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Large-scale constrained optimization

Consider large-scale problems of the form

min f (x)

s.t. cE(x) = 0

cI(x) ≥ 0.

For example, PDE-constrained optimization:

I True problem of interest is infinite-dimensional;

I Equality constraints include a discretized PDE;

I x = (y , u) is composed of states y and controls u;

I Inequality constraints include control (and state) bounds.
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Motivating example 1: Hyperthermia treatment

I Regional hyperthermia is a cancer therapy that aims at heating large and deeply
seated tumors by means of radio wave adsorption.

I Computer modeling and numerical optimization can be used to plan the therapy
to heat the tumor while minimizing damage to nearby cells.
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Motivating example 2: Server room cooling

I Heat generating equipment in a server room must be cooled.

I Numerical optimization can be used to help place and control air conditioners to
satisfying cooling demands while minimizing costs.

I Problem suggested by Henderson, Lopez, Mello (IBM Research).
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Strengths and weaknesses

We propose an algorithm for general-purpose large-scale nonlinear optimization:

I It can handle ill-conditioned/rank-deficient and nonconvex problems.

I Inexactness is allowed and controlled with implementable conditions.

I Algorithm is globally convergent, can handle control and state constraints.

I Numerical results are encouraging (but much more to do).

Aim to have an algorithm for PDE-constrained optimization, but so far:

I We solve for a single discretization.

I We use finite-dimensional norms.

I Our implementation does not exploit structure.

I We need further experimentation on interesting problems.
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Questions and answers

I How do we compute search directions?
I Sequential quadratic programming
I Augmented Lagrangian methods
I Interior-point methods

I How do we ensure global convergence?
I KKT conditions (convex case)
I Merit/penalty function
I Filter

I How do we solve ill-conditioned problems?
I Matrix modifications
I Trust regions

I How do we handle nonconvexity?
I Matrix modifications
I Trust regions

I What if derivative matrices cannot be stored/factored?
I Reduced space methods
I Iterative methods on primal-dual system
I Inexact calculations
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Interior-point methods

I Add slacks (s > 0) to form the logarithmic-barrier subproblem

min f (x)− µ
X
i∈I

ln s i

s.t. cE(x) = 0

cI(x) = s

=⇒

∇f (x) +∇cE(x)λE +∇cI(x)λI = 0

−µS−1e − λI = 0

cE(x) = 0

cI(x)− s = 0

I Newton iteration involves the linear system26664
Hk 0 ∇cEk ∇cIk
0 µS−2

k 0 −I

∇cEk
T

0 0 0

∇cIk
T −I 0 0

37775
2664

dx
k

d s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µS−1
k e − λIk

cEk
cIk − sk

3775
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Scaling and slack reset

I We begin by scaling the Newton system2664
Hk 0 ∇cEk ∇cIk
0 Ωk 0 −Sk

∇cEk
T

0 0 0

∇cIk
T −Sk 0 0

3775
2664

dx
k

d̃ s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

cEk
cIk − sk

3775
I Primal-dual matrix now has nicer properties

I The use of a slack reset
sk ≥ max{0, cI(xk )}

allows easier infeasibility detection
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Rank deficiency and nonconvexity

2664
Hk 0 ∇cEk ∇cIk
0 Ωk 0 −Sk

∇cEk
T

0 0 0

∇cIk
T −Sk 0 0

3775
2664

dx
k

d̃ s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

cEk
cIk − sk

3775
If the constraint Jacobian is singular or ill-conditioned

I The system may be inconsistent

I The search direction (dx
k , d̃

s
k , δ
E
k , δ
I
k ) may blow up

I The line search may break down

If the Hessian is not positive definite on the null space of the Jacobian

I The system may be inconsistent

I The search direction (dx
k , d̃

s
k ) may not be a descent direction

I The line search may fail
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Matrix modifications

A common remedy is to modify the primal-dual matrix:2664
Hk +ξ1I 0 ∇cEk ∇cIk

0 Ωk +ξ1I 0 −Sk

∇cEk
T

0 −ξ2I 0

∇cIk
T −Sk 0 −ξ2I

3775
2664

dx
k

d̃ s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

cEk
cIk − sk

3775
However, without matrix factorizations (i.e., no idea of the inertia)

I When should these modifications be performed?

I What values should ξ1 and ξ2 take? How large?

I How do we ensure that in the end we solve the right problem?

Inexact Newton Methods for Optimization 13 of 36



Motivation Interior-Point with Inexact Steps Numerical Results Summary and Future Work

Failure of line search methods

I Recall the counter-example of Wächter and Biegler (2000)
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Our approach: Step decomposition
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Normal step within a trust region

min
1

2

‚‚‚‚‚
»

cEk
cIk − sk

–
+

"
∇cEk

T
0

∇cIk
T −Sk

#»
vx

k
ṽ s

k

–‚‚‚‚‚
2

s.t.

‚‚‚‚»vx
k

ṽ s
k

–‚‚‚‚ ≤ ω ‚‚‚‚»∇cEk ∇cIk
0 −Sk

– »
cEk

cIk − sk

–‚‚‚‚
I QP w/ trust region constraint

I Trust region radius is zero at
first-order minimizers of infeasibility

I Radius updates automatically

I Solve w/ CG or inexact dogleg
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Tangential step (within a trust region?)
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Nonconvexity

I During primal-dual step computation, convexify the Hessian2664
Hk + ξI 0 ∇cEk ∇cIk

0 Ωk + ξI 0 −Sk

∇cEk
T

0 0 0

∇cIk
T −Sk 0 0

3775
(i.e. increase ξ) whenever »

ux
k

ũs
k

–
> ψ

»
vx

k
ṽ s

k

–
»

ux
k

ũs
k

–T »
Hk + ξI 0

0 Ω + ξI

– »
ux

k
ũs

k

–
< θ

»
ux

k
ũs

k

–2

for some ψ, θ > 0

I In our tests, modifications (often) are few and early

I We avoid having to develop conditions for inexact projections
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Primal-dual step computation

We can be brave and approach the full system (avoid normal step)2664
Hk 0 ∇cEk ∇cIk
0 Ωk 0 −Sk

∇cEk
T

0 0 0

∇cIk
T −Sk 0 0

3775
2664

dx
k

d̃ s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

cEk
cIk − sk

3775
... or compute a normal step, then approach the perturbed system2664

Hk 0 ∇cEk ∇cIk
0 Ωk 0 −Sk

∇cEk
T

0 0 0

∇cIk
T −Sk 0 0

3775
2664

dx
k

d̃ s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

−∇cEk
T

vx
k

−∇cIk
T

vx
k + d s

k

3775
Either way, how do we allow inexact solutions?
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Consistency between the direction and the merit function

I In unconstrained optimization and nonlinear equations, there is consistency (even
w/ inexact steps) between the step computation and merit function.

I In constrained optimization, however, our search direction is based on optimality
conditions, but we judge progress by a merit function

φ(x , s;π) , f (x)− µ
X
i∈I

ln s i + π

‚‚‚‚» cE(x)
cI(x)− s

–‚‚‚‚
I Consistency is not automatic!
I Define the model of φ(x , s;π) at (xk , sk ):

mk (dx
, d̃ s ;π) , fk +∇f T

k dx−µ
X
i∈I

ln s i
k−µd̃ s +π

 ‚‚‚‚‚
»

cEk
cIk − sk

–
+

"
∇cEk

T
0

∇cIk
T −Sk

# »
dx

d̃ s

–‚‚‚‚‚
!

I dk is acceptable if

∆mk (dx
k , d̃

s
k ;π) , mk (0, 0;πk )−mk (dx

k , d̃
s
k ;π)� 0

I This ensures descent (and more)
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Termination tests

2664
Hk 0 ∇cEk ∇cIk
0 Ωk 0 −Sk

∇cEk
T

0 0 0

∇cIk
T −Sk 0 0

3775
2664

dx
k

d̃ s
k
δEk
δIk

3775 = −

2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

cEk
cIk − sk

3775+

2664
ρx

k
ρs

k
ρEk
ρIk

3775
Search direction is acceptable if

I (TT1) dual residual is sufficiently small, tangential component is bounded by
normal component or by sufficient convexity, and model reduction is sufficiently
large for current penalty parameter

I (TT2) dual residual is sufficiently small, tangential component is bounded by
normal component or by sufficient convexity, and sufficient progress in linearized
feasibility (model reduction obtained with increase in penalty parameter)

I (TT3) sufficient progress in reducing dual infeasibility
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Interior-point algorithm with inexact step computations

(C., Schenk, and Wächter (2010))
for k = 0, 1, 2, . . .

I Approximately solve for a normal step (optional?)

I Iteratively solve the primal-dual equations until TT1, TT2, or TT3 is satisfied,
modifying the Hessian matrix when appropriate

I If only termination test 2 is satisfied, then increase π

I Backtrack from αk ← 1 to satisfy fraction-to-the-boundary and sufficient
decrease conditions for the merit function φ

I Update the iterate

I Reset the slacks
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Convergence (inner iteration)

Assumption
The sequence {(xk , sk , λ

E
k , λ
I
k )} is contained in a convex set Ω over which f , cE , cI ,

and their first derivatives are bounded and Lipschitz continuous

Theorem
If all limit points of the constraint Jacobians have full row rank, then

lim
k→∞

‚‚‚‚‚‚‚‚
2664
∇fk +∇cEk λ

E
k +∇cIk λ

I
k

−µe − Skλ
I
k

cEk
cIk − sk

3775
‚‚‚‚‚‚‚‚ = 0.

Otherwise,

lim
k→∞

‚‚‚‚»∇cEk ∇cIk
0 −Sk

– »
cEk

cIk − sk

–‚‚‚‚ = 0

and if {πk} is bounded, then

lim
k→∞

‚‚‚‚»∇fk +∇cEk λ
E
k +∇cIk λ

I
k

−µe − Skλ
I
k

–‚‚‚‚ = 0
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Convergence (outer iteration)

Theorem
If the algorithm yields a sufficiently accurate solution to the barrier subproblem for
each {µj} → 0 and if the linear independence constraint qualification (LICQ) holds at
a limit point x̄ of {xj}, then there exist Lagrange multipliers λ̄ such that the
first-order optimality conditions of the nonlinear program are satisfied
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Implementation details

I Incorporated in IPOPT software package (Wächter, Laird, Biegler):
I interior-point algorithm with inexact step computations;
I flexible penalty function for promoting faster convergence (Curtis, Nocedal);
I tests on ∼ 700 CUTEr problems yields robustness (almost) on par with original IPOPT.

I Linear systems solved with PARDISO (Schenk, Gärtner):
I includes iterative linear system solvers, e.g., SQMR (Freund);
I incomplete multilevel factorization with inverse-based pivoting;
I stabilized by symmetric-weighted matchings.

I Server cooling room example coded w/ libmesh (Kirk, Peterson, Stogner, Carey)
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Hyperthermia treatment planning

Let uj = aj e
iφj and Mjk (x) = 〈Ej (x),Ek (x)〉 where Ej = sin(jx1x2x3π):

min
1

2

Z
Ω

(y(x)− yt (x))2dx

s.t.

8<: −∆y(x)− 10(y(x)− 37) = u∗M(x)u in Ω
37.0 ≤ y(x) ≤ 37.5 on ∂Ω
42.0 ≤ y(x) ≤ 44.0 in Ω0

Original IPOPT with N = 32 requires 408 seconds per iteration.

N n p q # iter CPU sec (per iter)
16 4116 2744 2994 68 22.893 (0.3367)
32 32788 27000 13034 51 3055.9 (59.920)
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Server room cooling

Let φ(x) be the air flow velocity potential:

min
X

ci vACi

s.t.

8>>>>>><>>>>>>:

∇φ(x) = 0 in Ω
∂nφ(x) = 0 on ∂Ωwall

∂nφ(x) = −vACi
on ∂ΩACi

φ(x) = 0 in ΩExhj

‖∇φ(x)‖2
2 ≥ v2

min on ∂Ωhot

vACi
≥ 0

Original IPOPT with h = 0.05 requires 2390.09 seconds per iteration.

h n p q # iter CPU sec (per iter)
0.10 43816 43759 4793 47 1697.47 (36.1164)
0.05 323191 323134 19128 54 28518.4 (528.119)
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Server room cooling solution

(active constraints)
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Server room cooling solution (active constraints)
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Summary

We proposed an algorithm for large-scale nonlinear optimization:

I It can handle ill-conditioned/rank-deficient problems

I It can handle nonconvex problems

I Inexactness is allowed and controlled with loose conditions

I The conditions are implementable (in fact, implemented)

I The algorithm is globally convergent

I It can handle problems with control and state constraints

I Numerical results are encouraging so far
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Future work and questions

What are we missing (to really solve PDE-constrained problems)?

I PDE-specific preconditioners

I Use of appropriate norms

I Mesh refinement, error estimators

What does it take to transform an algorithm for finite-dimensional optimization into
one for solving infinite-dimensional problems?

I Can the finite-dimensional solver be a black-box?

I If not, to what extent do the outer and inner algorithms need to be coupled? (Do
all components of the finite-dimensional solver need to be checked for their effect
on the infinite-dimensional problem?)

What interesting problems may be solved with our approach?
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