Matrix-free Primal-Dual Methods and Infeasibility Detection in Nonlinear Programming

Frank E. Curtis New York University

involving joint work with Richard H. Byrd, Jorge Nocedal, and Andreas Wächter

IBM, 2008

Outline

Matrix-free Primal-Dual Methods for Equality Constrained Optimization

Motivation for Matrix-free Techniques Penalty Function Model Reductions and Handling Rank Deficiency Convergence Results and Numerical Experiments

Infeasibility Detection in Nonlinear Programming

"Solving" Infeasible Problems
Handling the Penalty Parameter in a Penalty-SQP Method
Conclusion and Future Work

Outline

Matrix-free Primal-Dual Methods for Equality Constrained Optimization Motivation for Matrix-free Techniques Penalty Function Model Reductions and Handling Rank Deficiency Convergence Results and Numerical Experiments

Infeasibility Detection in Nonlinear Programming
"Solving" Infeasible Problems
Handling the Penalty Parameter in a Penalty-SQP Method
Conclusion and Future Work

Equality constrained optimization

We consider very large problems of the form

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^t$ are smooth functions

- First, we describe a matrix-free primal-dual method for nice cases
- Then, we show how we handle (near) rank deficiency
- Assume strict convexity here, but we can handle non-convexity as well

First-order optimality

Defining the Lagrangian

$$\mathcal{L}(x,\lambda) \triangleq f(x) + \lambda^T c(x)$$

we are interested in finding a first-order optimal point; i.e., one satisfying

$$\nabla \mathcal{L} = \begin{bmatrix} g(x) + A(x)^T \lambda \\ c(x) \end{bmatrix} = 0$$

where g(x) is the gradient of f(x) and A(x) is the Jacobian of c(x)

Method of choice: Newton/SQP

A Newton iteration from the point (x_k, λ_k) has the form

$$\begin{bmatrix} W(x_k, \lambda_k) & A(x_k)^T \\ A(x_k) & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g(x_k) + A(x_k)^T \lambda_k \\ c(x_k) \end{bmatrix}$$

where $W(x_k, \lambda_k) \approx \nabla_{xx}^2 \mathcal{L}(x_k, \lambda_k)$, which is equivalent to solving the sequential quadratic programming (SQP) subproblem

$$\min_{d \in \mathbb{R}^n} f(x_k) + g(x_k)^T d + \frac{1}{2} d^T W(x_k, \lambda_k) d$$

s.t. $c(x_k) + A(x_k) d = 0$

Algorithm

for
$$k = 0, 1, 2, ...$$

- ightharpoonup Evaluate f_k , g_k , c_k , A_k , and W_k
- ► Solve the *primal-dual* equations

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

$$\min_{d \in \mathbb{R}^n} f(x_k) + g(x_k)^T d + \frac{1}{2} d^T W(x_k, \lambda_k) d$$
s.t. $c(x_k) + A(x_k) d = 0$

Update iterate $(x_k, \lambda_k) \leftarrow (x_k, \lambda_k) + (d_k, \delta_k)$

Algorithm, globalized with an exact penalty function

for k = 0, 1, 2, ...

- ightharpoonup Evaluate f_k , g_k , c_k , A_k , and W_k
- ► Solve the *primal-dual* equations

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

$$\min_{d \in \mathbb{R}^n} f(x_k) + g(x_k)^T d + \frac{1}{2} d^T W(x_k, \lambda_k) d$$
s.t. $c(x_k) + A(x_k) d = 0$

- ▶ Set the penalty parameter π_k
- Perform a line search for the merit function

$$\phi(x;\pi_k) \triangleq f(x) + \pi_k \|c(x)\|$$

to find $\alpha_k \in (0,1]$ satisfying the Armijo condition

$$\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) + \eta \alpha_k D\phi(d_k; \pi_k)$$

▶ Update iterate $(x_k, \lambda_k) \leftarrow (x_k, \lambda_k) + \frac{\alpha_k}{\alpha_k} (d_k, \delta_k)$

Example: Data assimilation in weather forecasting

▶ Goal: up-to-date global weather forecast for the next 7 to 10 days ¹

- ▶ If an entire initial state of the atmosphere (temperatures, pressures, wind patterns, humidities) were known at a certain point in time, then an accurate forecast could be obtained by integrating atmospheric model equations forward in time
- Flow described by Navier-Stokes and further sophistications of atmospheric physics and dynamics (none of which will be discussed here)

In reality: Partial information known

Limited amount of data (satellites, buoys, planes, ground-based sensors)

- Each observation is subject to error
- Nonuniformly distributed around the globe (satellite paths, densely-populated areas)

In reality: Partial information known

Limited amount of data (satellites, buoys, planes, ground-based sensors)

- Each observation is subject to error
- Nonuniformly distributed around the globe (satellite paths, densely-populated areas)

Data assimilation: Defining the unknowns

Currently in operational use at the European Centre for Medium-Range Weather Forecasts (ECMWF)

- \blacktriangleright We want values for an initial state, call it x^0
- For a given x^0 , we could integrate our atmospheric models forward to forecast the state of the atmosphere at N time points

$$x^i = \mathcal{M}(x^{i-1}), \ i = 1, \dots, N$$

 (x^i) : state of the atmosphere at time i)

Observe the atmosphere at these N time points

$$y^1,\ldots,y^N$$

 (y^i) : observed state at time i)

► Let y⁰ (background state) be values at initial time point obtained from previous forecast — carry over old information

Data assimilation as an optimization problem

Choose x^0 as the initial state "most likely" to have given the observed data:

$$\min_{x=(x^{0},...,x^{N})} f(x) \triangleq \frac{1}{2} \| (x^{0} - y^{0}, x^{1} - y^{1},..., x^{N} - y^{N}) \|_{R}^{2}$$

$$\text{s.t. } c(x) = \begin{bmatrix} x^{1} - \mathcal{M}(x^{0}) \\ x^{2} - \mathcal{M}(x^{1}) \\ \vdots \\ x^{N} - \mathcal{M}(x^{N-1}) \end{bmatrix} = 0$$

- Objective: distance measure between observed and expected behavior
- ▶ In current forecasts, x^0 contains approximately 3×10^8 unknowns
- ightharpoonup constraints are nonconvex (nonlinear operators \mathcal{M}^i)
- exact derivative information not available
- solutions needed in real-time
- ... bottom line: they cannot use contemporary SQP!

Working with matrices may be impractical

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

What if...

- $ightharpoonup A_k$, A_k^T , and W_k cannot be computed explicitly?
- $ightharpoonup A_k$, A_k^T , and W_k cannot be stored?
- the primal-dual matrix cannot be factored?
- an iterative method may be more efficient?

If the products $A_k p$, $A_k^T q$, and $W_k y$ can be computed, we have answers...

Iterative step computations

From now on, let us assume that we have an iterative procedure for solving the primal-dual equations, which during each *inner iteration* yields (d_k, δ_k) solving

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

for the residuals (ρ_k, r_k)

- How can we be sure that a given inexact step is acceptable?
- How small do the residuals need to be?

A naïve approach

Algorithm outline: given $0 < \kappa < 1$, for $k = 0, 1, 2, \ldots$

- \blacktriangleright Evaluate f_k , g_k , c_k , $A_k^T \lambda_k$
- Iteratively solve the primal-dual equations

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until
$$\|(\rho_k, r_k)\| \le \kappa \|(g_k + A_k^T \lambda_k, c_k)\|$$

- **Set** the penalty parameter π_k
- ▶ Perform a line search to find $\alpha_k \in (0,1]$ satisfying

$$\phi(\mathbf{x}_k + \alpha_k \mathbf{d}_k; \pi_k) \leq \phi(\mathbf{x}_k; \pi_k) + \eta \alpha_k D\phi(\mathbf{d}_k; \pi_k)$$

A naïve approach

Algorithm outline: given $0 < \kappa < 1$, for $k = 0, 1, 2, \ldots$

- ightharpoonup Evaluate f_k , g_k , c_k , $A_k^T \lambda_k$
- ▶ Iteratively solve the *primal-dual* equations

$$\begin{bmatrix} \begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until
$$\|(\rho_k, r_k)\| \le \kappa \|(g_k + A_k^T \lambda_k, c_k)\|$$

- ▶ Set the penalty parameter π_k
- ▶ Perform a line search to find $\alpha_k \in (0,1]$ satisfying

$$\phi(\mathbf{x}_k + \alpha_k \mathbf{d}_k; \pi_k) \leq \phi(\mathbf{x}_k; \pi_k) + \eta \alpha_k \underbrace{D\phi(\mathbf{d}_k; \pi_k)}_{>0 \ \forall \pi?}$$

κ	2^{-1}	2^{-5}	2^{-10}
% Solved	45%	80%	86%

Optimization, not nonlinear equations

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

$$\min_{d \in \mathbb{R}^n} f_k + g_k^T d + \frac{1}{2} d^T W_k d$$
s.t. $c_k + A_k d = 0$

Take (d_k, δ_k) and...

- ... "forget" about it being an inexact Newton step
- ... "forget" about it being an approximate SQP solution

We want a technique for determining if (d_k, δ_k) is acceptable that...

- ... allows for possibly very inexact solutions to Newton's equations
- ... integrates both step computation and step selection to solve the optimization problem

Central idea: Sufficient Model Reductions

Modern optimization algorithms work with models.

Take the penalty function

$$\phi(x;\pi) \triangleq f(x) + \pi \|c(x)\|$$

and consider the model

$$m_k(d;\pi) \triangleq f_k + g_k^T d + \pi ||c_k + A_k d||$$

The reduction in m_k attained by d_k is computed easily as

$$\Delta m_k(d_k; \pi) \triangleq m_k(0; \pi) - m_k(d_k; \pi)$$

$$= -g_k^T d_k + \pi(\|c_k\| - \|r_k\|)$$

and yields

$$D\phi(d_k;\pi) \leq -\Delta m_k(d_k;\pi)$$

Main tool: "SMART" Tests

We develop two types of \underline{S} ufficient \underline{M} erit function \underline{A} pproximation \underline{R} eduction \underline{T} ermination \underline{T} ests.

Termination Test I: A sufficient model reduction is attained for π_{k-1} (i.e., the most recent penalty parameter value):

$$\Delta m_k(d_k; \pi_{k-1}) = -g_k^T d_k + \pi_{k-1}(\|c_k\| - \|r_k\|) \gg 0$$

Main tool: "SMART" Tests

We develop two types of \underline{S} ufficient \underline{M} erit function \underline{A} pproximation \underline{R} eduction \underline{T} ermination \underline{T} ests.

Termination Test II: A sufficient reduction in the constraint model is attained for some $\epsilon \in (0,1)$

$$||r_k|| \leq \epsilon ||c_k||$$

Step acceptance criteria:

Model Reduction Condition. A step (d_k, δ_k) is acceptable if and only if

$$\Delta m_k(d_k; \pi_k) \ge \frac{1}{2} d_k^T W_k d_k + \sigma \pi_k \max\{\|c_k\|, \|c_k + A_k d_k\| - \|c_k\|\}$$

for some $\sigma \in (0,1)$ and an appropriate $\pi_k > 0$.

<u>Termination Test I.</u> For some $\sigma \in (0,1)$ and $\pi_k = \pi_{k-1}$ the Model Reduction Condition is satisfied and for some $\kappa \in (0,1)$ we have

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \le \kappa \left\| \begin{bmatrix} g_k + A_k^I \lambda_k \\ c_k \end{bmatrix} \right\|$$

<u>Termination Test II</u>. For some $\epsilon \in (0,1)$ and $\beta > 0$ we have

$$||r_k|| \le \epsilon ||c_k||$$
 and $||\rho_k|| \le \beta ||c_k||$

and we set

$$\pi_k \geq rac{g_k^{\, T} d_k + rac12 d_k^{\, T} W_k d_k}{(1- au)(\|c_k\|-\|r_k\|)} \qquad ext{for } au \in (0,1)$$

Inexact SQP with SMART Tests²

Algorithm outline: for $k = 0, 1, 2 \dots$

- ► Evaluate f_k , g_k , c_k , $A_k^T \lambda_k$
- ▶ Iteratively solve the *primal-dual* equations

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until Termination Test I or II holds

- lacksquare Set the penalty parameter π_k
- lacktriangle Perform a line search to find $lpha_k \in (0,1]$ satisfying

$$\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) - \eta \alpha_k \Delta m_k(d_k; \pi_k)$$

to appear in SIAM Journal on Optimization.

²R. H. Byrd, F. E. Curtis, and J. Nocedal, "An Inexact SQP Method for Equality Constrained Optimization,"

(Near) Rank-deficient Jacobians

If at any point the Jacobian ${\it A}$ of ${\it c}$ is ill-conditioned or rank deficient, the Newton system

$$\begin{bmatrix} W(x_k, \lambda_k) & A(x_k)^T \\ A(x_k) & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g(x_k) + A(x_k)^T \lambda_k \\ c(x_k) \end{bmatrix}$$

and the SQP subproblem

$$\min_{d \in \mathbb{R}^n} f(x_k) + g(x_k)^T d + \frac{1}{2} d^T W(x_k, \lambda_k) d$$

s.t. $c(x_k) + A(x_k) d = 0$

may not be well-defined or may lead to very long steps (i.e., $\|d_k\|\gg 0$, $\alpha_k\approx 0$, and algorithm may stall)

Even if we could solve the primal-dual equations exactly, the algorithm may fail

Regularizing the constraint model with trust regions

We decompose the step by first considering the trust region subproblem

$$\min_{v\in\mathbb{R}^n}\ \tfrac{1}{2}\|c_k+A_kv\|^2$$

s.t.
$$\|v\| \leq \Omega_k$$

Notice that this subproblem fits well within our context of matrix-free optimization; e.g., apply $\mathsf{CG}/\mathsf{LSQR}$ with Steihaug-Toint stop tests

Trust regions

The trust region keeps us in a local region of the search space:

$$\min_{\mathbf{v} \in \mathbb{R}^n} \frac{1}{2} \| c_k + A_k \mathbf{v} \|^2$$

s.t. $\| \mathbf{v} \| < \Omega_k$

Trust regions

Once *v* is computed, we could consider computing a step toward optimality within a larger trust region:

$$\min_{u \in \mathbb{R}^n} (g_k + W_k v_k)^T u + \frac{1}{2} u^T W_k u$$

s.t. $A_k u = 0$, $||u|| < \Omega'_k$,

but then we may need

$$Z_{k}$$
 st $A_{k}Z_{k}\approx 0$

or to (approximately) project vectors onto the null space of A_k

Trust regions only for v!

Instead, we set no trust region for u:

$$\min_{u \in \mathbb{R}^n} (g_k + W_k v_k)^T u + \frac{1}{2} u^T W_k u$$
s.t. $A_k u = 0$

which, with $d_k = v_k + u_k$, has the same solutions as

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = \begin{bmatrix} -(g_k + A_k^T \lambda_k) \\ A_k v_k \end{bmatrix}$$

Notice that this system is <u>consistent</u> (though perhaps (near) singular)

Setting the trust region radius

In fact, we propose a very specific form for the trust region radius:

$$\min_{\mathbf{v} \in \mathbb{R}^n} \frac{1}{2} \| c_k + A_k \mathbf{v} \|^2$$

s.t. $\| \mathbf{v} \| \le \omega \| A_k^T c_k \|$

for a given $constant \ \omega > 0$

- ▶ We incorporate problem information in the right-hand-side (note that a stationary point for the feasibility measure ||c(x)|| has $||A(x)|^T c(x)|| = 0$)
- The radius is set dynamically without a heuristic update
- lacktriangle should be set to correspond to the reciprocal of the smallest allowable singular value of A_k

Inexact Newton with SMART Tests

Algorithm outline: for k = 0, 1, 2...

- ightharpoonup Evaluate f_k , g_k , c_k , $A_k^T \lambda_k$
- ► Approximately solve (with an iterative method)

$$\min_{\mathbf{v} \in \mathbb{R}^n} \frac{1}{2} \| c_k + A_k \mathbf{v} \|^2$$

s.t. $\| \mathbf{v} \| < \omega \| A_k^T c_k \|$

Iteratively solve the primal-dual equations

$$\begin{bmatrix} \begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ -A_k v_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

until a termination test is satisfied

- ▶ Set the penalty parameter π_k
- lacktriangle Perform a line search to find $lpha_k \in (0,1]$ satisfying

$$\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) - \eta \alpha_k \Delta m_k(d_k; \pi_k)$$

Step acceptance criteria:³

Tangential Component Condition. The component u_k must satisfy

$$||u_k|| \le \psi ||v_k||$$
 or $(g_k + W_k v_k)^T u_k + \frac{1}{2} u_k^T W_k u_k \le 0$

Model Reduction Condition. A step (d_k, δ_k) is acceptable if and only if

$$\Delta m_k(d_k; \pi_k) \ge \frac{1}{2} u_k^T W_k u_k + \sigma \pi_k(\|c_k\| - \|c_k + A_k v_k\|)$$

for some $\sigma \in (0,1)$ and an appropriate $\pi_k > 0$.

<u>Termination Test I.</u> For some $\sigma \in (0,1)$ and $\pi_k = \pi_{k-1}$ the Tangential Component Condition holds, the Model Reduction Condition is satisfied, and for some $\kappa \in (0,1)$ we have

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \le \kappa \min \left\{ \left\| \begin{bmatrix} g_k + A_k^T \lambda_k \\ A_k v_k \end{bmatrix} \right\|, \left\| \begin{bmatrix} g_{k-1} + A_{k-1}^T \lambda_k \\ A_{k-1} v_{k-1} \end{bmatrix} \right\| \right\}$$

<u>Termination Test II.</u> For some $\epsilon \in (0,1)$ and $\beta > 0$, the Tangential Component Condition holds and we have

$$\begin{split} \|c_k\| - \|c_k + A_k d_k\| &\geq \ \epsilon(\|c_k\| - \|c_k + A_k v_k\|) \\ \text{and} \quad \|\rho_k\| &\leq \ \beta(\|c_k\| - \|c_k + A_k v_k\|), \\ \text{and we set} \quad \pi_k &\geq \ (g_k^T d_k + \frac{1}{2} u_k^T W_k u_k)/((1 - \tau)(\|c_k\| - \|c_k + A_k d_k\|)) \end{split}$$

³F. E. Curtis, J. Nocedal, and A. Wächter, in preparation.

Convergence Results and Numerical Experiments

Main result

Assumptions: The generated sequence $\{x_k, \lambda_k\}$ is contained in a convex set over which f and c and their first derivatives are bounded, and the iterative linear system solver can solve the primal-dual equations to an arbitrary accuracy

<u>Theorem</u>: If all limit points satisfy the linear independence constraint qualification (LICQ), then $\{\pi_k\}$ is bounded and

$$\lim_{k\to\infty}\left\|\begin{bmatrix}g_k+A_k^T\lambda_{k+1}\\c_k\end{bmatrix}\right\|=0$$

Otherwise,

$$\lim_{k\to\infty}\left\|A_k^Tc_k\right\|=0$$

and if $\{\pi_k\}$ is bounded then

$$\lim_{k\to\infty}\left\|g_k+A_k^T\lambda_{k+1}\right\|=0$$

Brief overview of analysis

- ▶ The step length (d_k, v_k, u_k) is explicitly or implicitly controlled...
- ▶ The reduction in the model of the penalty function satisfies

$$\Delta m_k(d_k; \pi_k) \ge \gamma(\|u_k\|^2 + \pi_k \|A_k^T c_k\|^2)$$

In particular

$$\Delta m_k(d_k; \pi_k) \ge \gamma' \|A_k^T c_k\|^2 \Rightarrow \lim_{k \to \infty} \|A_k^T c_k\| = 0$$

▶ If $\{\pi_k\}$ remains bounded (guaranteed if LICQ holds), then

$$\lim_{k\to\infty}\left\|g_k+A_k^T\lambda_{k+1}\right\|=0,$$

and otherwise $\pi \to \infty$

Implementation details

We use MINRES to solve the primal-dual equations

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = \begin{cases} -\begin{bmatrix} g_k + A_k' \lambda_k \\ c_k \\ -\begin{bmatrix} g_k + A_k^T \lambda_k \\ -A_k v_k \end{bmatrix} \end{cases}$$

and LSQR (algebraically equivalent to CG, but with better numerical properties) with Steihaug-Toint stop tests to solve the trust region subproblem

$$\min_{\mathbf{v} \in \mathbb{R}^n} \frac{1}{2} \| c_k + A_k \mathbf{v} \|^2$$

s.t. $\| \mathbf{v} \| \le \omega \| A_k^T c_k \|$

All experiments performed in Matlab

Problems with rank-deficiency

Total of 73 problems from the CUTEr collection

Original and perturbed models have

$$c_1(x) = 0$$
 and $\begin{cases} c_1(x) = 0 \\ c_1(x) - c_1^2(x) = 0 \end{cases}$

respectively

Success rates:

	iSQP	TRINS
Original	95%	100%
Perturbed	46%	93%

 A few of the failures of TRINS was due to the Maratos effect, so second-order correction steps may be beneficial Convergence Results and Numerical Experiments

Conclusion

We have...

- ... focused on a particular class of problems to which contemporary optimization techniques cannot be applied
- ... considered the fundamental question of how to ensure global convergence via a type of inexact SQP/Newton approach
- ... developed a methodology where inexact solutions are appraised based on the reductions obtained in linear models of an exact penalty function
- ... extended the algorithm and analysis for cases involving rank deficiency (and nonconvexity)

Outline

Matrix-free Primal-Dual Methods for Equality Constrained Optimization Motivation for Matrix-free Techniques
Penalty Function Model Reductions and Handling Rank Deficiency Convergence Results and Numerical Experiments

Infeasibility Detection in Nonlinear Programming
"Solving" Infeasible Problems
Handling the Penalty Parameter in a Penalty-SQP Method
Conclusion and Future Work

Infeasible Nonlinear Programming

We consider the optimization problems

$$(OPT) \triangleq \left\{ \begin{array}{l} \min f(x) \\ \text{s.t. } c(x) \ge 0 \end{array} \right\} \quad \text{and} \quad (FEAS) \triangleq \left\{ \min \sum_{i=1}^{t} \max\{-c^{i}(x), 0\} \right\}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^t$ are smooth functions

Infeasible Nonlinear Programming

We consider the optimization problems

$$(OPT) \triangleq \left\{ \begin{array}{l} \min f(x) \\ \text{s.t. } c(x) \ge 0 \end{array} \right\} \quad \text{and} \quad (FEAS) \triangleq \left\{ \min \sum_{i=1}^t \max\{-c^i(x), 0\} \right\}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^t$ are smooth functions

Infeasible Nonlinear Programming

We consider the optimization problems

$$(OPT) \triangleq \left\{ egin{array}{l} \min \ f(x) \\ \mathrm{s.t.} \ c(x) \geq 0 \end{array}
ight\} \quad \mathrm{and} \quad (\mathit{FEAS}) \triangleq \left\{ \min \ \sum_{i=1}^t \max\{-c^i(x), 0\} \right\}$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^t$ are smooth functions

- ▶ We want to solve (*OPT*) when a *feasible* point exists (i.e., $\exists x \in \mathbb{R}^n$ s.t. $c(x) \ge 0$)
- ▶ Otherwise, the algorithm should solve (FEAS) when (OPT) is infeasible
- Many optimization methods focus on the efficient solution of (OPT), often with guarantees toward solutions of (FEAS) if the problem is infeasible
- ... however, this latter feature is often treated as an afterthought and the rate at which the method converges can be exceedingly slow

Focus on active set methods

▶ Interior-point methods are known to behave poorly on infeasible problems:

$$\begin{cases} \min f(x) - \mu \sum_{i=1}^{t} \ln s^{i} \\ \text{s.t. } c(x) - s = 0, \ s > 0 \end{cases} \Leftarrow \text{true interior is empty}$$

Focus on active set methods

▶ Interior-point methods are known to behave poorly on infeasible problems:

$$\left\{ \begin{array}{l} \min f(x) - \mu \sum_{i=1}^{t} \ln s^{i} \\ \text{s.t. } c(x) - s = 0, \ s > 0 \end{array} \right\} \quad \Leftarrow \quad \text{true interior is empty}$$

Active-set methods present another option: Running SNOPT and KNITRO on NEOS:

Problem	SNOPT	KNITRO	
optprloc1	11 itrs	10 itrs	
optprloc2	14 itrs	44 itrs	
optprloc3	30 itrs	29 itrs	
c-reload-14c	37 itrs	1000+ itrs	
batch	1000+ itrs	37 itrs	

One option: Feasibility restoration

If the optimization problem (OPT) appears locally infeasible, then switch to an algorithm that exclusively attempts to solve the feasibility problem (FEAS):⁴

$$(OPT) \triangleq \left\{ egin{array}{ll} \min \ f(x) \\ \mathrm{s.t.} \ c(x) \geq 0 \end{array}
ight\} \quad \leftrightarrow \quad (FEAS) \triangleq \left\{ \min \ \sum_{i=1}^t \max\{-c^i(x), 0\} \right\}$$

If the algorithm iterates become (near) feasible, return to the optimization problem

⁴e.g., see Fletcher and Leyffer, 1997

A single algorithm for an entire problem family

Our goal is to design a *single* optimization algorithm designed for the fast solution of (OPT), or the fast solution of (FEAS) when (OPT) is infeasible, that does not *switch* between two separate techniques

$$(OPT) \triangleq \left\{ egin{array}{ll} \min \ f(x) \\ \mathrm{s.t.} \ c(x) \geq 0 \end{array}
ight\} \quad \leftrightarrow \quad (FEAS) \triangleq \left\{ egin{array}{ll} \min \ e^T r \\ \mathrm{s.t.} \ c(x) + r \geq 0 \\ r \geq 0 \end{array}
ight\}$$

We combine (OPT) and (FEAS) to define

$$(P) \triangleq \left\{ \begin{array}{l} \min \frac{1}{\pi} f(x) + e^{T} r \\ \text{s.t. } c(x) + r \ge 0 \\ r \ge 0 \end{array} \right\}$$

where $\pi > 0$ is a penalty parameter to be updated dynamically

An ideal run of KNITRO

$-x_1 - x_2 - 1 \ge 0$			
$x_1-x_2^2\geq 0$			
	$-x_1+x_2^2\geq 0$		
Iter	Objective	Feas err	
12	1 0610070-03	1 0246+00	

	/	
	,	1
	- 1	1
Opt	err	Step

13	1.061997e-03	1.034e+00	1.000e+00	6.192e-02	1.000e+02
14	-6.689357e-05	1.000e+00	9.097e-01	3.379e-02	1.000e+02
15	-4.474151e-09	1.000e+00	9.999e-01	9.460e-05	1.000e+02
16	-2.001803e-17	1.000e+00	1.000e+00	6.327e-09	1.000e+02

| ロ ト 4 部 ト 4 章 ト 4 章 ト - 章 - 夕 Q (や

рi

A less than ideal run of KNITRO

$$\begin{aligned} & \min x_1 + x_2 \\ & \text{s.t.} \quad -x_1^2 + x_2 - 1 \ge 0 \\ & \quad -x_1^2 - x_2 - 1 \ge 0 \\ & \quad x_1 - x_2^2 - 1 \ge 0 \\ & \quad -x_1 - x_2^2 - 1 \ge 0 \end{aligned}$$

Iter	Objective	Feas err	Opt err	Step	рi
13	-5.000000e-07	1.000e+00	1.000e+00	0.000e+00	1.000e+06
14	-5.000000e-08	1.000e+00	1.000e+00	3.182e-07	1.000e+07
15	-5.000000e-08	1.000e+00	1.000e+00	0.000e+00	1.000e+07
16	-5.000000e-09	1.000e+00	1.000e+00	3.182e-08	1.000e+08

Effects compounded in MINLP methods

Effects compounded in MINLP methods

Summary

- ► There is a need for algorithms that converge quickly, regardless of whether the problem is feasible or infeasible
- Interior-point methods are known to perform poorly in infeasible cases, but active set methods seem promising
- Room for improvement in active set methods, too
- ► Feasibility restoration techniques are an option, but we prefer a smooth transition between solving (*OPT*) and solving (*FEAS*)
- Mhen π remains finite, convergence can be fast since, after a point, we are solving a single problem
- ▶ However, we need to analyze the $\pi \to \infty$ case as well...

Our method for step computation and acceptance

We generate a step via the quadratic subproblem

$$(Q) \triangleq \min_{\mathbf{q}_k(\mathbf{d}; \pi)} \mathbf{q}_k(\mathbf{d}; \pi) \triangleq \frac{1}{\pi} \nabla f_k^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T W_k \mathbf{d} + \mathbf{e}^T \mathbf{s}$$

s.t. $c_k + \nabla c_k^T \mathbf{d} + \mathbf{s} \geq 0, \quad \mathbf{s} \geq 0$

where W_k is an approximation for the Hessian of the Lagrangian of (P), and we measure progress with the exact penalty function

$$\phi(x;\pi) \triangleq \frac{1}{\pi}f(x) + \sum_{i=1}^{t} \max\{-c^{i}(x),0\}$$

We see later on that this SQP approach has the benefit that it can identify the correct *active set* near a "solution" point for π sufficiently large

A Penalty-SQP algorithm

- Step 0. Initialize x_0 and set $\eta \in (0,1)$, $\tau \in (0,1)$ and $k \leftarrow 0$
- Step 1. If x_k solves (OPT) or (FEAS), then stop
- Step 2. Compute a value for the penalty parameter, call it π_k
- Step 3. Compute d_k by solving (Q) with $\pi \leftarrow \pi_k$
- Step 4. Let α_k be the first member of the sequence $\{1, \tau, \tau^2, ...\}$ s.t.

$$\phi(x_k;\pi_k)-\phi(x_k+\alpha_kd_k;\pi_k)\geq \eta\alpha_k[q_k(0;\pi_k)-q_k(d_k;\pi_k)]$$

Step 5. Update $x_{k+1} \leftarrow x_k + \alpha_k d_k$, go to Step 1

A Penalty-SQP algorithm

- Step 0. Initialize x_0 and set $\eta \in (0,1)$, $\tau \in (0,1)$ and $k \leftarrow 0$
- Step 1. If x_k solves (OPT) or (FEAS), then stop
- Step 2. Compute a value for the penalty parameter, call it π_k
- Step 3. Compute d_k by solving (Q) with $\pi \leftarrow \pi_k$
- Step 4. Let α_k be the first member of the sequence $\{1, \tau, \tau^2, ...\}$ s.t.

$$\phi(x_k;\pi_k) - \phi(x_k + \alpha_k d_k;\pi_k) \ge \eta \alpha_k [q_k(0;\pi_k) - q_k(d_k;\pi_k)]$$

Step 5. Update $x_{k+1} \leftarrow x_k + \alpha_k d_k$, go to Step 1

Strategy for fast convergence

Hitting a moving target:

$$x_k \longrightarrow x_\pi \longrightarrow \hat{x}$$

where

 $x_k \triangleq k$ th iterate of the algorithm

 $x_{\pi} \triangleq \text{ solution of penalty problem } (P)$

 $\hat{x} \triangleq \text{ infeasible stationary point of } (OPT), \text{ solution of } (FEAS)$

We aim to show, for some C, C' > 0,

$$||x_{k+1} - \hat{x}|| \le ||x_{k+1} - x_{\pi}|| + ||x_{\pi} - \hat{x}||$$

$$\le C||x_k - x_{\pi}||^2 + O(1/\pi)$$

$$\le C'||x_k - \hat{x}||^2 + O(1/\pi),$$

so convergence is quadratic if $(1/\pi) \propto ||x_k - \hat{x}||^2$

Optimality conditions for problem (P)

First-order optimality conditions for

$$(P) \triangleq \left\{ \min \frac{1}{\pi} f(x) + e^{T} r, \text{ s.t. } c(x) + r \geq 0, r \geq 0 \right\} :$$

$$\left\{ \begin{aligned} \frac{1}{\pi} \nabla f(x) - \sum_{i \in \mathcal{I}} \lambda^{i} \nabla c^{i}(x) &= 0 \\ 1 - \lambda^{i} - \sigma^{i} &= 0, \quad i \in \mathcal{I} \\ \lambda^{i} (c^{i}(x) + r^{i}) &= 0, \quad i \in \mathcal{I} \\ \sigma^{i} r^{i} &= 0, \quad i \in \mathcal{I} \\ c^{i}(x) + r^{i} \geq 0, \quad i \in \mathcal{I} \\ r, \lambda, \sigma \geq 0 \end{aligned} \right\}$$

At an infeasible stationary point \hat{x} we define

$$\hat{A} = \{i : c^i(\hat{x}) = 0\}, \quad \hat{V} = \{i : c^i(\hat{x}) < 0\}, \quad \hat{S} = \{i : c^i(\hat{x}) > 0\}$$

as the sets of active, violated, and strictly satisfied constraints

Assumptions

The point $(\hat{x}, \hat{r}, \hat{\lambda}, \hat{\sigma})$ is a first-order optimal solution of (P) at which the following conditions hold:

- ▶ (Regularity) $\nabla c(\hat{x})^T$ has full row rank;
- (Strict Complementarity) $\hat{\lambda}^i > 0$ for all $i \in \hat{A}$;
- (Second Order Sufficiency) The Hessian of the Lagrangian for problem (P) with $\pi=\infty$, denoted by \hat{W} , satisfies $d^T\hat{W}d>0$ for all $d\neq 0$ such that $\nabla c(\hat{x})^Td=0$

The optimality conditions now reduce to: (define $ho=1/\pi$)

$$F(x, \lambda_{\hat{\mathcal{A}}}, \rho) = \begin{bmatrix} \rho \nabla f(x) - \sum_{i \in \hat{\mathcal{A}}} \lambda^{i} \nabla c^{i}(x) - \sum_{i \in \hat{\mathcal{V}}} \nabla c^{i}(x) \\ c_{\hat{\mathcal{A}}}(x) \end{bmatrix} = 0$$

$$\lambda_{\hat{\mathcal{A}}} \in (0, 1)$$

(all other values can be determined uniquely)

Lemma 1: $x_{\pi} \rightarrow \hat{x}$

For all π sufficiently large the penalty problem (P) has a solution x_{π} with the same sets of active, violated, and strictly satisfied constraints as \hat{x} . Moreover,

$$||x_{\pi}-\hat{x}||=O(1/\pi)$$

Proof.

We have $F(\hat{x}, \hat{\lambda}_{\hat{A}}, 0) = 0$. Differentiating F yields:

$$\frac{\partial F(x, \lambda_{\hat{\mathcal{A}}}, \rho)}{\partial (x, \lambda_{\hat{\mathcal{A}}})} = \begin{bmatrix} W(x, \lambda_{\hat{\mathcal{A}}}, \rho) & -\nabla c_{\hat{\mathcal{A}}}(x) \\ \nabla c_{\hat{\mathcal{A}}}(x)^{\mathsf{T}} & 0 \end{bmatrix},$$

which is nonsingular under our assumptions. The implicit function theorem then implies that there is an open neighborhood $\mathcal{N} \in \mathbb{R}$ containing $\rho = 0$ such that

$$F(x(\rho), \lambda_{\hat{A}}(\rho), \rho) = 0$$
 for all $\rho \in \mathcal{N}$.

Then, since $\hat{\lambda}_{\hat{\mathcal{A}}} \in (0,1)$, $(x(\rho), \lambda_{\hat{\mathcal{A}}}(\rho), \rho)$ satisfies the first-order optimality conditions for ρ sufficiently small $(\pi \text{ large})$

Lemma 1: $x_{\pi} \rightarrow \hat{x}$

For all π sufficiently large the penalty problem (P) has a solution x_{π} with the same sets of active, violated, and strictly satisfied constraints as \hat{x} . Moreover,

$$||x_{\pi}-\hat{x}||=O(1/\pi)$$

Example: (recall $\rho = 1/\pi$)

min
$$\rho\left((x_1+1)^2+(x_2-1)^2\right)+r_1+r_2$$

s.t. $-x_1^2+x_2-1+r_1\geq 0$
 $-100x_2+r_2\geq 0$
 $(r_1,r_2)\geq 0$

Lemma 1: $x_{\pi} \rightarrow \hat{x}$

For all π sufficiently large the penalty problem (P) has a solution x_{π} with the same sets of active, violated, and strictly satisfied constraints as \hat{x} . Moreover,

$$\|x_{\pi}-\hat{x}\|=O(1/\pi)$$

Example:

Lemma 1: $x_{\pi} \rightarrow \hat{x}$

For all π sufficiently large the penalty problem (P) has a solution x_{π} with the same sets of active, violated, and strictly satisfied constraints as \hat{x} . Moreover,

$$\|x_{\pi}-\hat{x}\|=O(1/\pi)$$

Example:

Lemma 2: $x_k \to x_\pi \to \hat{x}$

For π sufficiently large and for x_k sufficiently close to x_π , the solution of the SQP subproblem identifies the same sets of active, violated, and strictly satisfied constraints as x_π (and \hat{x}). Then, standard Newton analysis for equality constrained optimization yields for some C>0:

$$||x_{k+1}-x_{\pi}|| \leq C||x_k-x_{\pi}||^2$$

Proof.

Similar to before, at $(x, \lambda_{\hat{\mathcal{A}}}, \rho) = (\hat{x}, \hat{\lambda}_{\hat{\mathcal{A}}}, 0)$ the SQP step is the solution $(d, \delta_{\hat{\mathcal{A}}}) = (0, \hat{\lambda}_{\hat{\mathcal{A}}})$ to:

$$\begin{bmatrix} W(x,\lambda_{\hat{\mathcal{A}}},\rho) & -\nabla c_{\hat{\mathcal{A}}}(x) \\ \nabla c_{\hat{\mathcal{A}}}^{T}(x) & 0 \end{bmatrix} \begin{bmatrix} d \\ \delta_{\hat{\mathcal{A}}} \end{bmatrix} = -\begin{bmatrix} \rho \nabla f(x) - \sum_{i \in \hat{\mathcal{V}}} \nabla c^{i}(x) \\ c_{\hat{\mathcal{A}}}(x) \end{bmatrix}$$

This matrix is nonsingular and the solution varies continuously with $(x,\lambda_{\hat{\mathcal{A}}},\rho)$ near $(\hat{x},\hat{\lambda}_{\hat{\mathcal{A}}},0)$, so since $\hat{\lambda}^i\in(0,1)$ for $i\in\hat{\mathcal{A}}$ the solution of the SQP subproblem can be obtained via this linear system (setting $\delta_{\hat{\mathcal{V}}}=1$ and $\delta_{\hat{\mathcal{S}}}=0$)

for $(x, \lambda_{\hat{A}})$ near $(\hat{x}, \hat{\lambda}_{\hat{A}})$ and ρ small $(\pi \text{ large})$

Main result

Thus, we find:

$$\|x_{k+1} - \hat{x}\| \le \|x_{k+1} - x_{\pi}\| + \|x_{\pi} - \hat{x}\|$$
 (triangle inequality)
 $\le C\|x_k - x_{\pi}\|^2 + O(1/\pi)$ (Lemmas 1 and 2)
 \vdots
 $\le C'\|x_k - \hat{x}\|^2 + O(1/\pi),$

so convergence is quadratic if $(1/\pi) \propto ||x_k - \hat{x}||^2$; e.g., $1/\pi$ proportional to the squared optimality error of the problem (FEAS)

Conclusion and Future Work

Summary

- ▶ We have discussed methods for the fast solution of infeasible optimization problems
- We have analyzed a penalty-SQP approach that transitions smoothly between solving an optimization problem and its feasibility problem counterpart
- ▶ We have shown that the approach can converge quadratically if the penalty parameter is handled correctly

Conclusion and Future Work

Future work

How can we construct a practical method for updating π that satisfies our condition? e.g., consider the auxiliary problem

min
$$\sum s^i$$

s.t. $c_k + \nabla c_k^T d + s \ge 0$, $s \ge 0$

and set π_k so that the reduction in linearized feasibility of the SQP problem is proportional to that achieved by the solution of this problem – can this do the trick?

Can we relax our assumptions? For example, for many infeasible problems, the Hessian of the Lagrangian is not positive definite at x̂