Numerical Methods for PDE-Constrained Optimization

Richard H. Byrd ¹ Frank E. Curtis ² Jorge Nocedal ²

¹University of Colorado at Boulder

²Northwestern University

Courant Institute of Mathematical Sciences, 2007

Motivating Example: Data Assimilation in Weather Forecasting

Problem Formulation Solution Techniques

Inexact SQP Methods for Equality Constrained Optimization

Background and Basics Algorithm Overview

Numerical Results

Optimization Test Problems: Robustness PDE-Constrained Test Problems: Practicality

Related and Future Work

Inexact SQP for nonconvex optimization

Outline

•0000

Motivating Example: Data Assimilation in Weather Forecasting Problem Formulation

Motivating Example

Data assimilation in weather forecasting

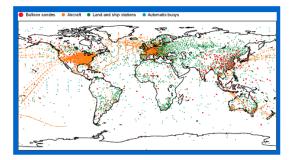
▶ Goal: up-to-date global weather forecast for the next 7 to 10 days ¹

- ▶ If an entire *initial state* of the atmosphere (temperatures, pressures, wind patterns, humidities) were known at a certain point in time, then an accurate forecast could be obtained by integrating atmospheric model equations forward in time
- Flow described by Navier-Stokes and further sophistications of atmospheric physics and dynamics (none of which will be discussed here)

¹(Fisher, Nocedal, Trémolet, and Wright, 2007)

Limited amount of data (satellites, buoys, planes, ground-based sensors)

- Each observation is subject to error
- Nonuniformly distributed around the globe (satellite paths, densely-populated areas)

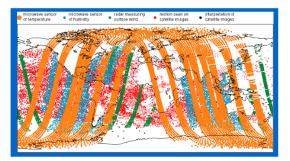


(Graphics courtesy Yannick Trémolet)

In reality: partial information

Limited amount of data (satellites, buoys, planes, ground-based sensors)

- Each observation is subject to error
- Nonuniformly distributed around the globe (satellite paths, densely-populated areas)



(Graphics courtesy Yannick Trémolet)

Motivating Example

Data assimilation: defining the unknowns

Currently in operational use at the European Centre for Medium-Range Weather Forecasts (ECMWF)

- \blacktriangleright We want values for an initial state, call it x^0
- ► For a given x^0 , we could integrate our atmospheric models forward to forecast the state of the atmosphere at N time points

$$x^i = \mathcal{M}(x^{i-1}), i = 1, \dots, N$$

 (x^i) : state of the atmosphere at time i)

Observe the atmosphere at these N time points

$$y^1,\ldots,y^N$$

 (y^i) : observed state at time i)

► Let x^b (background state) be values at initial time point obtained from previous forecast — carry over old information

Motivating Example ○○○○●

Data assimilation as an optimization problem

Define the difference

$$f(x^{0}) = \begin{bmatrix} x^{0} - x^{b} \\ x^{1} - y^{1} \\ \vdots \\ x^{N} - y^{N} \end{bmatrix}$$

and choose x^0 as the initial state "most likely" to have given the observed data

$$\min_{x^0} \ \frac{1}{2} \| f(x^0) \|_{R^{-1}}^2 = \frac{1}{2} (x^0 - x^b)^T (R^b)^{-1} (x^0 - x^b) + \frac{1}{2} \sum_{i=0}^N (x^i - y^i)^T (R^i)^{-1} (x^i - y^i)$$

- $ightharpoonup rac{1}{2} \|f(x^0)\|_{R^{-1}}^2$: distance measure between observed and expected behavior
- ▶ $R = (R^b, R^1, ..., R^N)$: background and observation error covariance matrices (choice of these values is a separate, but important issue)
- ▶ In current forecasts, x^0 contains approximately 3×10^8 unknowns

Outline

•00000000

Motivating Example: Data Assimilation in Weather Forecasting

Solution Techniques

Computational issues

Data assimilation optimization problem:

$$\min_{x^0} \frac{1}{2} \|f(x^0)\|_{R^{-1}}^2 = \frac{1}{2} (x^0 - x^b)^T (R^b)^{-1} (x^0 - x^b) + \frac{1}{2} \sum_{i=0}^N (x^i - y^i)^T (R^i)^{-1} (x^i - y^i)$$

Difficulties include:

- ▶ problem is very large $(|x^0| \approx 3 \times 10^8)$
- objective is nonconvex (nonlinear operators \mathcal{M}^i)
- exact derivative information not available
- solutions needed in real-time

Current algorithm: nonlinear elimination

Given a guess of the initial state x^0

1. Apply operators \mathcal{M}^i to compute the expected state at the N time points

$$x^i = \mathcal{M}(x^{i-1}), i = 1, \dots, N$$

and evaluate the objective $\frac{1}{2} ||f(x^0)||_{R^{-1}}^2$

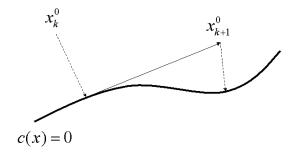
- 2. Compute a step d toward an improved solution
 - a. ... derive sensitivities of x^1, \dots, x^N with respect to x^0 to form

$$J(x^0)$$
: Jacobian of $f(x^0)$

(Note: can only be done inexactly)
b. ... solve the guadratic problem

$$\min_{d} \ \frac{1}{2} \|f(x^0) + J(x^0)d\|_{R^{-1}}^2$$

Illustration of solution process



Recent advances: multilevel schemes

We are interested in solving the subproblem

$$\min_{d} q(d) = \frac{1}{2} ||f(x^{0}) + J(x^{0})d||_{R^{-1}}^{2}$$

- Conjugate Gradients or Lanczos method is applicable, but not at high resolutions
- Define a restriction operator S such that

$$\hat{x}^i = Sx^i, \ i = 0, \dots, N$$

Solve

$$\min_{\hat{d}} \hat{q}(\hat{d})$$

where \hat{q} is a lower-resolution analog of q

Use a prolongation operator S⁺ to map the computed step into the higher-resolution space

$$x^0 \leftarrow x^0 + S^+ \hat{d}$$

Future study: "weak constraints"

- Previous formulation assumes that model errors can be neglected
- However, we can lift this questionable assumption by imposing "weak constraints"

$$x^i \approx \mathcal{M}(x^{i-1}), i = 1, \dots, N$$

▶ These "approximate" equalities can be imposed by creating a penalty term in the objective

$$\min \frac{1}{2} (x^0 - x^b)^T (R^b)^{-1} (x^0 - x^b) + \frac{1}{2} \sum_{i=0}^{N} (x^i - y^i)^T (R^i)^{-1} (x^i - y^i) + \frac{1}{2} \sum_{i=1}^{N} (x^i - \mathcal{M}(x^{i-1}))^T (Q^i)^{-1} (x^i - \mathcal{M}(x^{i-1}))$$

where Q^i are model error covariances

Note: state vectors x^1, \ldots, x^N become unknowns; problem dimension can increase from 3×10^8 to as large as 7×10^9 !

Future study: "weak constraints"

The "weak constraint" formulation

$$\min \frac{1}{2} (x^0 - x^b)^T (R^b)^{-1} (x^0 - x^b) + \frac{1}{2} \sum_{i=0}^{N} (x^i - y^i)^T (R^i)^{-1} (x^i - y^i) + \frac{1}{2} \sum_{i=1}^{N} (x^i - \mathcal{M}(x^{i-1}))^T (Q^i)^{-1} (x^i - \mathcal{M}(x^{i-1}))$$

can be seen as a step toward constrained optimization

$$\begin{aligned} & \min_{x^0, \dots, x^N} \ \tfrac{1}{2} (x^0 - x^b)^T (R^b)^{-1} (x^0 - x^b) + \tfrac{1}{2} \sum_{i=0}^N (x^i - y^i)^T (R^i)^{-1} (x^i - y^i) \\ & \text{s.t. } x^i = \mathcal{M}(x^{i-1}), \ i = 1, \dots, N \end{aligned}$$

(Note: in solving the constrained formulation, constraints are satisfied only in the limit)

000000000

Motivating Example

Challenges in PDE-Constrained Optimization

Optimization Method	Multilevel Schemes
Nonlinear elimination	Compute steps at low resolution
Composite-step methods	Optimize at low resolution
Full space methods	
DO versus OD	Inexactness
Discretize-Optimize	Efficiency
Optimize-Discretize	Robustness

Overview of important optimization questions

000000000

Motivating Example

Challenges in PDE-Constrained Optimization

Optimization Method	Multilevel Schemes
Nonlinear elimination	Compute steps at low resolution
Composite-step methods	Optimize at low resolution
Full space methods	
DO versus OD	Inexactness
Discretize-Optimize	Efficiency
Optimize-Discretize	Robustness

Methods arising in the data assimilation problem

000000000

Motivating Example

Challenges in PDE-Constrained Optimization

Optimization Method	Multilevel Schemes
Nonlinear elimination	Compute steps at low resolution
Composite-step methods	Optimize at low resolution
Full space methods	
DO versus OD	Inexactness
Discretize-Optimize	Efficiency
Optimize-Discretize	Robustness

Our contribution to the field...

Computational savings with inexact methods

Inexact step computations are

... effective for unconstrained optimization ²

$$\min_{x \in \mathbb{R}^n} f(x)$$

... effective for systems of nonlinear equations ³

$$F(x) = 0$$
 or $\min_{x \in \mathbb{R}^n} ||F(x)||$

… necessary for many PDE-constrained problems

²(Steihaug, 1983)

³(Dembo, Eisenstat, Steihaug, 1982)

Background and Basics

Outline

Motivating Example: Data Assimilation in Weather Forecasting

Problem Formulation Solution Technique

Inexact SQP Methods for Equality Constrained Optimization Background and Basics

Algorithm Overview

Numerical Results

Optimization Test Problems: Robustness PDE-Constrained Test Problems: Practicalit

Related and Future Work

Inexact SQP for nonconvex optimization

Equality Constrained Optimization

Minimize an objective subject to mathematical equalities

$$\min_{x\in\mathbb{R}^n} f(x)$$

s.t.
$$c(x) = 0$$

(where the constraints c(x) = 0 contain the PDE)

Characterizing Optimal Solutions

Defining

$$\mathcal{L}(x,\lambda) = f(x) + \lambda^{T} c(x)$$

and then the derivatives

$$g(x) = \nabla f(x)$$

and $A(x) = [\nabla c^{i}(x)],$

we have the first order optimality conditions

$$\begin{bmatrix} g(x) + A(x)^T \lambda \\ c(x) \end{bmatrix} = 0$$

Background and Basics

Motivating Example

Method of choice: Sequential Quadratic Programming (SQP)

At a given iterate x_k , formulate the quadratic subproblem

$$\min_{d \in \mathbb{R}^n} f_k + g_k^T d + \frac{1}{2} d^T W_k d$$
s.t. $c_k + A_k d = 0$

for some symmetric *positive definite* W_k ($\approx \nabla^2_{xx} \mathcal{L}_k$) to compute a step, or, equivalently, solve the primal-dual system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

Measure progress toward a solution with the "merit function"

$$\phi_{\pi}(x) = f(x) + \pi ||c(x)||, \qquad \pi > 0$$

(It works!)

Motivating Example

SQP:

for k = 1, 2, ...

Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

Set $\pi_k \geq \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \le \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$

SQP:

for
$$k = 1, 2, ...$$

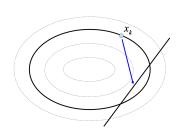
Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

0000

Set $\pi_k \geq \pi_{k-1}$

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \leq \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$



SQP:

for
$$k = 1, 2, ...$$

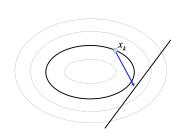
Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

Set $\pi_k \geq \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \leq \phi_{\pi_k}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\pi_k}(\mathbf{d}_k)$$



SQP:

for
$$k = 1, 2, \dots$$

Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

Set $\pi_k \geq \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le \phi_{\pi_k}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\pi_k}(\mathbf{d}_k)$$
 endfor

The step is good; $D\phi_{\pi_k}(d_k) < 0$

- Algorithm is well-defined;
 α_k > 0
- $ightharpoonup \pi$ will stabilize
- reducing ϕ_{π} drives search toward solution of optimization problem

Algorithm Overview

Motivating Example

Outline

Motivating Example: Data Assimilation in Weather Forecasting

Problem Formulation Solution Technique

Inexact SQP Methods for Equality Constrained Optimization

Background and Basics

Algorithm Overview

Numerical Results

Optimization Test Problems: Robustness PDE-Constrained Test Problems: Practicali

Related and Future Work

Inexact SQP for nonconvex optimization

Inexactness is necessary

▶ An SQP algorithm requires the exact solution of the system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$

However, for many PDE constrained problems we cannot form or factor this iteration matrix

 Alternatively, we can consider the application of an iterative solver which, during each inner iteration, yields

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

with residuals (ρ_k, r_k)

▶ Iterative methods only require mechanisms for computing products with W_k and A_k and its transpose, so the algorithm is "matrix-free"

Related and Future Work

Motivating Example

"Inexact" SQP:

Idea: terminate when $\|(\rho_k, r_k)\|$ is "small"

for k = 1, 2, ...

Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Set $\pi_k > \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \le \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$

"Inexact" SQP:

Idea: terminate when $\|(\rho_k, r_k)\|$ is "small"

for k = 1, 2, ...

Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

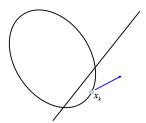
Set $\pi_k \geq \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \le \phi_{\pi_k}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\pi_k}(\mathbf{d}_k)$$

endfor

For any level of inexactness:



"Inexact" SQP:

Idea: terminate when $\|(\rho_k, r_k)\|$ is "small"

for
$$k = 1, 2, \dots$$

Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Set $\pi_k \geq \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \leq \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$

endfor

For any level of inexactness:

- Step may be an ascent direction for ϕ_{π}
- Penalty parameter may tend to ∞

"Inexact" SQP:

We don't know when to terminate the iterative solver

for k = 1, 2, ...

Compute step:

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Set $\pi_k > \pi_{k-1}$

Line search:

$$\phi_{\pi_k}(x_k + \alpha_k d_k) \leq \phi_{\pi_k}(x_k) + \eta \alpha_k D \phi_{\pi_k}(d_k)$$

endfor

For any level of inexactness:

- Step may be an ascent direction for ϕ_{π}
- Penalty parameter may tend to ∞

Main idea: inexactness based on models

- ▶ Modern optimization methods work with *models*
- ► For the merit function

$$\phi_{\pi}(x) = f(x) + \pi ||c(x)||,$$

define a model about x_k :

$$m_{\pi}(d) = f_k + g_k^T d + \frac{1}{2} d^T W_k d + \pi ||c_k + A_k d||,$$

lacktriangle For a given d_k , we can estimate the reduction in ϕ_π by evaluating

$$mred_{\pi}(d_k) = m_{\pi}(0) - m_{\pi}(d_k)$$

= $-g_k^T d_k - \frac{1}{2} d_k^T W_k d_k + \pi(\|c_k\| - \|r_k\|)$

$$(\text{recall } r_k = c_k + A_k d_k)$$

Algorithm Overview

Motivating Example

Termination Tests

We may terminate the iteration on

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

if the component d_k :

Algorithm Overview

Motivating Example

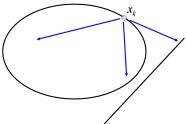
Termination Tests

We may terminate the iteration on

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

if the component d_k : (1) yields a sufficiently large reduction in the model of the merit function for the most recent penalty parameter π_{k-1} ; i.e.

$$mred_{\pi_{k-1}}(d_k) \geq \sigma \pi_{k-1} \|c_k\|$$



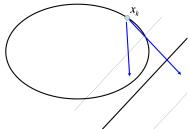
Termination Tests

We may terminate the iteration on

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

if the component d_k : (2) yields a reduction in the linear model of the constraints; i.e., for $\pi_k > \pi_{k-1}$

$$mred_{\pi_k}(d_k) \geq \sigma \pi_k \|c_k\|$$



An Inexact SQP Algorithm (Byrd, Curtis, and Nocedal, 2007)

Given parameters $0 < \epsilon, \tau, \sigma, \eta < 1$ and $0 < \beta$

Initialize x_0, λ_0 , and $\pi_{-1} > 0$

for $k = 0, 1, 2, \ldots$, until convergence

Set $\pi_k = \pi_{k-1}$

Iteratively solve the system

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

Terminate the inner iterations when

$$\begin{array}{lll} \mathit{mred}_{\pi_k}(d_k) & \geq & \sigma\pi_k\|c_k\| \\ \|\rho_k\| & \leq & \max\{\beta\|c_k\|, \epsilon\|g_k + A_k^T\lambda_k\|\} \end{array} \qquad \text{or} \qquad \begin{array}{ll} \|r_k\| & \leq & \epsilon\|c_k\| \\ \|\rho_k\| & \leq & \beta\|c_k\| \\ \pi_k & \geq & \frac{g_k^Td_k + \frac{1}{2}d_k^TW_kd_k}{(1-\tau)(\|c_k\| - \|r_k\|)} \end{array}$$

Perform line search $\phi_{\pi_k}(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \leq \phi_{\pi_k}(\mathbf{x}_k) + \eta \alpha_k D \phi_{\pi_k}(\mathbf{d}_k)$

Set $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k(d_k, \delta_k)$

endfor

Summary: Our contribution

- ▶ SQP is the algorithm of choice for large-scale constrained optimization
- Introducing inexactness is a difficult issue and naïve approaches can fail to ensure convergence
- We present two simple termination tests for the iterative solver, where the level of inexactness is based on models of a merit function
- The algorithm is globally convergent
- Numerical experiments are considered next...

Optimization Test Problems: Robustness

Outline

Motivating Example: Data Assimilation in Weather Forecasting

Problem Formulation Solution Techniques

Inexact SQP Methods for Equality Constrained Optimization

Background and Basics

Numerical Results

Optimization Test Problems: Robustness

PDE-Constrained Test Problems: Practicality

Related and Future Work

Inexact SQP for nonconvex optimizatio

Question: Is the algorithm robust?

44 problems from standard optimization test sets (CUTEr and COPS)

► Algorithm A: inexactness based on

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix} \right\|, \quad 0 < \kappa < 1$$

Algorithm B: inexactness based on model reductions (Note: can have $\kappa \geq 1!$)

Algorithm	Alg. A			Alg. B
κ	2^{-1}	2^{-5}	2^{-10}	_
% Solved	45%	80%	86%	100%

PDE-Constrained Test Problems: Practicality

Outline

Motivating Example: Data Assimilation in Weather Forecasting

Problem Formulation Solution Techniques

Inexact SQP Methods for Equality Constrained Optimization

Background and Basic
Algorithm Overview

Numerical Results

Optimization Test Problems: Robustness

PDE-Constrained Test Problems: Practicality

Related and Future Work
Inexact SQP for nonconvex optimization

PDE-Constrained Test Problems: Practicality

Question: Is the algorithm practical?

2 model inverse problems in PDE-constrained optimization⁴

$$\min_{(y,z)\in\mathbb{R}^n} \frac{1}{2} ||Qz - d||^2 + \gamma R(y - y_{ref})$$
s.t. $\mathcal{A}(y)z = a$

where

Motivating Example

$$\label{eq:objective} \begin{array}{ll} \text{objective} = \text{ data fitting} + \text{regularization} \\ \text{constraints} = \text{PDE} \end{array}$$

Example applications:

- ▶ Elliptic PDE groundwater modeling, DC resistivity
- Parabolic PDE optical tomography, electromagnetic imaging

⁴(Haber and Hanson, 2007)

Question: Is the algorithm practical?

First problem (n = 8192, t = 4096)

- ► Elliptic PDE (groundwater modeling, DC resistivity)
- ... many details ...
- Solution obtained in 9 iterations Sample output:

$$\left(\mathsf{Note:}\ \kappa_k = \|(\rho_k, r_k)\|/\|(g_k + A_k^\mathsf{T} \lambda_k, c_k)\|\right)$$

k	KKT	Inner Iter.	κ_k	T. Test
3	5.22×10^{-1}	2	9.66×10^{-1}	$new\ \pi$
4	1.11×10^{-1}	10	9.39×10^{-1}	curr. π
5	1.04×10^{-1}	1	9.60×10^{-1}	$new\ \pi$

• Overall, average $\kappa_k \approx 5.40 \times 10^{-1}$

PDE-Constrained Test Problems: Practicality

Motivating Example

Question: Is the algorithm practical?

Second problem (n = 69632, t = 65536)

- Parabolic PDE (optical tomography, electromagnetic imaging)
- ... many details ...
- Solution obtained in 11 iterations Sample output:

$$\left(\text{Note: }\kappa_k = \|(\rho_k, r_k)\|/\|(g_k + A_k^T \lambda_k, c_k)\|\right)$$

k	KKT	Inner Iter.	κ_k	T. Test
4	1.63×10^{-1}	1	9.50×10^{-1}	curr. π
5	1.55×10^{-1}	2	9.55×10^{-1}	curr. π
6	1.48×10^{-1}	3	5.65×10^{-1}	$new\ \pi$

• Overall, average $\kappa_k \approx 4.49 \times 10^{-1}$

Inexact SQP for nonconvex optimization

Outline

Motivating Example: Data Assimilation in Weather Forecasting

Problem Formulation Solution Techniques

Inexact SQP Methods for Equality Constrained Optimization

Background and Basic

Algorithm Overview

Numerical Results

Optimization Test Problems: Robustness PDE-Constrained Test Problems: Practicalir

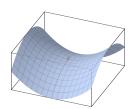
Related and Future Work
Inexact SQP for nonconvex optimization

Convexity assumption

Step computation procedure

$$\min_{d \in \mathbb{R}^n} f_k + g_k^T d + \frac{1}{2} d^T W_k d$$
s.t. $c_k + A_k d = 0$

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$



Nonconvex optimization

- ▶ If W_k is not convex in the null space of the constraints
 - No guarantee of descent
 - Step may be unbounded
- Without a factorization of the primal-dual matrix

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix}$$

we may not know if the problem is convex or not

▶ We could always set W_k to a simple positive definite matrix, but then we may be distorting second order information (if available)

First step: recognizing good steps

▶ If the problem is convex, then a solution to

$$\begin{bmatrix} W_k & A_k^T \\ A_k & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} g_k + A_k^T \lambda_k \\ c_k \end{bmatrix}$$
 (1)

is a good step

- If the problem is nonconvex, then a solution to (1) may still be a good step
- ▶ Idea: characterize d_k based on properties of the decomposition

$$d_k = u_k + v_k$$
 (Note: $||d_k||^2 = ||u_k||^2 + ||v_k||^2$)

where $A_k u_k = 0$ and v_k lies in $range(A_k^T)$

Inexact SQP for nonconvex optimization

Central claim

Motivating Example

A step is good if either termination test for the inexact SQP algorithm is satisfied and for some small $\theta > 0$ we have

(a)
$$\theta \|u_k\| \le \|v_k\|$$
 or (b) $d_k^T W_k d_k \ge \theta \|u_k\|^2$

Notice that

- (a) implies that the step d_k is sufficiently parallel to v_k
- (b) implies that the curvature is sufficiently positive along d_k

Inexact SQP for nonconvex optimization

Motivating Example

Estimating properties of the step

Observing

$$||v_k|| \ge ||A_k v_k||/||A_k|| = ||A_k d_k||/||A_k||,$$

we find

$$\theta \|d_k\| \le \|A_k d_k\|/\|A_k\| \quad \Rightarrow \quad \frac{\theta \|u_k\| \le \|v_k\|}{\|v_k\|}$$

and

$$d_k^T W_k d_k \ge \theta(\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2) \quad \Rightarrow \quad d_k^T W_k d_k \ge \theta \|u_k\|^2$$

Proposed Algorithm

Apply an iterative solver to the primal-dual system

- Stop if a termination test is satisfied and
 - ightharpoonup ... step is sufficiently parallel to v_k

$$\theta \|d_k\| \leq \|A_k d_k\|/\|A_k\|$$

... or curvature is sufficiently positive

$$d_k^T W_k d_k \ge \theta (\|d_k\|^2 - \|A_k d_k\|^2 / \|A_k\|^2)$$

▶ If $\theta \|d_k\| > \|A_k d_k\|/\|A_k\|$, then set $W_k \leftarrow \tilde{W}_k$ to satisfy

$$\theta\left(\|d_{k}\|^{2}-\|A_{k}d_{k}\|^{2}/\|A_{k}\|^{2}\right)\leq d_{k}^{T}\tilde{W}_{k}d_{k}$$

and iterate on perturbed system

Conclusion

We have:

- 1. Described an important and challenging sample problem in PDE-constrained optimization
- 2. Described a globally convergent algorithm in the framework of a powerful algorithm: sequential quadratic programming
- 3. The algorithm has shown to be robust and efficient for realistic applications
- 4. Described some ideas for extending the approach to nonconvex problems