodology:

$$w_{k+1} \leftarrow w_k - \alpha_k [\nabla^2 f(w_k)]^{-1} \nabla f(w_k),$$

which one should view as minimizing a quadratic model of f at w_k :

$$f(w_k) + \nabla f(w_k)^T (w - w_k) + \frac{1}{2} (w - w_k)^T \nabla^2 f(w_k) (w - w_k)$$

First- versus quasi-second-order

First-order methods follow a steepest descent methodology:

$$w_{k+1} \leftarrow w_k - \alpha_k \nabla f(w_k)$$

Second-order methods follow Newton's methodology:

$$w_{k+1} \leftarrow w_k - \alpha_k M_k \nabla f(w_k),$$

which one should view as minimizing a quadratic model of f at w_k :

$$f(w_k) + \nabla f(w_k)^T (w - w_k) + \frac{1}{2} (w - w_k)^T \frac{H_k}{W} (w - w_k)$$

Might also replace the Hessian with an approximation H_k with inverse M_k

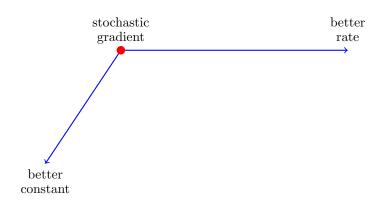
Why second-order?

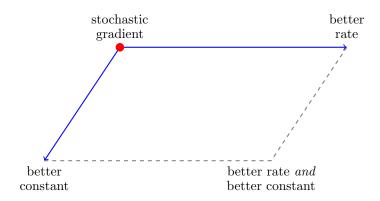
Second-order methods are expensive!

- ▶ Yes, but judicious use of second-order information can help
- ... and the resulting methods can be made nearly as cheap as SG.

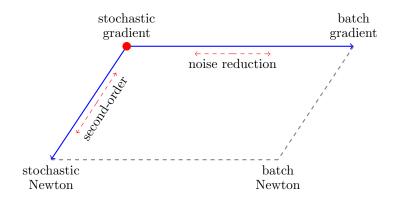
Overall, there are various ways to improve upon SG...

What can be improved?

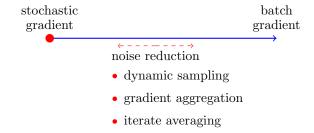




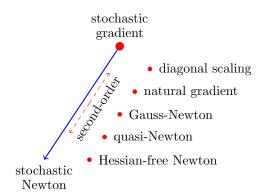
Two-dimensional schematic of methods



2D schematic: Noise reduction methods



2D schematic: Second-order methods



So, why second-order?

Traditional motivation: fast local convergence guarantees

▶ Hard to achieve in large-scale stochastic settings

So, why second-order?

Traditional motivation: fast local convergence guarantees

Hard to achieve in large-scale stochastic settings

Recent motivation (last few years): better complexity properties

- ▶ Many are no better than first-order methods in terms of complexity
- ▶ ... and ones with better complexity aren't necessarily best in practice (yet)

So, why second-order?

Traditional motivation: fast local convergence guarantees

Hard to achieve in large-scale stochastic settings

Recent motivation (last few years): better complexity properties

- ▶ Many are no better than first-order methods in terms of complexity
- ▶ ... and ones with better complexity aren't necessarily best in practice (yet)

Other reasons?

- ▶ Adaptive, natural scaling (gradient descent $\approx 1/L$ while Newton ≈ 1)
- Mitigate effects of ill-conditioning
- ► Easier to tune parameters(?)
- Better at avoiding saddle points(?)
- Better trade-off in parallel and distributed computing settings
- New algorithms! Not analyzing the same old

Framework #1: Matrix-free (Gauss-)Newton

Compute each step by applying an iterative method to solve

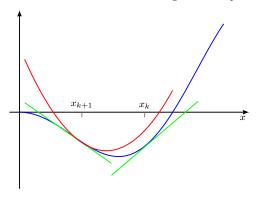
$$H_k s_k = -g_k$$

potentially with regularization, within a trust region, etc.

This can be computationally efficient since

- \blacktriangleright H_k can be defined by a subsample of data.
- Matrix-vector products can be computed without forming the matrix
- ... using similar principles as in back propagation.
- The linear system need not be solved exactly.

Only approximate second-order information with gradient displacements:



Secant equation $H_k y_k = s_k$ to match gradient of f at w_k , where

$$s_k := w_{k+1} - w_k$$
 and $y_k := \nabla f(w_{k+1}) - \nabla f(w_k)$

Framework #2: Quasi-Newton

How can this idea be adapted to the stochastic setting?

▶ Idea #1: Replace y_k by displacement using the same sample, i.e.,

$$\nabla_{\mathcal{S}_k} f(w_{k+1}) - \nabla_{\mathcal{S}_k} f(w_k).$$

(This doubles the number of stochastic gradients, but maybe worthwhile?)

▶ Idea #2: Replace y_k by action on a (subsampled) Hessian, i.e.,

$$\nabla^2_{\mathcal{S}_k^H} f(w_{k+1}) s_k$$

(This requires matrix-vector products with a Hessian.)

▶ ...other ideas?

Outline

Thanks

OptML @ Lehigh

Please visit the OptML @ Lehigh website!

► http://optml.lehigh.edu

