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Our Goal 

 
1.  This is a tutorial about the stochastic gradient (SG) method 

2.  Why has it risen to such prominence? 

3.  What is the main mechanism that drives it? 

4.  What can we say about its behavior in convex and non-
convex cases? 

5.  What ideas have been proposed to improve upon SG? 
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Organization 

 
I.  Motivation for the stochastic gradient (SG) method:   
      Jorge Nocedal 

II.  Analysis of SG:  Leon Bottou 

III. Beyond SG: noise reduction and 2nd -order methods: 
      Frank E. Curtis 
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Reference 

This tutorial is a summary of the paper 
 
 

 “Optimization Methods for Large-Scale Machine Learning’’ 
  

 L. Bottou, F.E. Curtis, J. Nocedal 

 
 

Prepared for SIAM Review 

http://arxiv.org/abs/1606.04838 
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Problem statement 

 
 
 
 
 

 

Given training set {(x1, y1),…(xn , yn )} 
Given a loss function ℓ(h, y) (hinge loss, logistic,...)
Find a prediction function h(x;w) (linear, DNN,...)
 

                   minw
1
n
ℓ

i=1

n

∑ (h(xi;w), yi )

Notation: random variable ξ = (xi , yi )

                   Rn (w) = 1
n

fi (w)
i=1

n

∑            empirical risk

 

The real objective
                   R(w) = E[ f (w;ξ )]           expected risk
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Stochastic Gradient Method 

wk+1 = wk −α k∇fi (wk )          i ∈{1,...,n} choose at random

•  Very cheap iteration; gradient w.r.t. just 1 data point 

•  Stochastic process dependent on the choice of  i 
•  Not a gradient descent method    
•  Robbins-Monro 1951 
•  Descent in expectation 

First present algorithms for empirical risk minimization

                   Rn (w) = 1
n

fi (w)
i=1

n

∑            
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 Batch Optimization Methods 

wk+1 = wk −α k∇Rn (wk ) batch gradient method 

       

Why has SG emerged at the preeminent method? 

wk+1= wk −
α k

n
∇

i=1

n

∑ fi (wk )

•  More expensive step 
•  Can choose among a wide range of optimization algorithms 
•  Opportunities for parallelism 

Understanding: study computational trade-offs between 

stochastic and batch methods, and their ability to minimize  R 
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Intuition 
 
SG employs information more efficiently than batch method 
 
Argument 1:  

Suppose data is 10 copies of a set S 
Iteration of batch method 10 times more expensive 
SG performs same computations 

 
Argument 2: 

 Training set (40%), test set (30%), validation set (30%). 
 Why not 20%, 10%, 1%..? 

 
 



9 

      

Practical Experience 

10 epochs 

Fast initial progress 
of SG followed by 
drastic slowdown 
 
Can we explain this? 
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Example by Bertsekas 

Region of confusion 

Note that this is a geographical argument  

Analysis: given wk  what is the expected decrease in the 
objective function Rn  as we choose one of the quadratics
randomly?

                   Rn (w) = 1
n

fi (w)
i=1

n

∑            
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A fundamental observation 

To ensure convergence α k → 0 in SG method to control variance. 
What can we say when α k =α  is constant?  
                                                   

  
E[Rn (wk+1)− Rn (wk )] ≤ −α k‖∇Rn (wk )‖2

2 + α k
2 E‖∇f (wk ,ξk )‖ 2  

                                                   

Initially, gradient decrease dominates; then variance in gradient hinders 
progress (area of confusion) 

Noise reduction methods in Part 3 directly control the noise given in the last 
term 
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Theoretical Motivation              - strongly convex case 

 

⊙ Batch gradient: linear convergence
                 Rn (wk )− Rn (w

*) ≤O(ρ k ) ρ <1

Per iteration cost proportional to n 

  

⊙ SG has sublinear rate of convergence
           E[Rn (wk )− Rn (w

*)] =O(1 / k)
Per iteration cost and convergence constant independent of n

 

Same convergence rate for generalization error
           E[R(wk )− R(w*)] =O(1 / k)
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Computational complexity 

 Total work to obtain Rn (wk ) ≤ Rn (w
*)+ ε

 Batch gradient method:     n log(1 / ε)  

 Think of ε = 10−3

Which one is better? 
           A discussion of these tradeoffs is next! 

 Stochastic gradient method:   1 / ε

Disclaimer: although much is understood about the SG method 
There are still some great mysteries, e.g.: why is it 
so much better than batch methods on DNNs? 
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End of Part I 
 
       
                           
 
 
 

 
 



Optimization Methods for Machine Learning
Part II – The theory of SG

Leon Bottou
Facebook AI Research

Frank E. Curtis
Lehigh University 

Jorge Nocedal
Northwestern University



Summary

1. Setup
2. Fundamental Lemmas
3. SG for Strongly Convex Objectives
4. SG for General Objectives
5. Work complexity for Large-Scale Learning
6. Comments

2



1- Setup
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The generic SG algorithm

The SG algorithm produces successive iterates !" ∈ $ℝ&
with the goal to minimize a certain function ' ∶ ℝ& → ℝ.

We assume that we have access to three mechanisms
1. Given an iteration number *$,

a mechanism to generate a realization of a random variable +".
The +" form a sequence of jointly independent random variables

2. Given an iterate !" and a realization +", 
a mechanism to compute a stochastic vector , !", +" ∈ ℝ&

3. Given an iteration number,
a mechanism to compute a scalar stepsize ." > 0

4



The generic SG algorithm

Algorithm 4.1 (Stochastic Gradient (SG) Method)
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The generic SG algorithm

The function ' ∶ ℝ& → ℝ could be

The stochastic vector could be

the gradient for one example,

the empirical risk.

the gradient for a minibatch,

possibly rescaled

the expected risk,
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The generic SG algorithm

Stochastic processes

• We assume that the +" are jointly independent to avoid the full 
machinery of stochastic processes.  But everything still holds if the +"
form an adapted stochastic process, where each +" can depend on the 
previous ones.

Active learning

• We can handle more complex setups by view +" as a “random seed”.
For instance, in active learning, ,(!", +") firsts construct a multinomial 
distribution on the training examples in a manner that depends on !", 
then uses the random seed +" to pick one according to that distribution.

The same mathematics cover all these cases.
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2- Fundamental lemmas

8



Smoothness

Smoothness
• Our analysis relies on a smoothness assumption.

We chose this path because it also gives results for the nonconvex case.
We’ll discuss other paths in the commentary section.

Well known consequence

9



Smoothness

• 345 is the expectation with respect to the distribution of +" only.
• 345 '(!"67) is meaningful because !"67 depends on +" (step 6 of SG)

Expected1decrease Noise

10



Smoothness
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Moments
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Moments

• In expectation ,(!", +") is a sufficient descent direction.
• True if 345 ,(!", +") = 9' !" with : = :; = 1.
• True if 345 ,(!", +") = ="9'(!") with bounded spectrum. 
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Moments

• >45 denotes the variance w.r.t. +"
• Variance of the noise must be bounded in a mild manner.
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Moments

• Combining (4.7b) and (4.8) gives

with 
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Moments

• The convergence of SG depends on the balance between these two terms. 

Expected1decrease Noise

16



Moments
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3- SG for Strongly Convex Objectives
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Strong convexity

Known consequence

Why does strong convexity matter?
• It gives the strongest results.
• It often happens in practice  (one regularizes to facilitate optimization!)
• It describes any smooth function near a strong local minimum.
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Total expectation

Different expectations
• 345 is the expectation with respect to the distribution of +" only.
• 3 is the total expectation w.r.t. the joint distribution of all +".

For instance, since !" depends only on +7, +?,… , +"A7,

3 ' !" =$ 34B34C …345DB[' !" ]

Results in expectation 

• We focus on results that characterize the properties of SG in expectation.

• The stochastic approximation literature usually relies on rather complex 
martingale techniques to establish almost sure convergence results. We 
avoid them because they do not give much additional insight.
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SG with fixed stepsize

• Only converges to a neighborhood of the optimal value.
• Both (4.13) and (4.14) describe well the actual behavior.
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SG with fixed stepsize (proof)
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SG with fixed stepsize

Note the interplay between the stepsize.G and the variance bound H.
• If H = 0, one recovers the linear convergence of batch gradient descent.
• If H > 0, one reaches a point where the noise prevents further progress.
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Diminishing the stepsizes

• If we wait long enough, halving the stepsizeα eventually halves ' !" − '∗.
• We can even estimate '∗ ≈ 2'N/? − 'N

k

'
! "

Stepsize α

Stepsize α/2

'∗
=11

24

'N/?



Diminishing the stepsizes faster

• Divide . by 2 whenever 3 ' !" reaches .PH/Q:.
• Time RS between changes : 1 − .Q: TU = 1/3 means RS ∝ 1/..
• Whenever we halve . we must wait twice as long to halve '(!) − '∗.
• Overall convergence rate in X 1 *⁄ .

k

3
'
! "

'∗

α

α/2

α/4

25

Divide . by 2 whenever 3 ' !" − '∗ reaches 2S[\?]^ .



SG with diminishing stepsizes
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SG with diminishing stepsizes

27

Same maximal stepsize

Stepsize decreases in 1/k

Not too slow…

gap ∝ stepsize…otherwise



SG with diminishing stepsizes (proof)
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Mini batching

Using minibatches with stepsize.G :

Using single example with stepsize.G$/$_`a :

29

Computation Noise

1 H
_`a H/_`a

_`a times more iterations that are _`a times cheaper. same



Minibatching

Ignoring implementation issues

• We can match minibatch SG with stepsize.G
using single example SG with stepsize.G$/$_`a .

• We can match single example SG with stepsize .G
using minibatch SG with stepsize .G$×$_`a
provided .G$×$_`a is smaller than the max stepsize.

With implementation issues

• Minibatch implementations use the hardware better.
• Especially on GPU.
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4- SG for General Objectives
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Nonconvex objectives

Nonconvex training objectives are pervasive in deep learning.

Nonconvex landscape in high dimension can be very complex.
• Critical points can be local minima or saddle points.
• Critical points can be first order of high order.
• Critical points can be part of critical manifolds.
• A critical manifold can contain both local minima and saddle points.

We describe meaningful (but weak) guarantees
• Essentially, SG goes to critical points.

The SG noise plays an important role in practice
• It seems to help navigating local minima and saddle points.
• More noise has been found to sometimes help optimization.
• But the theoretical understanding of these facts is weak.
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Nonconvex SG with fixed stepsize
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Nonconvex SG with fixed stepsize

34

Same max stepsize

This goes to zero like 1/K

This does not

If the average norm of the 
gradient is small, then the 

norm of the gradient cannot 
be often large…



Nonconvex SG with fixed stepsize (proof)
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Nonconvex SG with diminishing step sizes
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5- Work complexity for Large-Scale Learning
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Large-Scale Learning

Assume that we are in the large data regime
• Training data is essentially unlimited.
• Computation time is limited.

The good
• More training data � less overfitting
• Less overfitting � richer models.

The bad
• Using more training data or rich models quickly exhausts the time budget.

The hope
• How thoroughly do we need to optimize cd(!)

when we actually want another function c(!) to be small ?
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Expected risk versus training time

• When we vary the number of examples

39
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Expected risk versus training time

• When we vary the number of examples, the model, and the optimizer…
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Expected risk versus training time

• The optimal combination depends on the computing time budget

41
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Formalization

The components of the expected risk

Question
• Given a fixed model ℋ and a time budget f̀ gh, choose _, i…

Approach
• Statistics tell us ℰklm(_) decreases with a rate in range 1/ _� … 1/_.
• For now, let’s work with the fastest rate compatible with statistics
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Batch versus Stochastic

Typical convergence rates
• Batch algorithm:
• Stochastic algorithm:

Rate analysis

43

Processing more 
training examples beats 

optimizing more 
thoroughly.

This effect only grows 
if ℰklm(_) decreases 

slower than 1/_.  



6- Comments
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Asymptotic performance of SG is fragile

Diminishing stepsizes are tricky
• Theorem 4.7 (strongly convex function) suggests

Constant stepsizes are often used in practice
• Sometimes with a simple halving protocol.

45

SG converges very 
slowly if  o < 7

]^

SG usually diverges 
when . is above ?^[\q



Condition numbers

The ratios 
r
s and 

t
s appear in critical places

• Theorem 4.6.  With$: = 1, Hx = 0, the optimal stepsize is .G = 7
[
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Distributed computing

SG is notoriously hard to parallelize
• Because it updates the parameters !$with high frequency
• Because it slows down with delayed updates.

SG still works with relaxed synchronization
• Because this is just a little bit more noise.

Communication overhead give room for new opportunities
• There is ample time to compute things while communication takes place.
• Opportunity for optimization algorithms with higher per-iteration costs 
➔ SG may not be the best answer for distributed training.
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Smoothness versus Convexity

Analyses of SG that only rely on convexity

• Bounding !" −!∗ ? instead of  ' !" − '∗
and assuming 345 ,(!", +") = ,y !" ∈ z'(!")
gives a result similar to Lemma 4.4.

• Ways to bound the expected decrease

• Proof does not easily support second order methods.
48

Expected decrease Noise
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SG Noise Reduction Methods Second-Order Methods Other Methods

What have we learned about SG?

Assumption hL/ci

The objective function F : Rd ! R is

I c-strongly convex () unique minimizer) and

I L-smooth (i.e., rF is Lipschitz continuous with constant L).

Theorem SG (sublinear convergence)

Under Assumption hL/ci and E⇠k [kg(wk, ⇠k)k22] M +O(krF (wk)k22),

wk+1  wk � ↵kg(wk, ⇠k)

yields

↵k =
1

L
=) E[F (wk)� F⇤]! M

2c
;

↵k = O
✓

1

k

◆

=) E[F (wk)� F⇤] = O
✓

(L/c)(M/c)

k

◆

.

(*Let’s assume unbiased gradient estimates; see paper for more generality.)

Beyond SG: Noise Reduction and Second-Order Methods 3 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Illustration

Figure: SG run with a fixed stepsize (left) vs. diminishing stepsizes (right)

Beyond SG: Noise Reduction and Second-Order Methods 4 of 38
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What can be improved?

stochastic
gradient

better
rate

better
constant

better rate and
better constant

Beyond SG: Noise Reduction and Second-Order Methods 5 of 38
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SG Noise Reduction Methods Second-Order Methods Other Methods

Two-dimensional schematic of methods

stochastic
gradient

batch
gradient

stochastic
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batch
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noise reduction
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Beyond SG: Noise Reduction and Second-Order Methods 6 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Nonconvex objectives

Despite loss of convergence rate, motivation for nonconvex problems as well:

I Convex results describe behavior near strong local minimizer

I Batch gradient methods are unlikely to get trapped near saddle points
I Second-order information can

I
avoid negative e↵ects of nonlinearity and ill-conditioning

I require mini-batching (noise reduction) to be e�cient

Conclusion: explore entire plane, not just one axis

Beyond SG: Noise Reduction and Second-Order Methods 7 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Outline

SG

Noise Reduction Methods

Second-Order Methods

Other Methods

Beyond SG: Noise Reduction and Second-Order Methods 8 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Two-dimensional schematic of methods
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2D schematic: Noise reduction methods

stochastic
gradient

batch
gradient

stochastic
Newton

noise reduction

dynamic sampling

gradient aggregation

iterate averaging

Beyond SG: Noise Reduction and Second-Order Methods 10 of 38
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Ideal: Linear convergence of a batch gradient method

wk w

F (wk)

F (wk) + rF (wk)T (w � wk) + 1
2
Lkw � wkk22

F (wk) + rF (wk)T (w � wk) + 1
2
ckw � wkk22

F (w)? F (w)?

Choosing ↵ = 1/L to minimize upper bound yields

(F (wk+1)� F⇤)  (F (wk)� F⇤)� 1
2LkrF (wk)k22

while lower bound yields
1
2krF (wk)k22 � c(F (wk)� F⇤),

which together imply that

(F (wk+1)� F⇤)  (1� c
L
)(F (wk)� F⇤).

Beyond SG: Noise Reduction and Second-Order Methods 11 of 38
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Illustration

Figure: SG run with a fixed stepsize (left) vs. batch gradient with fixed stepsize (right)

Beyond SG: Noise Reduction and Second-Order Methods 12 of 38
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Idea #1: Dynamic sampling

We have seen

I fast initial improvement by SG

I long-term linear rate achieved by batch gradient

=) accumulate increasingly accurate gradient information during optimization.

But at what rate?

I too slow: won’t achieve linear convergence

I too fast: loss of optimal work complexity

Beyond SG: Noise Reduction and Second-Order Methods 13 of 38
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Geometric decrease

Correct balance achieved by decreasing noise at a geometric rate.

Theorem 3

Suppose Assumption hL/ci holds and that

V⇠k [g(wk, ⇠k)] M⇣k�1
for some M � 0 and ⇣ 2 (0, 1).

Then, the SG method with a fixed stepsize ↵ = 1/L yields

E[F (wk)� F⇤]  !⇢k�1,

where

! := max

⇢

M

c
,F (w1)� F⇤

�

and ⇢ := max
n

1� c

2L
, ⇣
o

< 1.

E↵ectively ties rate of noise reduction with convergence rate of optimization.

Beyond SG: Noise Reduction and Second-Order Methods 14 of 38
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Geometric decrease

Proof.

The now familiar inequality

E⇠k [F (wk+1)]� F (wk)  �↵krF (wk)k22 + 1
2↵

2LE⇠k [kg(wk, ⇠k)k22],

strong convexity, and the stepsize choice lead to

E[F (wk+1)� F⇤] 
⇣

1� c

L

⌘

E[F (wk)� F⇤] +
M

2L
⇣k�1.

I Exactly as for batch gradient (in expectation) except for the last term.

I An inductive argument completes the proof.

Beyond SG: Noise Reduction and Second-Order Methods 15 of 38
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Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

gk :=
1

|Sk|
X

i2Sk

rf(wk; ⇠k,i) with |Sk| = d⌧k�1e for ⌧ > 1,

since, for all i 2 Sk,

V⇠k [gk] 
V⇠k [rf(wk; ⇠k,i)]

|Sk|
M(d⌧e)k�1.

But is it too fast? What about work complexity?

same as SG as long as ⌧ 2
⇣

1, (1� c

2L
)�1
i

.

Beyond SG: Noise Reduction and Second-Order Methods 16 of 38
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Illustration

Figure: SG run with a fixed stepsize (left) vs. dynamic SG with fixed stepsize (right)

Beyond SG: Noise Reduction and Second-Order Methods 17 of 38
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Additional considerations

In practice, choosing ⌧ is a challenge.

I What about an adaptive technique?

I Guarantee descent in expectation

I Methods exist, but need geometric sample size increase as backup

Beyond SG: Noise Reduction and Second-Order Methods 18 of 38
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Idea #2: Gradient aggregation

“I’m minimizing a finite sum and am willing to store previous gradient(s).”

F (w) = Rn(w) =
1

n

n
X

i=1

fi(w).

Idea: reuse and/or revise previous gradient information in storage.

I SVRG: store full gradient, correct sequence of steps based on perceived bias

I SAGA: store elements of full gradient, revise as optimization proceeds

Beyond SG: Noise Reduction and Second-Order Methods 19 of 38
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Stochastic variance reduced gradient (SVRG) method

At wk =: wk,1, compute a batch gradient:

rf1(wk) rf2(wk) rf3(wk) rf4(wk) rf5(wk)

| {z }

gk,1  rF (wk)

then step
wk,2  wk,1 � ↵gk,1

Beyond SG: Noise Reduction and Second-Order Methods 20 of 38
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

rf1(wk) rf2(wk) rf3(wk) rf4(wk,2) rf5(wk)

| {z }

gk,2  rF (wk)�rf4(wk) +rf4(wk,2)

then step
wk,3  wk,2 � ↵gk,2
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

rf1(wk) rf2(wk,3) rf3(wk) rf4(wk) rf5(wk)

| {z }

gk,3  rF (wk)�rf2(wk) +rf2(wk,3)

then step
wk,4  wk,3 � ↵gk,3

Beyond SG: Noise Reduction and Second-Order Methods 20 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Stochastic variance reduced gradient (SVRG) method

Each gk,j is an unbiased estimate of rF (wk,j)!

Algorithm SVRG

1: Choose an initial iterate w1 2 Rd, stepsize ↵ > 0, and positive integer m.
2: for k = 1, 2, . . . do

3: Compute the batch gradient rF (wk).
4: Initialize wk,1  wk.
5: for j = 1, . . . ,m do

6: Chose i uniformly from {1, . . . , n}.
7: Set gk,j  rfi(wk,j)� (rfi(wk)�rF (wk)).
8: Set wk,j+1  wk,j � ↵gk,j .
9: end for

10: Option (a): Set wk+1 = w̃m+1

11: Option (b): Set wk+1 = 1
m

Pm
j=1 w̃j+1

12: Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1.
13: end for

Under Assumption hL/ci, options (b) and (c) linearly convergent for certain (↵,m)
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Stochastic average gradient (SAGA) method

At w1, compute a batch gradient:

rf1(w1) rf2(w1) rf3(w1) rf4(w1) rf5(w1)

| {z }

g1  rF (w1)

then step
w2  w1 � ↵g1
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

rf1(w1) rf2(w1) rf3(w1) rf4(w2) rf5(w1)

| {z }

g2  new entry� old entry + average of entries (before replacement)

then step
w3  w2 � ↵g2
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

rf1(w1) rf2(w3) rf3(w1) rf4(w2) rf5(w1)

| {z }

g3  new entry� old entry + average of entries (before replacement)

then step
w4  w3 � ↵g3
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Stochastic average gradient (SAGA) method

Each gk is an unbiased estimate of rF (wk)!

Algorithm SAGA

1: Choose an initial iterate w1 2 Rd and stepsize ↵ > 0.
2: for i = 1, . . . , n do

3: Compute rfi(w1).
4: Store rfi(w[i]) rfi(w1).
5: end for

6: for k = 1, 2, . . . do

7: Choose j uniformly in {1, . . . , n}.
8: Compute rfj(wk).
9: Set gk  rfj(wk)�rfj(w[j]) +

1
n

Pn
i=1rfi(w[i]).

10: Store rfj(w[j]) rfj(wk).
11: Set wk+1  wk � ↵gk.
12: end for

Under Assumption hL/ci, linearly convergent for certain ↵

I storage of gradient vectors reasonable in some applications

I with access to feature vectors, need only store n scalars
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Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

wk+1  wk � ↵kg(wk, ⇠k)

w̃k+1  
1

k + 1

k+1
X

j=1

wj (in practice: running average)

Unfortunately, no better theoretically when ↵k = O(1/k), but

I long steps (say, ↵k = O(1/
p
k)) and averaging

I lead to a better sublinear rate (like a second-order method?)

See also

I mirror descent

I primal-dual averaging
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Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

wk+1  wk � ↵kg(wk, ⇠k)

w̃k+1  
1

k + 1

k+1
X

j=1

wj (in practice: running average)

Figure: SG run with O(1/
p
k) stepsizes (left) vs. sequence of averages (right)
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Two-dimensional schematic of methods
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2D schematic: Second-order methods
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Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

min
w2Rd

F (w) =) wk+1  wk � ↵krF (wk)

min
w̃2Rd

F (Bw̃) =) w̃k+1  w̃k � ↵kBrF (Bw̃k) (for given B � 0)

Scaling latter by B and defining {wk} = {Bw̃k} yields

wk+1  wk � ↵kB
2rF (wk)

I Algorithm is clearly a↵ected by choice of B

I Surely, some choices may be better than others (in general?)
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Newton scaling

Consider the function below and suppose that wk = (0, 3):

wk+1  wk + ↵ksk where r2F (wk)sk = �rF (wk)
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Newton scaling

Batch gradient step �↵krF (wk) ignores curvature of the function:

wk+1  wk + ↵ksk where r2F (wk)sk = �rF (wk)
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Newton scaling

Newton scaling (B = (rF (wk))�1/2): gradient step moves to the minimizer:

wk+1  wk + ↵ksk where r2F (wk)sk = �rF (wk)
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Newton scaling

. . . corresponds to minimizing a quadratic model of F in the original space:

wk+1  wk + ↵ksk where r2F (wk)sk = �rF (wk)
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Deterministic case

What is known about Newton’s method for deterministic optimization?

I local rescaling based on inverse Hessian information

I locally quadratically convergent near a strong minimizer

I global convergence rate better than gradient method (when regularized)

However, it is way too expensive in our case.

I But all is not lost: scaling is viable.

I Wide variety of scaling techniques improve performance.

I Our convergence theory for SG still holds with B-scaling.

I . . . could hope to remove condition number (L/c) from convergence rate!

I Added costs can be minimial when coupled with noise reduction.
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Deterministic case to stochastic case

What is known about Newton’s method for deterministic optimization?

I local rescaling based on inverse Hessian information

I locally quadratically convergent near a strong minimizer

I global convergence rate better than gradient method (when regularized)

However, it is way too expensive in our case.

I But all is not lost: scaling is viable.

I Wide variety of scaling techniques improve performance.

I Our convergence theory for SG still holds with B-scaling.

I . . . could hope to remove condition number (L/c) from convergence rate!

I Added costs can be minimial when coupled with noise reduction.

Beyond SG: Noise Reduction and Second-Order Methods 30 of 38



SG Noise Reduction Methods Second-Order Methods Other Methods

Idea #1: Inexact Hessian-free Newton

Compute Newton-like step

r2fSH
k
(wk)sk = �rfSg

k
(wk)

I mini-batch size for Hessian =: |SH
k | < |Sg

k | := mini-batch size for gradient

I cost for mini-batch gradient: gcost

I use CG and terminate early: maxcg iterations

I in CG, cost for each Hessian-vector product: factor ⇥ gcost

I choose maxcg ⇥ factor ⇡ small constant so total per-iteration cost:

maxcg ⇥ factor ⇥ gcost = O(gcost)

I convergence guarantees for |SH
k | = |Sg

k | = n are well-known
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Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

f(w; ⇠) = 1
2kh(x⇠;w)� y⇠k22

⇡ 1
2kh(x⇠;wk) + Jh(wk; ⇠)(w � wk)� y⇠k22

Leads to Gauss-Newton approximation for second-order terms:

GSH
k
(wk; ⇠

H
k ) =

1

|SH
k |Jh(wk; ⇠k,i)

T Jh(wk; ⇠k,i)

Can be generalized for other (convex) losses:

eGSH
k
(wk; ⇠

H
k ) =

1

|SH
k |Jh(wk; ⇠k,i)

T H`(wk; ⇠k,i)
| {z }

=
@2`

@h2

Jh(wk; ⇠k,i)

I costs similar as for inexact Newton

I . . . but scaling matrices are always positive (semi)definite

I see also natural gradient, invariant to more than just linear transformations
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Idea #3: (Limited memory) quasi-Newton

Only approximate second-order information with gradient displacements:

w

wkwk+1

Secant equation Hkvk = sk to match gradient of F at wk, where

sk := wk+1 � wk and vk := rF (wk+1)�rF (wk)
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Deterministic case

Standard update for inverse Hessian (wk+1  wk � ↵kHkgk) is BFGS:

Hk+1  
 

I � vks
T
k

sTk vk

!T

Hk

 

I � vks
T
k

sTk vk

!

+
sks

T
k

sTk vk

What is known about quasi-Newton methods for deterministic optimization?

I local rescaling based on iterate/gradient displacements

I strongly convex function =) positive definite (p.d.) matrices

I only first-order derivatives, no linear system solves

I locally superlinearly convergent near a strong minimizer

Extended to stochastic case? How?

I Noisy gradient estimates =) challenge to maintain p.d.

I Correlation between gradient and Hessian estimates

I Overwriting updates =) poor scaling that plagues!
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Proposed methods

I gradient displacements using same sample:

vk := rfSk
(wk+1)�rfSk

(wk)

(requires two stochastic gradients per iteration)

I gradient displacement replaced by action on subsampled Hessian:

vk := r2fSH
k
(wk)(wk+1 � wk)

I decouple iteration and Hessian update to amortize added cost

I limited memory approximations (e.g., L-BFGS) with per-iteration cost 4md
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Idea #4: Diagonal scaling

Restrict added costs through only diagonal scaling:

wk+1  wk � ↵kDkgk

Ideas:

I D�1
k ⇡ diag(Hessian (approximation))

I D�1
k ⇡ diag(Gauss-Newton approximation)

I D�1
k ⇡ running average/sum of gradient components

Last approach can be motivated by minimizing regret.
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Plenty of ideas not covered here!

I gradient methods with momentum

I gradient methods with acceleration

I coordinate descent/ascent in the primal/dual

I proximal gradient/Newton for regularized problems

I alternating direction methods

I expectation-maximization

I . . .
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