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Large-scale constrained optimization

Consider large-scale problems of the form

min f (x)

s.t. cE(x) = 0

cI(x) ≤ 0.

For example, an active area of research:

I True problem of interest is infinite-dimensional;

I Equality constraints include a discretized PDE;

I Often, x = (u, y) is composed of controls u and states y .

(For the most part, I focus on only having equality constraints.)
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Motivating example 1: Hyperthermia treatment

I Regional hyperthermia is a cancer therapy that aims at heating large and deeply
seated tumors by means of radio wave adsorption.

I Computer modeling and numerical optimization can be used to plan the therapy
to heat the tumor while minimizing damage to nearby cells.
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Hyperthermia treatment as an optimization problem

Optimization problem is to

min
y,u

Z
Ω

(y − yt )2dV where yt =


37 in Ω\Ωtumor

43 in Ωtumor

subject to the bio-heat transfer equation (Pennes (1948))

− ∇ · (κ∇y)| {z }
thermal conductivity

+ ω(y)π(y − yb)| {z }
effects of blood flow

= σ
2

˛̨P
i ui Ei

˛̨2| {z }
electromagnetic field

in Ω

and appropriate boundary conditions.
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Motivating example 2: Server room cooling

I Heat generating equipment in a server room must be cooled.

I Numerical optimization can be used to help place and control air conditioners to
satisfying cooling demands while minimizing costs.
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Choosing the search space

Suppose we have distinct controls u and states y :

min
u,y

f (u, y) s.t. c(u, y) = 0 ⇔ min
u

f (u, y(u))

Numerical methods generally fall under one of two categories:

I Full-space methods 24∇uf (u, y) + 〈∇uc(u, y), λ〉
∇y f (u, y) + 〈∇y c(u, y), λ〉

c(u, y)

35 = 0

I Reduced-space methods

∇uf (u, y) + 〈∇uy(u),∇y f (u, y)〉 = 0

The latter is often used, but there are benefits in the former.
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Choosing when/what to discretize

PDE-constrained optimizers use the phrases:

I Discretize-then-optimize

I Optimize-then-discretize

I prefer:

I Discretize the optimization problem

min f (x)

s.t. c(x) = 0
⇒

min fh(x)

s.t. ch(x) = 0

I Discretize the optimality conditions»
∇f (x) + 〈∇c(x), λ〉

c(x)

–
= 0 ⇒

»
(∇f (x) + 〈∇c(x), λ〉)h

ch(x)

–
= 0

I Discretize the search direction computation
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Computational challenges

We propose a numerical method for large-scale optimization.

I We assume that a full space method is beneficial.

I We assume that we have discretized the optimization problem.

There are numerous computational challenges in such a context.

I Need to avoid storage/factoring of derivatives matrices.

I Need to use iterative in place of direct linear algebra methods.

I Need to control inexactness in computations.

I Need to ensure global convergence.

I Need to handle ill-conditioning, nonconvexity, and inequality constraints.
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Strengths and weaknesses

Our methods have numerous strengths:

I It can handle ill-conditioned/rank-deficient and nonconvex problems.

I Inexactness is allowed and controlled with implementable conditions.

I Algorithm is globally convergent, can handle control and state constraints.

I Numerical results are encouraging (but much more to do).

However, we aim to have an algorithm for PDE-constrained optimization, but so far:

I We solve for a single discretization.

I We use finite-dimensional norms.

I Our implementation does not exploit structure.

I We need further experimentation on interesting problems.
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Newton methods

Newton’s method for nonlinear equations:

F (x) = 0 ⇒ F (xk ) +∇F (xk )dk = 0

Newton’s method for (convex) unconstrained optimization:

minx f (x) ⇒ ∇f (x) = 0 ⇒ ∇f (xk ) +∇2f (xk )dk = 0

In either case, the main computational effort is to solve a linear system of equations:

F(x) = 0 ⇒ F(xk ) +∇F(xk )dk = 0
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Merit function

Is solving the Newton system a useful thing to do?

F(x) = 0 ⇒ F(xk ) +∇F(xk )dk = 0

Judging progress by the merit function

φ(x) := 1
2
‖F(x)‖2

there is nice consistency between dk and φ(x):

∇φ(xk )T dk = F(xk )T∇F(xk )dk = −‖F(xk )‖2< 0.

That is, dk is a descent direction for φ at xk .
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Inexact Newton methods

Suppose we have a large-scale problem, so we only compute

F(xk ) +∇F(xk )dk = rk

where (Dembo, Eisenstat, Steihaug (1982))

‖rk‖ ≤ κ‖F(xk )‖, κ ∈ (0, 1).

Judging progress by the merit function

φ(x) , 1
2
‖F(xk )‖2

there is still consistency between dk and φ(x):

∇φ(xk )T dk = F(xk )T∇F(xk )dk = −‖F(xk )‖2 + F(xk )T rk ≤ (κ− 1)‖F(xk )‖2 < 0.
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Nonconvex or constrained optimization

Everything appears to be the same for nonconvex or constrained problems.

I (Note: Any nonaffine equality constraint means you have a nonconvex problem.)

Consider the equality constrained problem

min
x∈Rn

f (x)

s.t. c(x) = 0.

The corresponding Lagrangian is

L(x , λ) , f (x) + λT c(x),

so the first-order optimality conditions are

∇L(x , λ) =

»
∇f (x) +∇c(x)λ

c(x)

–
, F(x , λ) = 0.

An Inexact Newton Method for Large-Scale Nonlinear Optimization 16 of 52



PDE-Constrained Optimization An Inexact Newton Method Numerical Results Summary and Future Work

Newton methods and sequential quadratic optimization
If H(xk , λk ) is positive definite on the null space of ∇c(xk )T , then the Newton system»

H(xk , λk ) ∇c(xk )
∇c(xk )T 0

– »
d
δ

–
= −

»
∇f (xk ) +∇c(xk )λk

c(xk )

–
is equivalent to the quadratic optimization subproblem

min
d∈Rn

f (xk ) +∇f (xk )T d + 1
2

dT H(xk , λk )d

s.t. c(xk ) +∇c(xk )T d = 0.
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Merit function

The issue (that causes all of our problems later on!) is how to judge progress.

I Simply minimizing

ϕ(x , λ) = 1
2
‖F(x , λ)‖2 = 1

2

‚‚‚‚»∇f (x) +∇c(x)λ
c(x)

–‚‚‚‚2

is generally inappropriate for constrained optimization.

I Standard practice is to instead use the merit/penalty function

φ(x ; ν) , f (x) + ν‖c(x)‖

where ν is a penalty parameter.
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Minimizing a penalty function
Consider the penalty function for

min (x − 1)2, s.t. x = 0 i.e. φ(x ; ν) = (x − 1)2 + ν|x |

for different values of the penalty parameter ν:

Figure: ν = 1 Figure: ν = 2
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Algorithm 0: Newton method for constrained optimization

(Assume the constraints are regular and the Hessians are sufficiently convex)
for k = 0, 1, 2, . . .

I Solve the primal-dual (Newton) equations»
H(xk , λk ) ∇c(xk )
∇c(xk )T 0

– »
dk

δk

–
= −

»
∇f (xk ) +∇c(xk )λk

c(xk )

–
.

I Increase ν, if necessary, so that νk ≥ ‖λk + δk‖ (yields Dφk (dk ; νk )� 0).

I Backtrack from αk ← 1 to satisfy the Armijo condition

φ(xk + αk dk ; νk ) ≤ φ(xk ; νk ) + ηαk Dφk (dk ; νk ).

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk ).
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Convergence of Algorithm 0

Assumption
The sequence {(xk , λk )} is contained in a convex set Ω over which f , c, and their first
derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk )T has full row rank with singular values > positive constant;

I (Convexity) uT H(xk , λk )u ≥ µ‖u‖2 for µ > 0 for all u 6= 0 s.t. ∇c(xk )T u = 0.

Theorem
(Han (1977)) The sequence {(xk , λk )} yields the limit

lim
k→∞

‚‚‚‚»∇f (xk ) +∇c(xk )λk

c(xk )

–‚‚‚‚ = 0.
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Incorporating inexactness

For large-scale problems, we need iterative in place of direct methods, and we need to
allow inexactness in our computations.

I Suppose we only compute»
H(xk , λk ) ∇c(xk )
∇c(xk )T 0

– »
dk

δk

–
= −

»
∇f (xk ) +∇c(xk )λk

c(xk )

–
+

»
ρk

rk

–
satisfying ‚‚‚‚»ρk

rk

–‚‚‚‚ ≤ κ‚‚‚‚»∇f (xk ) +∇c(xk )λk

c(xk )

–‚‚‚‚ , κ ∈ (0, 1)

as in inexact Newton methods for nonlinear equations.

I Major issue: If κ is not sufficiently small, then dk may be an ascent direction for
our merit function; i.e.,

Dφk (dk ; νk ) > 0 for all νk ≥ νk−1.

We no longer have nice consistency between our search direction and merit function.
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Model reductions

Our first main contribution are a set of implementable conditions that dictate when
an inexact solution to the Newton system yields an acceptable search direction so
that global convergence can be guaranteed.

Main idea:

I Define the model of φ(x ; ν):

m(d ; ν) , f (x) +∇f (x)T d + ν(‖c(x) +∇c(x)T d‖).

I dk is acceptable if

∆m(dk ; νk ) , m(0; νk )−m(dk ; νk )

= −∇f (xk )T dk + νk (‖c(xk )‖ − ‖c(xk ) +∇c(xk )T dk‖)� 0.

I This ensures Dφk (dk ; νk )� 0 (and more).
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Termination test 1
The search direction (dk , δk ) is acceptable if‚‚‚‚»ρk

rk

–‚‚‚‚ ≤ κ ‚‚‚‚»∇f (xk ) +∇c(xk )λk

c(xk )

–‚‚‚‚ , κ ∈ (0, 1)

and if for νk = νk−1 and some σ ∈ (0, 1) we have

∆m(dk ; νk ) ≥ max{ 1
2

dT
k H(xk , λk )dk , 0}+ σνk max{‖c(xk )‖, ‖rk‖ − ‖c(xk )‖}| {z }

≥ 0 for any d
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Termination test 2
The search direction (dk , δk ) is acceptable if

‖ρk‖ ≤ β‖c(xk )‖, β > 0

and ‖rk‖ ≤ ε‖c(xk )‖, ε ∈ (0, 1)

Increasing the penalty parameter ν then yields

∆m(dk ; νk ) ≥ max{ 1
2

dT
k H(xk , λk )dk , 0}+ σνk‖c(xk )‖| {z }

≥ 0 for any d
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Algorithm 1: Inexact Newton for optimization

(Byrd, Curtis, Nocedal (2008))
for k = 0, 1, 2, . . .

I Iteratively solve»
H(xk , λk ) ∇c(xk )
∇c(xk )T 0

– »
dk

δk

–
= −

»
∇f (xk ) +∇c(xk )λk

c(xk )

–
until termination test 1 or 2 is satisfied.

I If only termination test 2 is satisfied, increase ν so

νk ≥ max

(
νk−1,

∇f (xk )T dk + max{ 1
2

dT
k H(xk , λk )dk , 0}

(1− τ)(‖c(xk )‖ − ‖rk‖)

)
.

I Backtrack from αk ← 1 to satisfy

φ(xk + αk dk ; νk ) ≤ φ(xk ; νk )− ηαk ∆m(dk ; νk ).

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk ).
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Convergence of Algorithm 1

Assumption
The sequence {(xk , λk )} is contained in a convex set Ω over which f , c, and their first
derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk )T has full row rank with singular values > positive constant;

I (Convexity) uT H(xk , λk )u ≥ µ‖u‖2 for µ > 0 for all u 6= 0 s.t. ∇c(xk )T u = 0.

Theorem
(Byrd, Curtis, Nocedal (2008)) The sequence {(xk , λk )} yields the limit

lim
k→∞

‚‚‚‚»∇f (xk ) +∇c(xk )λk

c(xk )

–‚‚‚‚ = 0.
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Handling nonconvexity and rank deficiency

There are two assumptions we aim to drop:

I (Regularity) ∇c(xk )T has full row rank with singular values > positive constant;

I (Convexity) uT H(xk , λk )u ≥ µ‖u‖2 for µ > 0 for all u 6= 0 s.t. ∇c(xk )T u = 0.

Without them, Algorithm 1 may stall or may not be well-defined.

Our second and third main contributions are extensions to the previous algorithm
so that rank deficient and nonconvex problems can also be solved.
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No factorizations means no clue

Since we use iterative methods, we do not factor the Newton matrix»
H(xk , λk ) ∇c(xk )
∇c(xk )T 0

–
so we might not know if the problem is nonconvex or ill-conditioned.

I Common practice is to perturb the matrix to be»
H(xk , λk ) + ξ1I ∇c(xk )
∇c(xk )T −ξ2I

–
where ξ1 convexifies the model and ξ2 regularizes the constraints.

I Poor choices of ξ1 and ξ2 can have terrible consequences in the algorithm.
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Our approach for global convergence

I Decompose the direction dk into a normal component (toward the constraints)
and a tangential component (toward optimality):

I Without convexity, we do not guarantee a minimizer, but our merit function
biases the method to avoid maximizers and saddle points.
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Normal component computation

(Approximately) solve, for some ω > 0,

min 1
2
‖c(xk ) +∇c(xk )T v‖2

s.t. ‖v‖ ≤ ω‖(∇c(xk ))c(xk )‖

We only require Cauchy decrease:

‖c(xk )‖ − ‖c(xk ) +∇c(xk )T vk‖

≥ εv (‖c(xk )‖ − ‖c(xk ) + α∇c(xk )T ṽk‖)

for εv ∈ (0, 1), where ṽk = −(∇c(xk ))c(xk ).
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Tangential component computation (idea #1)

Standard practice is to then (approximately) solve

min (∇f (xk ) + H(xk , λk )vk )T u + 1
2

uT H(xk , λk )u

s.t. ∇c(xk )T u = 0, ‖u‖ ≤ ∆k .

However, maintaining

∇c(xk )T u ≈ 0 and ‖u‖ ≤ ∆k

can be expensive.
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Tangential component computation

Instead, we formulate the primal-dual system»
H(xk , λk ) ∇c(xk )
∇c(xk )T 0

– »
uk

δk

–
= −

»
∇f (xk ) +∇c(xk )λk +H(xk , λk )vk

0

–
and apply our ideas from before!
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Handling nonconvexity

I Convexify the Hessian as in»
H(xk , λk ) + ξ1I ∇c(xk )
∇c(xk )T 0

–
by monitoring iterates.

I Hessian modification strategy: Increase ξ1 whenever

‖uk‖2 > ψ‖vk‖2, ψ > 0;

1
2

uT
k (H(xk , λk ) + ξ1I )uk < θ‖uk‖2, θ > 0.
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Inexact Newton Algorithm 2
(Curtis, Nocedal, Wächter (2009))
for k = 0, 1, 2, . . .

I Approximately solve the following for vk to obtain Cauchy decrease:

min 1
2
‖c(xk ) +∇c(xk )T v‖2, s.t. ‖v‖ ≤ ω‖(∇c(xk ))c(xk )‖.

I Iteratively solve»
H(xk , λk ) + ξ1I ∇c(xk )
∇c(xk )T 0

– »
dk

δk

–
= −

»
∇f (xk ) +∇c(xk )λk

−∇c(xk )T vk

–
until termination test 1 or 2 is satisfied, increasing ξ1 as described.

I If only termination test 2 is satisfied, increase ν so

νk ≥ max

(
νk−1,

∇f (xk )T dk + max{ 1
2

uT
k (H(xk , λk ) + ξ1I )uk , θ‖uk‖2}

(1− τ)(‖c(xk )‖ − ‖c(xk ) +∇c(xk )T dk‖)

)
.

I Backtrack from αk ← 1 to satisfy

φ(xk + αk dk ; νk ) ≤ φ(xk ; νk )− ηαk ∆m(dk ; νk ).

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk ).
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Convergence of Algorithm 2

Assumption
The sequence {(xk , λk )} is contained in a convex set Ω over which f , c, and their first
derivatives are bounded and Lipschitz continuous.

Theorem
(Curtis, Nocedal, Wächter (2009)) If all limit points of {∇c(xk )T } have full row rank,
then the sequence {(xk , λk )} yields the limit

lim
k→∞

‚‚‚‚»∇f (xk ) +∇c(xk )λk

c(xk )

–‚‚‚‚ = 0.

Otherwise,
lim

k→∞
‖(∇c(xk ))c(xk )‖ = 0

and if {νk} is bounded, then

lim
k→∞

‖∇f (xk ) +∇c(xk )λk‖ = 0.
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Handling inequalities

I Interior point methods are attractive for large applications.

I Line-search interior point methods that enforce

c(xk ) +∇c(xk )T dk = 0

may fail to converge globally (Wächter, Biegler (2000)).

I Fortunately, the trust region subproblem we use to regularize the constraints also
saves us from this type of failure!

Our fourth main contribution is to extend our techniques to handle inequalities.
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Algorithm 2 (Interior-point version)

I Apply Algorithm 2 to the logarithmic-barrier subproblem for µ→ 0:

min f (x)− µ
qX

i=1

ln s i , s.t. cE(x) = 0, cI(x)− s = 0

I Define 2664
H(xk , λE,k , λI,k ) 0 ∇cE(xk ) ∇cI(xk )

0 µI 0 −Sk

∇cE(xk )T 0 0 0
∇cI(xk )T −Sk 0 0

3775
2664

dx
k

d s
k

δE,k
δI,k

3775
so that the iterate update has»

xk+1

sk+1

–
←
»

xk

sk

–
+ αk

»
dx

k
Sk d s

k

–
.

I Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in
the algorithm to maintain s ≥ max{0, cI(x)}.
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Convergence of Algorithm 2 (Interior-point)

Assumption
The sequence {(xk , λE,k , λI,k )} is contained in a convex set Ω over which f , cE , cI ,
and their first derivatives are bounded and Lipschitz continuous.

Theorem
(Curtis, Schenk, Wächter (2009))

I For a given µ, Algorithm 2 yields the same result as before.

I If Algorithm 2 yields a sufficiently accurate solution to the barrier subproblem for
each {µj} → 0 and if the linear independence constraint qualification (LICQ)
holds at a limit point x̄ of {xj}, then there exist Lagrange multipliers λ̄ such that
the first-order optimality conditions of the nonlinear program are satisfied.
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Implementation details

I Incorporated in IPOPT software package (Wächter, Laird, Biegler):
I interior-point algorithm with inexact step computations;
I flexible penalty function for promoting faster convergence (Curtis, Nocedal);
I tests on ∼ 700 CUTEr problems yields robustness (almost) on par with original IPOPT.

I Linear systems solved with PARDISO (Schenk, Gärtner):
I includes iterative linear system solvers, e.g., SQMR (Freund);
I incomplete multilevel factorization with inverse-based pivoting;
I stabilized by symmetric-weighted matchings.

I Server cooling room example coded w/ libmesh (Kirk, Peterson, Stogner, Carey)

An Inexact Newton Method for Large-Scale Nonlinear Optimization 41 of 52



PDE-Constrained Optimization An Inexact Newton Method Numerical Results Summary and Future Work

Hyperthermia treatment planning

Let uj = aj e
iφj and Mjk (x) = 〈Ej (x),Ek (x)〉 where Ej = sin(jx1x2x3π):

min
1

2

Z
Ω

(y(x)− yt (x))2dx

s.t.

8<: −∆y(x)− 10(y(x)− 37) = u∗M(x)u in Ω
37.0 ≤ y(x) ≤ 37.5 on ∂Ω
42.0 ≤ y(x) ≤ 44.0 in Ω0

Original IPOPT with N = 32 requires 408 seconds per iteration.

N n p q # iter CPU sec (per iter)
16 4116 2744 2994 68 22.893 (0.3367)
32 32788 27000 13034 51 3055.9 (59.920)
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Groundwater modeling

Let qi = 100 sin(2πx1) sin(2πx2) sin(2πx3):

min
1

2

Z
Ω

(y(x)− yt (x))2dx +
1

2
α

Z
Ω

[β(u(x)− ut (x))2 + |∇(u(x)− ut (x))|2]dx

s.t.

8>>><>>>:
−∇ · (eu(x) · ∇yi (x)) = qi (x) in Ω, i = 1, . . . , 6

∇yi (x) · n = 0 on ∂ΩZ
Ω

yi (x)dx = 0, i = 1, . . . , 6

−1 ≤ u(x) ≤ 2 in Ω

Original IPOPT with N = 32 requires 20 hours for the first iteration.

N n p q # iter CPU sec (per iter)
16 28672 24576 8192 18 206.416 (11.4676)
32 229376 196608 65536 20 1963.64 (98.1820)
64 1835008 1572864 524288 21 134418. (6400.85)
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Server room cooling

Let φ(x) be the air flow velocity potential:

min
X

ci vACi

s.t.

8>>>>>><>>>>>>:

∇φ(x) = 0 in Ω
∂nφ(x) = 0 on ∂Ωwall

∂nφ(x) = −vACi
on ∂ΩACi

φ(x) = 0 in ΩExhj

‖∇φ(x)‖2
2 ≥ v2

min on ∂Ωhot

vACi
≥ 0

Original IPOPT with h = 0.05 requires 2390.09 seconds per iteration.

h n p q # iter CPU sec (per iter)
0.10 43816 43759 4793 47 1697.47 (36.1164)
0.05 323191 323134 19128 54 28518.4 (528.119)
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Server room cooling solution

(active constraints)
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Server room cooling solution (active constraints)
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Numerical Results

Summary and Future Work
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Summary

We proposed an algorithm for large-scale nonlinear optimization:

I It can handle ill-conditioned/rank-deficient problems.

I It can handle nonconvex problems.

I Inexactness is allowed and controlled with loose conditions.

I The conditions are implementable (in fact, implemented).

I The algorithm is globally convergent.

I It can handle problems with control and state constraints.

I Numerical results are encouraging so far.
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Future work and questions

What are we missing (to really solve PDE-constrained problems)?

I PDE-specific preconditioners

I Use of appropriate norms

I Mesh refinement, error estimators

What does it take to transform an algorithm for finite-dimensional optimization into
one for solving infinite-dimensional problems?

I Can the finite-dimensional solver be a black-box?

I If not, to what extent do the outer and inner algorithms need to be coupled? (Do
all components of the finite-dimensional solver need to be checked for their effect
on the infinite-dimensional problem?)

What interesting problems may be solved with our approach?
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