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Problem

Consider the problem to minimize an objective function f : Rn → R:

min
x∈Rn

f(x).

Various iterative algorithms have been proposed of the form

xk+1 ← xk + sk for all k ∈ N,

where {xk} is the iterate sequence and {sk} is the step sequence.

For the purposes of this talk on nonconvex optimization. . .

I not going to do global optimization;

I focus on deterministic methods, though ideas could be extended to stochastic
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History

Nonlinear optimization algorithm design has had parallel developments:

convexity

Rockafellar

Fenchel

Nemirovski

Nesterov

subgradient
inequality

convergence,
complexity
guarantees

smoothness

Powell

Fletcher

Goldfarb

Nocedal

sufficient
decrease

convergence,
fast local

convergence

Worlds are finally colliding!
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Worst-case complexity for convex optimization

Worst-case complexity: Upper limit on the resources an algorithm will
require to (approximately) solve a given problem

. . . for convex optimization: Bound on the number of iterations (or function
or derivative evaluations) until

‖xk − x∗‖ ≤ εx
or f(xk)− f(x∗) ≤ εf ,

where x∗ is some global minimizer of f .

Fact(?): Convex setting: better complexity often implies better performance.

(Really, need to consider work complexity, conditioning, structure, etc.)
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Worst-case complexity for nonconvex optimization

. . . for nonconvex optimization: Here is how we do it now:

Since one generally cannot guarantee that {xk} converges to a minimizer, one asks
for an upper bound on the number of iterations until

‖∇f(xk)‖ ≤ εg (first-order stationarity)

and maybe also λ(∇2f(xk)) ≥ −εH (second-order stationarity)

For example, it is known that for first-order stationarity we have the bounds. . .

Algorithm until ‖∇f(xk)‖2 ≤ εg
Gradient descent O(ε−2

g )

Newton / trust region O(ε−2
g )

Cubic regularization O(ε
−3/2
g )
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Self-examination

But. . .

I Is this the best way to characterize our algorithms?

I Is this the best way to represent our algorithms?

People listen! Cubic regularization. . .

I Griewank (1981)

I Nesterov & Polyak (2006)

I Weiser, Deuflhard, Erdmann (2007)

I Cartis, Gould, Toint (2011), the ARC method

. . . is a framework to which researchers have been attracted. . .

I Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)

I Carmon, Duchi (2017)

I Kohler, Lucchi (2017)

I Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!

(Trust region methods arguably perform better in general.)
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Example: Matrix factorization

Symmetric low-rank matrix factorization problem:

min
X∈Rd×r

1
2
‖XXT −M‖2F ,

where M ∈ Rd×d with rank(M) = r.

I Nonconvex, but. . .

I Global minimum value is known (it’s zero)

I All local minima are global minima

Jin, Ge, Netrapalli, Kakade, Jordan (2017)
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Example: Dictionary learning

Learning a representation of input data in the form of linear combinations of some
(unknown) basic elements, called atoms, which compose a dictionary:

min
X∈X ,Y ∈Rn×n

‖Z −XY ‖2 + φ(Y )

s.t. X := {X ∈ Rd×n : ‖Xi‖2 ≤ 1 for all i ∈ {1, . . . , n}},

where Z ∈ Rd×n is a given input.

Nonconvex, but, under some conditions, all saddle points can be “escaped”.

Sun, Qu, Wright (2016)
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Other examples

I Phase retrieval

I Orthogonal tensor decomposition

I Deep linear learning

I . . .
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Pedogogical example

But if we’re talking about nonconvex optimization, we also could have. . .

What real problem exhibits this behavior? (I don’t know!)

More on this example later. . .
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Purpose of this talk

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our approach

I local convergence rate

We’re admitting: Our approach does not always give the complete picture.

But we believe it is useful.
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Simple setting

Suppose the gradient g := ∇f is Lipschitz continuous with constant L > 0.

Consider the iteration (with gk := ∇f(xk))

xk+1 ← xk − 1
L
gk for all k ∈ N.

A contemporary complexity analysis considers the set

G(εg) := {x ∈ Rn : ‖g(x)‖2 ≤ εg}

and aims to find an upper bound on the cardinality of

Kg(εg) := {k ∈ N : xk 6∈ G(εg)}.

Characterizing the Worst-Case Performance of Algorithms for Nonconvex Optimization 15 of 42



Motivation Contemporary Analyses Partitioning Common Methods Summary

Upper bound on |Kg(εg)|

Using sk = − 1
L
gk and the upper bound

fk+1 ≤ fk + gTk sk + 1
2
L‖sk‖22,

one finds with finf := infx∈Rn f(x) that

fk − fk+1 ≥ 1
2L
‖gk‖22

=⇒ (f0 − finf) ≥ 1
2L
|Kg(εg)|ε2g

=⇒ |Kg(εg)| ≤ 2L(f0 − finf)ε−2
g .
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“Nice” f

But what if f is “nice”?

e.g., satisfying the Polyak- Lojasiewicz condition for c ∈ (0,∞), i.e.,

f(x)− finf ≤ 1
2c
‖g(x)‖22 for all x ∈ Rn.

Now consider the set

F(εf ) := {x ∈ Rn : f(x)− finf ≤ εf}

and consider an upper bound on the cardinality of

Kf (εf ) := {k ∈ N : xk 6∈ F(εf )}.
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Upper bound on |Kf (εf )|

Using sk = − 1
L
gk and the upper bound

fk+1 ≤ fk + gTk sk + 1
2
L‖sk‖22,

one finds that

fk − fk+1 ≥ 1
2L
‖gk‖22

≥ c
L

(fk − finf)

=⇒ (1− c
L

)(fk − finf) ≥ fk+1 − finf
=⇒ (1− c

L
)k(f0 − finf) ≥ fk − finf

=⇒ |Kf (εf )| ≤ log

(
f0 − finf

εf

)(
log

(
L

L− c

))−1

.
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For the first step. . .

In the “general nonconvex” analysis. . .

. . . the expected decrease for the first step is much more pessimistic:

general nonconvex: f0 − f1 ≥ 1
2L
ε2g

PL condition: (1− c
L

)(f0 − finf) ≥ f1 − finf

. . . and it remains more pessimistic throughout!
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Upper bounds on |Kf (εf )| versus |Kg(εg)|

Let f(x) = 1
2
x2, meaning that g(x) = x.

I Let εf = 1
2
ε2g , meaning that F(εf ) = G(εg).

I Let x0 = 10, c = 1, and L = 2. (Similar pictures for any L > 1.)
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Upper bounds on |Kf (εf )| versus |{k ∈ N : 1
2‖gk‖

2
2 > εg}|

Let f(x) = 1
2
x2, meaning that 1

2
g(x)2 = 1

2
x2.

I Let εf = εg , meaning that F(εf ) = G(εg).

I Let x0 = 10, c = 1, and L = 2. (Similar pictures for any L > 1.)
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Bad worst-case!

Worst-case complexity bounds in the general nonconvex case are very pessimistic.

I The analysis immediately admits a large gap when the function is nice.

I The “essentially tight” examples for the worst-case bounds are. . . weird.1

1Cartis, Gould, Toint (2010)
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Motivation

We want a characterization strategy that

I attempts to capture behavior in actual practice

I i.e., is not “bogged down” by pedogogical examples

I can be applied consistently across different classes of functions

I shows more than just the worst of the worst case

Our idea is to

I partition the search space (dependent on f and x0)

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

For some functions, there will be holes, but for some of interest there are none!
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Intuition

Think about an arbitrary point in the search space, i.e.,

L := {x ∈ Rn : f(x) ≤ f(x0)}.

I If ‖g(x)‖2 � 0, then “a lot” of progress can be made.

I If λ(∇2f(x)))� 0, then “a lot” of progress can also be made.
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Assumption

Assumption 1

I f is p-times continuously differentiable

I f is bounded below by finf := infx∈Rn f(x)

I for all p ∈ {1, . . . , p}, there exists Lp ∈ (0,∞) such that

f(x+ s) ≤ f(x) +

p∑
j=1

1

j!
∇jf(x)[s]j

︸ ︷︷ ︸
tp(x,s)

+
Lp

p+ 1
‖s‖p+1

2
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Motivation Contemporary Analyses Partitioning Common Methods Summary

pth-order term reduction

Definition 2

For each p ∈ {1, . . . , p}, define the function

mp(x, s) =
1

p!
∇pf(x)[s]p +

rp

p+ 1
‖s‖p+1

2 .

Letting smp (x) := arg min
s∈Rn

mp(x, s), the reduction in the pth-order term from x is

∆mp(x) = mp(x, 0)−mp(x, smp (x)) ≥ 0.

*Exact definition of rp is not complicated, but we’ll skip it here
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1st-order and 2nd-order term reductions

Theorem 3

For p ≥ 2, the following hold:

∆m1(x) =
1

2r1
‖∇f(x)‖22

and ∆m2(x) =
1

6r22
max{−λ(∇2f(xk)), 0}3.
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Regions

We propose to partition the search space, given (κ, fref) ∈ (0, 1)× [finf, f(x0)], into

R1 := {x ∈ L : ∆m1(x) ≥ κ(f(x)− fref)},

Rp := {x ∈ L : ∆mp(x) ≥ κ(f(x)− fref)} \

p−1⋃
j=1

Rj

 for all p ∈ {2, . . . , p},

and R := L \

 p⋃
j=1

Rj

 .

*We don’t need fref = finf, but, for simplicity, think of it that way here
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Illustration

(p = 2) R1: black R2: gray R: white
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Functions satisfying Polyak- Lojasiewicz

Theorem 4

A continuously differentiable f with a Lipschitz continuous gradient satisfies the
Polyak- Lojasiewicz condition if and only if R1 = L for any x0 ∈ Rn.

Hence, if we prove something about the behavior of an algorithm over R1, then

I we know how it behaves if f satisfies PL and

I we know how it behaves at any point satisfying the PL inequality.
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Functions satisfying a strict-saddle-type property

Theorem 5

If f is twice-continuously differentiable with Lipschitz continuous gradient and
Hessian functions such that, at all x ∈ L and for some ζ ∈ (0,∞), one has

max{‖∇f(x)‖22,−λ(∇2f(x))3} ≥ ζ(f(x)− finf),

then R1 ∪R2 = L.
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Linearly convergent behavior over Rp

Let swp (x) be a minimum norm global minimizer of the regularized Taylor model

wp(x, s) = tp(x, s) +
lp

p+ 1
‖s‖p+1

2

Theorem 6

If {xk} is generated by the iteration

xk+1 ← xk + swp (x),

then, with εf ∈ (0, f(x0)− fref), the number of iterations in

Rp ∩ {x ∈ Rn : f(x)− fref ≥ εf}

is bounded above by⌈
log

(
f(x0)− fref

εf

)(
log

(
1

1− κ

))−1
⌉

= O
(

log

(
f(x0)− fref

εf

))
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Regularized gradient and Newton methods

I Regularized gradient method: Computes sk by solving

min
s∈Rn

f(xk) +∇f(xk)T s+
l1

2
‖s‖22 =⇒ sk = −

1

l1
∇f(xk)

I Regularized Newton method: Computes sk by solving

min
s∈Rn

f(xk) +∇f(xk)T s+
1

2
sT∇2f(xk)s+

l2

3
‖s‖32,

also known as cubic regularization (mentioned earlier)
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Characterization: Contemporary

Let RG and RN represent regularized gradient and Newton, respectively.

Theorem 7

With p ≥ 2, let

K1(εg) := {k ∈ N : ‖∇f(xk)‖2 > εg}

and K2(εH) := {k ∈ N : λ(∇2f(xk)) < −εH}.

Then, the cardinalities of K1(εg) and K2(εH) are of the order. . .

Algorithm |K1(εg)| |K2(εH)|

RG O
(
l1(f(x0)−finf)

ε2g

)
∞

RN O
(
l
1/2
2 (f(x0)−finf)

ε
3/2
g

)
O
(
l22(f(x0)−finf)

ε3
H

)
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Characterization: Our approach

Theorem 8

The numbers of iterations in R1 and R2 with fref = finf are of the order. . .

Algorithm R1 R2

RG O
(
log

(
f(x0)−finf

εf

))
∞

RN O
(
l22(f(x0)−finf)

r31

)
+ O

(
log

(
f(x0)−finf

εf

))
O

(
log

(
f(x0)−finf

εf

))
There is an initial phase, as seen in Nesterov & Polyak (2006)

A ∞ can appear, but one could consider probabilistic bounds, too
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Trust region method: Gradient-dependent radii

min
s∈Rn

f(xk) +∇f(xk)T s+ 1
2
sT∇2f(xk)s s.t. ‖s‖2 ≤ δk

I Set δk ← νk‖∇f(xk)‖2
I Initialize ν0 ∈ [ν, ν]

I For some (η, β) ∈ (0, 1)× (0, 1), if

ρk =
f(xk)− f(xk + sk)

t2(xk, 0)− t2(xk, sk)
≥ η,

then xk+1 ← xk + sk and νk+1 ∈ [ν, ν]; else, xk+1 ← xk and νk+1 ← βνk.

Theorem 9

# of iterations in R1 is at most O
(
χ log

(
f(x0)−fref

εf

))
. For R2, no guarantee.
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Trust region method: Gradient- and Hessian-dependent radii

min
s∈Rn

f(xk) +∇f(xk)T s+ 1
2
sT∇2f(xk)s s.t. ‖s‖2 ≤ δk

I Set

δk ← νk

{
‖∇f(xk)‖2 ‖∇f(xk)‖22 ≥ |λ(∇2f(xk))|3

|λ(∇2f(xk))| otherwise

I Initialize ν0 ∈ [ν, ν]

I For some (η, β) ∈ (0, 1)× (0, 1), if

ρk =
f(xk)− f(xk + sk)

t2(xk, 0)− t2(xk, sk)
≥ η,

then xk+1 ← xk + sk and νk+1 ∈ [ν, ν]; else, xk+1 ← xk and νk+1 ← βνk.

Theorem 10

# of iterations in R1 is at most O
(
χ log

(
f(x0)−fref

εf

))
.

# of iterations in R2 is at most O
(
χ2 log

(
f(x0)−fref

εf

))
.
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Trust region method: Gradient- and Hessian-dependent radii

min
s∈Rn

f(xk) +∇f(xk)T s+ 1
2
sT∇2f(xk)s s.t. ‖s‖2 ≤ δk

I Set

δk ← νk

{
‖∇f(xk)‖2 ‖∇f(xk)‖22 ≥ |λ(∇2f(xk))|3

|λ(∇2f(xk))| otherwise

I Initialize ν0 ∈ [ν, ν]

I For some (η, β) ∈ (0, 1)× (0, 1), if

ρk =
f(xk)− f(xk + sk)

t2(xk, 0)− t2(xk, sk)
≥ η,

then xk+1 ← xk + sk and νk+1 ∈ [ν, ν]; else, xk+1 ← xk and νk+1 ← βνk.

Theorem 10

# of iterations in R1 is at most O
(
χ log

(
f(x0)−fref

εf

))
.

# of iterations in R2 is at most O
(
χ2 log

(
f(x0)−fref

εf

))
.
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Trust region method: Always good?

What about the classical update?

δk+1 ←
{
≥ δk if ρk ≥ η
< δk otherwise.

Two challenges:

I Proving a uniform upper bound on number of consecutive rejected steps

I Proving that accepted steps yield sufficient decrease in R1 and R2
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Summary & Perspectives

Our goal: A complementary approach to characterize algorithms.

I global convergence

I worst-case complexity, contemporary type + our approach

I local convergence rate

Our idea is to

I partition the search space (dependent on f and x0)

I analyze how an algorithm behaves over different regions

I characterize an algorithm’s behavior by region

For some functions, there are holes, but for others the characterization is complete.

F. E. Curtis and D. P. Robinson, “How to Characterize the Worst-Case
Performance of Algorithms for Nonconvex Optimization,” Lehigh ISE/COR@L
Technical Report 18T-003, submitted for publication, 2018.
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