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Motivation for Matrix-free Techniques

Equality constrained optimization

We consider very large problems of the form

min f(x)

x€ER
sit. c(x) =0
where f : R” — R and ¢ : R” — R" are smooth functions
» First, we describe a matrix-free primal-dual method for nice cases
» Then, we show how we handle (near) rank deficiency

» Assume strict convexity here, but we can handle non-convexity as well
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Motivation for Matrix-free Techniques

First-order optimality

Defining the Lagrangian

L(x,A) 2 f(x)+ AT ¢(x)

we are interested in finding a first-order optimal point; i.e., one satisfying

vo - [0 LA g

where g(x) is the gradient of f(x) and A(x) is the Jacobian of ¢(x)
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Motivation for Matrix-free Techniques

Method of choice: Newton/SQP

A Newton iteration from the point (xk, Ax) has the form

" [ -

where W (xx, Ax) = V,fxll(xk, Ak), which is equivalent to solving the sequential
quadratic programming (SQP) subproblem

min f(x) + g(x) d + 1dT W (xk, A)d

s.t. c(xk) + A(xk)d =0

=] F = = A
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Motivation for Matrix-free Techniques

Algorithm
for k=0,1,2,...
» Evaluate fx, gk, ck, Ak, and Wi
» Solve the primal-dual equations

Wi AZ d _ gk-i-AZ)\k
Ak 0 S| Ck

|

} T, 14T
Jnin, fxk) + 80xk) " d+ 3d" Wixg, A )d

s.t. c(xg) + A(xc)d =0

» Update iterate (Xk, )\k) — (Xk7 )\k) + (dk, (5;()

5 = = £ DA
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Motivation for Matrix-free Techniques

Algorithm, globalized with an exact penalty function
for k=0,1,2,...

» Evaluate 7, gk, ck, Ak, and Wi
» Solve the primal-dual equations

[ A [o] = [ ] | | Bt e e
Ac 0] [0k Ck st c(xi) + Alxe)d = 0

» Set the penalty parameter 7y

» Perform a line search for the merit function
o(x; mi) = F(x) + il e(x)
to find ay € (0, 1] satisfying the Armijo condition

O(xk + ardi; i) < d(xi; ) + naxDP(di; i)

» Update iterate (Xk, )\k) — (Xk7 )\k) + ak(dk, 5k)
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Motivation for Matrix-free Techniques

Example: Data assimilation in weather forecasting

» Goal: up-to-date global weather forecast for the next 7 to 10 days !

> If an entire initial state of the atmosphere (temperatures, pressures, wind
patterns, humidities) were known at a certain point in time, then an
accurate forecast could be obtained by integrating atmospheric model
equations forward in time

» Flow described by Navier-Stokes and further sophistications of
atmospheric physics and dynamics (none of which will be discussed here)

!(Fisher, Nocedal, Trémolet, and Wright, 2007)
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Motivation for Matrix-free Techniques

In reality: Partial information known
Limited amount of data (satellites, buoys, planes, ground-based sensors)

» Each observation is subject to error

» Nonuniformly distributed around the globe (satellite paths,
densely-populated areas)

@ Ballbontondes @ AlCrall @ Land and s SMONE @ AUIDMANG CUYS
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Motivation for Matrix-free Techniques

In reality: Partial information known
Limited amount of data (satellites, buoys, planes, ground-based sensors)

» Each observation is subject to error

» Nonuniformly distributed around the globe (satellite paths,
densely-populated areas)
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Motivation for Matrix-free Techniques

Data assimilation: Defining the unknowns

Currently in operational use at the European Centre for Medium-Range
Weather Forecasts (ECMWF)

> We want values for an initial state, call it x°
0

» For a given x°, we could integrate our atmospheric models forward to

forecast the state of the atmosphere at N time points
X =M, i=1,...,N

(x: state of the atmosphere at time /)

» Observe the atmosphere at these N time points

(y': observed state at time i)

» Let y° (background state) be values at initial time point obtained from
previous forecast — carry over old information

] = =
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Motivation for Matrix-free Techniques

Data assimilation as an optimization problem
Choose x° as the initial state “most likely” to have given the observed data:

. A L0 0 1 1 NNy 2
L nin f(x) 231 =y" xt =yt xY = y")lk
xt — M(x%)

X2 — M(xh)

s.t. ¢(x) = . =0

XN_M(XNfl)

Objective: distance measure between observed and expected behavior
In current forecasts, x° contains approximately 3 x 10® unknowns
constraints are nonconvex (nonlinear operators M)

exact derivative information not available

solutions needed in real-time

vVVvyVvyVvyyy

... bottom line: they cannot use contemporary SQP!

= z 9ac
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Motivation for Matrix-free Techniques

Working with matrices may be impractical

Wy AZ— di _ gk—I—AZ—)\k
Ak 0 5/( - Ck

What if...
> A, AkT, and Wi cannot be computed explicitly?
> A, Al, and Wi cannot be stored?
» the primal-dual matrix cannot be factored?
» an iterative method may be more efficient?
If the products Axp, Al g, and Wiy can be computed, we have answers...

£ DA
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Motivation for Matrix-free Techniques

lterative step computations

From now on, let us assume that we have an iterative procedure for solving the
primal-dual equations, which during each inner iteration yields (dk, dx) solving

Wi Al [de] _ e+ Al Mk i Pk
Ak 0 Ok o Ck Ik
for the residuals (p«, r«)

» How can we be sure that a given inexact step is acceptable?

» How small do the residuals need to be?
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Penalty Function Model Reductions and Handling Rank Deficiency

A naive approach
Algorithm outline: given 0 < x < 1, for k =0,1,2,...
» Evaluate f, gk, ¢k, AZ—)\k
» |teratively solve the primal-dual equations

Wi AL [de] _ _ [gk+ Al 4P

Ak 0 Ok Ck 3
until [|(pi, )l < w8k + Al A )l

» Set the penalty parameter 7y

» Perform a line search to find ax € (0, 1] satisfying
O(xk + cudi; mi) < d(xi; Tk ) + nae DP(di; i)

=] = = E E 9ace
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Penalty Function Model Reductions and Handling Rank Deficiency
:
A naive approach
Algorithm outline: given 0 < x < 1, for k =0,1,2,...
> Evaluate f, gk, ck, Al M
> |teratively solve the primal-dual equations
Wi Al [dk _ gk + Al 1| P
Ak 0 k| Ck Ik
until [|(px, i)l < #l(gk + AL Ak )l
» Set the penalty parameter 7y
» Perform a line search to find ax € (0, 1] satisfying
O(xk + andi; k) < d(xi; i) + nak D(di; i)
N———
>0 Vn?
K 271 22> [ 2710
% Solved | 45% | 80% | 86%
o < = = z 9ace
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Penalty Function Model Reductions and Handling Rank Deficiency
:
Optimization, not nonlinear equations
: T 1T
[Wk A[} [dk] _ [gk + A[Ak] N [pk] min fi+ g d+ 3T Wid
Ak 0 Ok Ck Tk st. ek +Akd =0
Take (dk, 6«) and...
» ... “forget” about it being an inexact Newton step
» ... “forget” about it being an approximate SQP solution

We want a technique for determining if (dk, dx) is acceptable that...
» ... allows for possibly very inexact solutions to Newton's equations

» ... integrates both step computation and step selection to solve the
optimization problem

] = = =
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Penalty Function Model Reductions and Handling Rank Deficiency

Central idea: Sufficient Model Reductions

Modern optimization algorithms work with models.

Take the penalty function
p(x;m) = £(x) + m[c(x)]|
and consider the model
mi(d; ) 2 f + gl d + 7||ci + Aid||
The reduction in my attained by dk is computed easily as
Ami(di; ) = mi(0; ) — mi(dk; )
—&i dic+m(llell = lInell)

and yields
D(dk; 7) < —Amy(dk; )

o 5 = = £ DA
;
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Penalty Function Model Reductions and Handling Rank Deficiency

Main tool: “SMART" Tests

We develop two types of
Sufficient Merit function Approximation Reduction Termination Tests.

Termination Test |: A sufficient model reduction is attained for mx_1 (i.e., the
most recent penalty parameter value):

Amy(di; mi—1) = —gi dic + mi—1 (el — [[rel]) >0

o 5 = = £ DA
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Penalty Function Model Reductions and Handling Rank Deficiency

Main tool: “SMART" Tests

We develop two types of
Sufficient Merit function Approximation Reduction Termination Tests.

Termination Test Il: A sufficient reduction in the constraint model is attained
for some ¢ € (0,1)

Il < ellex]

o 5 = = £ DA
;
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Penalty Function Model Reductions and Handling Rank Deficiency

Step acceptance criteria:

Model Reduction Condition. A step (dk, d) is acceptable if and only if

Amy(di; i) > 2d] Widi + omie max{ | ci|, [l ek + Awdliell — llekl}

for some o € (0,1) and an appropriate m, > 0.

Termination Test I. For some o € (0,1) and 74 = 7x_1 the Model Reduction
Condition is satisfied and for some k € (0,1) we have

]

Termination Test Il. For some € € (0,1) and 3 > 0 we have

Ck

‘<n

|:gk + A;Z—)\k:|

Il <ellell  and ikl < Bllel]
and we set . .
di + 5d; Wid
T > 81 Tk T 5% Tk for 7 € (0,1)
(1 = 7)(llell = llrll)
o < = z 9ace
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Penalty Function Model Reductions and Handling Rank Deficiency

Inexact SQP with SMART Tests?

Algorithm outline: for k =0,1,2...
» Evaluate f, gk, ¢k, Al A

> |teratively solve the primal-dual equations

Wi Al [de] _  [&c+ Al N 4 |
Ak 0 | Ck rk

until Termination Test | or Il holds

» Set the penalty parameter 7y
» Perform a line search to find ax € (0, 1] satisfying

O(xk + ardi; mk) < d(xi; ) — nakAmy(di; Tk)

2R. H. Byrd, F. E. Curtis, and J. Nocedal, “An Inexact SQP Method for Equality Constrained Optimization,”
to appear in SIAM Journal on Optimization. o = = =
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Penalty Function Model Reductions and Handling Rank Deficiency

(Near) Rank-deficient Jacobians

If at any point the Jacobian A of c is ill-conditioned or rank deficient, the
Newton system

e MR
and the SQP subproblem

min £(x) + g(x) d + 3d7 W (x, \)d
s.t. C(Xk) =+ A(Xk)d =0

may not be well-defined or may lead to very long steps (i.e., ||dk|| > 0, ax = 0,
and algorithm may stall)

Even if we could solve the primal-dual equations exactly, the algorithm may fail

] = = =
;
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Penalty Function Model Reductions and Handling Rank Deficiency

Regularizing the constraint model with trust regions

We decompose the step by first considering the trust region subproblem
min 1{lcx + Acv|?
veR?
st v <

Notice that this subproblem fits well within our context of matrix-free
optimization; e.g., apply CG/LSQR with Steihaug-Toint stop tests

o 5 = = £ DA
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Penalty Function Model Reductions and Handling Rank Deficiency

Trust regions

The trust region keeps us in a local
region of the search space:

min 1{lcc + Acv|
vER?

st ||v]] < Q«

CIRY= = =» = 9ac
:
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Penalty Function Model Reductions and Handling Rank Deficiency

Trust regions

Once v is computed, we could consider
computing a step toward optimality
within a larger trust region:

m|n (g« + Wka) u -+ %uTWku u,
st. Aku =0, |ul| <,
but then we may need
Zx st AxZk=0

or to (approximately) project vectors
onto the null space of Ak

£ DA
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Penalty Function Model Reductions and Handling Rank Deficiency

Trust regions only for v!

Instead, we set no trust region for u:

: T 1,T
min (gx + Wivi) ' u+ 5u’ Whu

s.t. Aku=0

which, with dix = vk + uk, has the same %
solutions as

Wi AL [de] _ [—(ex + A Ax)

Ak 0 (Sk Akvk
Notice that this system is consistent
(though perhaps (near) singular)

o 9 = = z 9ac
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Penalty Function Model Reductions and Handling Rank Deficiency

Setting the trust region radius

In fact, we propose a very specific form for the trust region radius:
min 1{ck + Acv|?
veR”?
st vl S wlAf e

for a given constant w > 0

» We incorporate problem information in the right-hand-side (note that a
stationary point for the feasibility measure ||c(x)|| has [|A(x)" ¢(x)|| = 0)

» The radius is set dynamically without a heuristic update

» w should be set to correspond to the reciprocal of the smallest allowable
singular value of Ay

o = = E A

: :
Matrix-free Optimization and Infeasibility Detection New York University

e




Matrix-free Primal-Dual Methods

Infeasibility Detection
0000000000

00000000
000000000080 00000000
00000 00
: :

Penalty Function Model Reductions and Handling Rank Deficiency

Inexact Newton with SMART Tests
Algorithm outline: for k =0,1,2...

» Evaluate f, gk, ¢k, Al A

» Approximately solve (with an iterative method)
min 1{lck + Aev|?
veRn
st |l < Wl A
> |teratively solve the primal-dual equations
Wi AL [de] _ _ [8e+ AN [ox
Ak 0 6k B —Akvk 103

until a termination test is satisfied

» Set the penalty parameter 7y
» Perform a line search to find ax € (0, 1] satisfying

O(xk + awdi; k) < d(xi; T) — nakAmy(di; Tk)
- g

(=]
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Penalty Function Model Reductions and Handling Rank Deficiency

Step acceptance criteria:®

Tangential Component Condition. The component u, must satisfy

lull < @llvell or (g + Wivie) " uie + Ju] Wi <0
Model Reduction Condition. A step (dk, d«) is acceptable if and only if
Amy(dic; m) > 2u] Wiewe + omic([leill — ek + Arviell)

for some o € (0,1) and an appropriate m, > 0.
Termination Test I. For some o € (0,1) and m, = m,_1 the Tangential Component
Condition holds, the Model Reduction Condition is satisfied, and for some x € (0, 1)

It il B by |}
k

Ak vk Ak 1Vk—1
Termination Test Il. For some € € (0,1) and 3 > 0, the Tangential Component
Condition holds and we have

llekll = llek + Axdicll > e(llexll = llek + Axvill)
and ol < B(llexll = llex + Axvill),
and we set > (g di + Fu] Wiew) /(1 = 7)(Ilexll — llek + Axdill)

3F. E. Curtis, J. Nocedal, and A. Wachter, in preparation. = &
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Convergence Results and Numerical Experiments

Main result

Assumptions: The generated sequence {xk, \«} is contained in a convex set
over which f and c and their first derivatives are bounded, and the iterative
linear system solver can solve the primal-dual equations to an arbitrary accuracy

Theorem: If all limit points satisfy the linear independence constraint
qualification (LICQ), then {m} is bounded and

i [# 5]
C|

k— o0 k

Otherwise,
lim ‘A[ckH -0
k—oo

and if {m«} is bounded then

lim Hgk n A[,\kHH —0

2a¢
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Convergence Results and Numerical Experiments

Brief overview of analysis

» The step length (dk, vk, uk) is explicitly or implicitly controlled...

» The reduction in the model of the penalty function satisfies
Ami(di; i) > ([lux]l® + mel| Ac el|)
» In particular

Ami(di; i) > || AL e = | Af || =0

lim
k—o0
» If {m«} remains bounded (guaranteed if LICQ holds), then

g+ Al | =0,

lim ‘
k— oo
and otherwise m — oo

] = = =
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Convergence Results and Numerical Experiments

Implementation details

We use MINRES to solve the primal-dual equations

e+ Al

a SR e
Ac 0] 6] ) [ek+A
—Akvk

and LSQR (algebraically equivalent to CG, but with better numerical
properties) with Steihaug-Toint stop tests to solve the trust region subproblem

mlrl Hlew + Acvl?
st. vl < wlA] all

All experiments performed in Matlab

=] = = E E 9ace
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Convergence Results and Numerical Experiments

Problems with rank-deficiency
Total of 73 problems from the CUTEr collection
» Original and perturbed models have

o C1(X) =0
a(x)=0 and { a(x) — E(x) =0

respectively

» Success rates:

iSQP | TRINS
Original 95% | 100%
Perturbed | 46% | 93%

» A few of the failures of TRINS was due to the Maratos effect, so
second-order correction steps may be beneficial
o 9 = = z 9ac
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Convergence Results and Numerical Experiments

Conclusion

We have...

» ... focused on a particular class of problems to which contemporary
optimization techniques cannot be applied

» .. considered the fundamental question of how to ensure global
convergence via a type of inexact SQP/Newton approach

» ... developed a methodology where inexact solutions are appraised based
on the reductions obtained in linear models of an exact penalty function

» ... extended the algorithm and analysis for cases involving rank deficiency
(and nonconvexity)

o = = = z 9ac
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“Solving” Infeasible Problems

Infeasible Nonlinear Programming

We consider the optimization problems

(OPT) 2 {':'t" Zg; N 0} and (FEAS) 2 {min Zmax{—ci(x),O}}

where f : R” — R and ¢ : R" — R* are smooth functions
\\ -
/ /

o 5 = = £ DA
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“Solving” Infeasible Problems

Infeasible Nonlinear Programming

We consider the optimization problems

min f(x)

(0PT) = sit. c(x) >0

t
and (FEAS) £ { min Zmax{—ci(x),O}
i=1

where f : R” — R and ¢ : R" — R* are smooth functions

o = = E E 9ace
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“Solving” Infeasible Problems

Infeasible Nonlinear Programming

We consider the optimization problems

A | min f(x) A o i
(OPT) = { st c(x) > O} and (FEAS) = {mln gmax{—c (x),O}}

where f : R” — R and ¢ : R” — R* are smooth functions

» We want to solve (OPT) when a feasible point exists (i.e., 3x € R” s.t.
c(x) = 0)

» Otherwise, the algorithm should solve (FEAS) when (OPT) is infeasible

» Many optimization methods focus on the efficient solution of (OPT),
often with guarantees toward solutions of (FEAS) if the problem is
infeasible

» ... however, this latter feature is often treated as an afterthought and the
rate at which the method converges can be exceedingly slow

] = =
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“Solving” Infeasible Problems

Focus on active set methods

» Interior-point methods are known to behave poorly on infeasible problems:

t
min f(x) — /.LZ Ins'
i=1

< true interior is empty
sit. c(x)—s=0,s>0

o 5 = = £ DA
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“Solving” Infeasible Problems

Focus on active set methods

» Interior-point methods are known to behave poorly on infeasible problems:

t
min f(x) — ,uz Ins'
i=1

< true interior is empty

st.c(x)—s=0,s>0

» Active-set methods present another option:
Running SNOPT and KNITRO on NEOS:

Problem SNOPT KNITRO
optprlocl 11 itrs 10 itrs
optprloc2 14 itrs 44 itrs
optprloc3 30 itrs 29 itrs
c-reload-14c | 37 itrs 1000+ itrs
batch 1000+ itrs | 37 itrs
o P = = = 9ac
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“Solving” Infeasible Problems

One option: Feasibility restoration

If the optimization problem (OPT) appears locally infeasible, then switch to an
algorithm that exclusively attempts to solve the feasibility problem (FEAS):*

(OPT) 2 {r:'t" 28 . 0} o (FEAS) 2 { min max{c’(x),O}}

If the algorithm iterates become (near) feasible, return to the optimization
problem

‘e.g., see Fletcher and Leyffer, 1997 o = = =

2a¢
:
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“Solving” Infeasible Problems

A single algorithm for an entire problem family

Our goal is to design a single optimization algorithm designed for the fast
solution of (OPT), or the fast solution of (FEAS) when (OPT) is infeasible,
that does not switch between two separate techniques

. min e’ r
» ) min f(x) N
(OPT) = st c(x) > 0 — (FEAS)=( st.c(x)+r>0
o - r>0

We combine (OPT) and (FEAS) to define
min 2f(x) + e'r
(P)£<{ st c(x)+r>0
r>0
where ™ > 0 is a penalty parameter to be updated dynamically

o = = = z 9ac
:
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“Solving” Infeasible Problems
: :
An ideal run of KNITRO
min x1
s.t. 7x12+x271 >0
— X —Xx—1>0
X1 — x22 >0
—x1+ x22 >0
Iter Objective Feas err 0Opt err [ 1stepl| pi
13 1.061997e-03 1.034e+00 1.000e+00 6.192e-02 1.000e+02
14 -6.689357e-05 1.000e+00 9.097e-01 3.379e-02 1.000e+02
15 -4.474151e-09 1.000e+00 9.999e-01 9.460e-05 1.000e+02
16 -2.001803e-17 1.000e+00 1.000e+00 6.327e-09 1.000e+02
o = = = z 9ac
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' ;
“Solving” Infeasible Problems
' :

A less than ideal run of KNITRO

min x1 + X2

s.t. fxf+x27120
— X —Xx—120
x1—x—-1>0

—x—x—1>0

Iter Objective Feas err Qpt err | 1stepl | pi

13 -5.000000e-07 1.000e+Q0 1.000e+00 0.000e+00 1.000e+06
14 -5.000000e-08 1.000e+00 1.000e+00 3.182e-07 1.000e+07
15 -5.000000e-08 1.000e+00 1.000e+00 0.000e+00 1.000e+07
16 -5.000000e-09 1.000e+00 1.000e+00 3.182e-08 1.000e+08
o = = = z 9ace
: :
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“Solving” Infeasible Problems

Effects compounded in MINLP methods

NLP

x17 &= 1

(infeasible)

?7?7?

A

:
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“Solving” Infeasible Problems

Effects compounded in MINLP methods

"a=/ ¥=1

@/ ® [~

(infeasible)

A
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“Solving” Infeasible Problems

Summary

» There is a need for algorithms that converge quickly, regardless of
whether the problem is feasible or infeasible

» Interior-point methods are known to perform poorly in infeasible cases,
but active set methods seem promising

» Room for improvement in active set methods, too

» Feasibility restoration techniques are an option, but we prefer a smooth
transition between solving (OPT) and solving (FEAS)

» When 7 remains finite, convergence can be fast since, after a point, we
are solving a single problem

» However, we need to analyze the m — oo case as well...
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Handling the Penalty Parameter in a Penalty-SQP Method

Our method for step computation and acceptance

We generate a step via the quadratic subproblem

min qi(d;7) £ LVETd + 2d"Wid + €”s
s.t. ck—l—Vcde—ksZO, s>0

[I>

(@)

where W is an approximation for the Hessian of the Lagrangian of (P), and
we measure progress with the exact penalty function

P(x;m) 2 Lf(x) + Z max{—c’(x),0}

We see later on that this SQP approach has the benefit that it can identify the
correct active set near a “solution” point for 7 sufficiently large

o <5 = = 2a¢
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Handling the Penalty Parameter in a Penalty-SQP Method

A Penalty-SQP algorithm

Step 0. Initialize xo and set € (0,1), 7 € (0,1) and k — 0

Step 1. If x4 solves (OPT) or (FEAS), then stop

Step 2. Compute a value for the penalty parameter, call it 7«

Step 3. Compute di by solving (Q) with 7 « mx

Step 4. Let cy be the first member of the sequence {1,7,72%,...} s.t.

O(xi; i) — S(xic + cuedi; i) > na[i(0; i) — que(di; i )]

Step 5. Update xxt1 < xk + akdk, go to Step 1

=] = = E E 9ace
: :
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Handling the Penalty Parameter in a Penalty-SQP Method

A Penalty-SQP algorithm

Step 0. Initialize xo and set € (0,1), 7 € (0,1) and k — 0

Step 1. If x4 solves (OPT) or (FEAS), then stop

Step 2. Compute a value for the penalty parameter, call it 7«

Step 3. Compute di by solving (Q) with 7 « mx

Step 4. Let cy be the first member of the sequence {1,7,72%,...} s.t.

O(xi; i) — S(xic + cuedi; i) > na[i(0; i) — que(di; i )]

Step 5. Update xxt1 < xk + akdk, go to Step 1

=] = = E E 9ace
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Handling the Penalty Parameter in a Penalty-SQP Method

Strategy for fast convergence

Hitting a moving target:

Xk — Xp — X

where

Xk kth iterate of the algorithm

>

Xr = solution of penalty problem (P)

infeasible stationary point of (OPT), solution of (FEAS)

X

(1>

We aim to show, for some C, C’ > 0,

341 = X[ < X1 — X || + [Ixr — X]]
< Clx — x> + O(1/m)
< Cllx — %I + 0(1/7),

so convergence is quadratic if (1/7) oc ||xk — X||?

= E 9ace
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Handling the Penalty Parameter in a Penalty-SQP Method

Optimality conditions for problem (P)

First-order optimality conditions for

(P) 2 {min Lf(x)+e'r, st c(x)+r>0, rZO} :

LVF(x) =Y NV(x) = 0
i€eT
1-XN—-6'=0, ieT
N((x)+r)=10, ieT
orr=0 ieZ
dx)+r>0, iez
r,A,c > 0

At an infeasible stationary point X we define
A={i:dx)=0}, V={i: &) <0}, S={i:c(®) >0}
as the sets of active, violated, and strictly satisfied constraints - = = 9Hac

: :
Matrix-free Optimization and Infeasibility Detection New York University




Matrix-free Primal-Dual Methods Infeasibility Detection

0000000000 00000000
000000000000 0O000@000
00000 00

Handling the Penalty Parameter in a Penalty-SQP Method

Assumptions
The point (%, 7, X, &) is a first-order optimal solution of (P) at which the
following conditions hold:
» (Regularity) Vc(X)" has full row rank;
> (Strict Complementarity) X' > 0 for all i € A;

» (Second Order Sufficiency) Thg Hessian of theA Lagrangian for problem
(P) with 7 = oo, denoted by W, satisfies d” Wd > 0 for all d # 0 such
that Vc(%)"d =0

The optimality conditions now reduce to: (define p =1/7)

F(x,A4,p) = PVE(x) = 3iea NV (x) = Xy V' (x) _ 0
ca(x)

A4

m

(0,1)

(all other values can be determined uniquely)

o = = E E 9ace
: :
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Handling the Penalty Parameter in a Penalty-SQP Method

Lemma 1: x, — X

For all  sufficiently large the penalty problem (P) has a solution x, with the
same sets of active, violated, and strictly satisfied constraints as X. Moreover,

lxx = %] = O(1/m)

Proof.
We have F(%, A 4,0) = 0. Differentiating F yields:

OF(x, A4,p) _ [W(x,A5,p) —Vea(x)
A(x, A1) Vea(x)" 0 ’
which is nonsingular under our assumptions. The implicit function theorem then
implies that there is an open neighborhood A/ € R containing p = 0 such that

F(x(p), A 4(p),p) =0 forall peN.

Then, since A 4 € (0,1), (x(p), A 4(p), p) satisfies the first-order optimality
conditions for p sufficiently small (7 large) o = = = £l 9ac

:
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Handling the Penalty Parameter in a Penalty-SQP Method

Lemma 1: x, — X
For all  sufficiently large the penalty problem (P) has a solution x, with the
same sets of active, violated, and strictly satisfied constraints as X. Moreover,
%= — % = O(1/m)
Example: (recall p =1/7)

min p ((x1 +1)% 4 (o — 1)2) +n+n
s.t. —X12+X2—1+r1 >0
—100x2 4+ >0
(r,r) >0

o = = E E 9ace
: :
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Handling the Penalty Parameter in a Penalty-SQP Method

Lemma 1: x, — X

For all  sufficiently large the penalty problem (P) has a solution x, with the
same sets of active, violated, and strictly satisfied constraints as X. Moreover,

[ — %] = O(1/m)

Example:

o = = E E 9ace
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Handling the Penalty Parameter in a Penalty-SQP Method

Lemma 1: x, — X

For all  sufficiently large the penalty problem (P) has a solution x, with the
same sets of active, violated, and strictly satisfied constraints as X. Moreover,

[ — %] = O(1/m)

Example:

X0.05 Xoo

=] = = E E 9ace
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Handling the Penalty Parameter in a Penalty-SQP Method

Lemma 2: x, — x, — X
For 7 sufficiently large and for x, sufficiently close to x,, the solution of the
SQP subproblem identifies the same sets of active, violated, and strictly
satisfied constraints as x, (and X). Then, standard Newton analysis for equality
constrained optimization yields for some C > 0:

X1 = el < Clloxic = x|

Proof.
Similar to before, at (x, A 4, p) = (X, A 4,0) the SQP step is the solution
(d,64) = (0,A) to:

W(x, A4, p) —Vcﬁ(x)} { d
VCIi(X) 0 0

A

} _ [pr(X) —2iev Ve'(x)

ca(x)
This matrix is nonsingular and the solution varies continuously with (x, X 4, p)
near (X, S\A, 0), so since A’ € (0,1) for i € A the solution of the SQP
subproblem can be obtained via this linear system (setting d;, = 1 and §¢ = 0)
for (x,A4) near (%, A ;) and p small (7 large) o <@ S
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Handling the Penalty Parameter in a Penalty-SQP Method

Main result

Thus, we find:

[IXk+1 — X|| < [[Xk41 — X=|| + ||x= — X|| (triangle inequality)

Cllxk — x<|* + O(1/7) (Lemmas 1 and 2)

IN

IN

Cllx = %|* + O(1/m),

so convergence is quadratic if (1/7) o< ||xk — &||%; e.g., 1/7 proportional to the
squared optimality error of the problem (FEAS)

o = = E E 9ace
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Conclusion and Future Work

Summary

» We have discussed methods for the fast solution of infeasible optimization
problems

» \We have analyzed a penalty-SQP approach that transitions smoothly
between solving an optimization problem and its feasibility problem
counterpart

» We have shown that the approach can converge quadratically if the
penalty parameter is handled correctly

o 5 = = £ DA
;
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Conclusion and Future Work

Future work

» How can we construct a practical method for updating 7 that satisfies
our condition? e.g., consider the auxiliary problem

min Z s'
s.t. ck—i—Vcde—i—sZO, s>0
and set 7, so that the reduction in linearized feasibility of the SQP

problem is proportional to that achieved by the solution of this problem —
can this do the trick?

» Can we relax our assumptions? For example, for many infeasible
problems, the Hessian of the Lagrangian is not positive definite at X

] = =

2a¢
:
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