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Problem Formulation

Data assimilation in weather forecasting
I Goal: up-to-date global weather forecast for the next 7 to 10 days 1

I If an entire initial state of the atmosphere (temperatures, pressures, wind
patterns, humidities) were known at a certain point in time, then an
accurate forecast could be obtained by integrating atmospheric model
equations forward in time

I Flow described by Navier-Stokes and further sophistications of
atmospheric physics and dynamics (none of which will be discussed here)

1(Fisher, Nocedal, Trémolet, and Wright, 2007)
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Problem Formulation

In reality: partial information
Limited amount of data (satellites, buoys, planes, ground-based sensors)

I Each observation is subject to error

I Nonuniformly distributed around the globe (satellite paths,
densely-populated areas)

(Graphics courtesy Yannick Trémolet)
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Problem Formulation

Data assimilation: defining the unknowns
Currently in operational use at the European Centre for Medium-Range
Weather Forecasts (ECMWF)

I We want values for an initial state, call it x0

I For a given x0, we could integrate our atmospheric models forward to
forecast the state of the atmosphere at N time points

x i =M(x i−1), i = 1, . . . , N

(x i : state of the atmosphere at time i)

I Observe the atmosphere at these N time points

y 1, . . . , yN

(y i : observed state at time i)

I Let xb (background state) be values at initial time point obtained from
previous forecast — carry over old information
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Problem Formulation

Data assimilation as an optimization problem
Define the difference

f (x0) =

26664
x0 − xb

x1 − y 1

...
xN − yN

37775
and choose x0 as the initial state “most likely” to have given the observed data

min
x0

1
2
‖f (x0)‖2R−1 = 1

2
(x0−xb)T (Rb)

−1
(x0−xb)+ 1

2

PN
i=0(x

i−y i )T (R i )
−1

(x i−y i )

I 1
2
‖f (x0)‖2R−1 : distance measure between observed and expected behavior

I R = (Rb, R1, . . . , RN): background and observation error covariance
matrices (choice of these values is a separate, but important issue)

I In current forecasts, x0 contains approximately 3× 108 unknowns
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Solution Techniques

Computational issues

Data assimilation optimization problem:

min
x0

1
2
‖f (x0)‖2R−1 = 1

2
(x0−xb)T (Rb)

−1
(x0−xb)+ 1

2

PN
i=0(x

i−y i )T (R i )
−1

(x i−y i )

Difficulties include:

I problem is very large (|x0| ≈ 3× 108)

I objective is nonconvex (nonlinear operatorsMi )

I exact derivative information not available

I solutions needed in real-time
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Solution Techniques

Current algorithm: nonlinear elimination
Given a guess of the initial state x0

1. Apply operatorsMi to compute the expected state at the N time points

x i =M(x i−1), i = 1, . . . , N

and evaluate the objective 1
2
‖f (x0)‖2R−1

2. Compute a step d toward an improved solution

a. ... derive sensitivities of x1, . . . , xN with respect to x0 to form

J(x0) : Jacobian of f (x0)

(Note: can only be done inexactly)
b. ... solve the quadratic problem

min
d

1
2‖f (x0) + J(x0)d‖2

R−1
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Solution Techniques

Illustration of solution process
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Solution Techniques

Recent advances: multilevel schemes
We are interested in solving the subproblem

min
d

q(d) = 1
2
‖f (x0) + J(x0)d‖2R−1

I Conjugate Gradients or Lanczos method is applicable, but not at high
resolutions

I Define a restriction operator S such that

x̂ i = Sx i , i = 0, . . . , N

I Solve
min

d̂
q̂(d̂)

where q̂ is a lower-resolution analog of q

I Use a prolongation operator S+ to map the computed step into the
higher-resolution space

x0 ← x0 + S+d̂
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Solution Techniques

Future study: “weak constraints”

I Previous formulation assumes that model errors can be neglected

I However, we can lift this questionable assumption by imposing “weak
constraints”

x i ≈M(x i−1), i = 1, . . . , N

I These “approximate” equalities can be imposed by creating a penalty
term in the objective

min 1
2
(x0 − xb)T (Rb)

−1
(x0 − xb) + 1

2

PN
i=0(x

i − y i )T (R i )
−1

(x i − y i )

+ 1
2

PN
i=1(x

i −M(x i−1))T (Q i )
−1

(x i −M(x i−1))

where Q i are model error covariances

I Note: state vectors x1, . . . , xN become unknowns; problem dimension can
increase from 3× 108 to as large as 7× 109!
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Solution Techniques

Future study: “weak constraints”

The “weak constraint” formulation

min 1
2
(x0 − xb)T (Rb)

−1
(x0 − xb) + 1

2

PN
i=0(x

i − y i )T (R i )
−1

(x i − y i )

+ 1
2

PN
i=1(x

i −M(x i−1))T (Q i )
−1

(x i −M(x i−1))

can be seen as a step toward constrained optimization

min
x0,...,xN

1
2
(x0 − xb)T (Rb)

−1
(x0 − xb) + 1

2

PN
i=0(x

i − y i )T (R i )
−1

(x i − y i )

s.t. x i =M(x i−1), i = 1, . . . , N

(Note: in solving the constrained formulation, constraints are satisfied only in
the limit)
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Solution Techniques

Challenges in PDE-Constrained Optimization

Optimization Method Multilevel Schemes

Nonlinear elimination Compute steps at low resolution
Composite-step methods Optimize at low resolution
Full space methods

DO versus OD Inexactness

Discretize-Optimize Efficiency
Optimize-Discretize Robustness

Overview of important optimization questions
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Solution Techniques

Challenges in PDE-Constrained Optimization

Optimization Method Multilevel Schemes

Nonlinear elimination Compute steps at low resolution
Composite-step methods Optimize at low resolution
Full space methods

DO versus OD Inexactness

Discretize-Optimize Efficiency
Optimize-Discretize Robustness

Methods arising in the data assimilation problem
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Solution Techniques

Challenges in PDE-Constrained Optimization

Optimization Method Multilevel Schemes

Nonlinear elimination Compute steps at low resolution
Composite-step methods Optimize at low resolution
Full space methods

DO versus OD Inexactness

Discretize-Optimize Efficiency
Optimize-Discretize Robustness

Our contribution to the field...
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Solution Techniques

Computational savings with inexact methods

Inexact step computations are

I ... effective for unconstrained optimization 2

min
x∈Rn

f (x)

I ... effective for systems of nonlinear equations 3

F (x) = 0 or min
x∈Rn

‖F (x)‖

I ... necessary for many PDE-constrained problems

2(Steihaug, 1983)
3(Dembo, Eisenstat, Steihaug, 1982)
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Background and Basics

Equality Constrained Optimization

Minimize an objective subject to mathematical equalities

min
x∈Rn

f (x)

s.t. c(x) = 0

(where the constraints c(x) = 0 contain the PDE)
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Background and Basics

Characterizing Optimal Solutions

Defining
L(x , λ) = f (x) + λT c(x)

and then the derivatives

g(x) = ∇f (x)

and A(x) = [∇c i (x)],

we have the first order optimality conditions»
g(x) + A(x)T λ

c(x)

–
= 0
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Background and Basics

Method of choice: Sequential Quadratic Programming (SQP)

At a given iterate xk , formulate the quadratic subproblem

min
d∈Rn

fk + gT
k d +

1

2
dTWkd

s.t. ck + Akd = 0

for some symmetric positive definite Wk (≈ ∇2
xxLk) to compute a step, or,

equivalently, solve the primal-dual system»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
Measure progress toward a solution with the “merit function”

φπ(x) = f (x) + π‖c(x)‖, π > 0

Numerical Methods for PDE-Constrained Optimization University of Colorado and Northwestern University



Motivating Example Inexact SQP Methods Numerical Results Related and Future Work Conclusion

Background and Basics

SQP:

for k = 1, 2, . . .

Compute step:»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
Set πk ≥ πk−1

Line search:

φπk (xk + αkdk) ≤ φπk (xk) + ηαkDφπk (dk)

endfor

(It works!)
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Background and Basics

SQP:

for k = 1, 2, . . .

Compute step:»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
Set πk ≥ πk−1

Line search:

φπk (xk + αkdk) ≤ φπk (xk) + ηαkDφπk (dk)

endfor

I The step is good;
Dφπk (dk) < 0

I Algorithm is well-defined;
αk > 0

I π will stabilize

I reducing φπ drives search
toward solution of
optimization problem
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Algorithm Overview

Inexactness is necessary

I An SQP algorithm requires the exact solution of the system»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
However, for many PDE constrained problems we cannot form or factor
this iteration matrix

I Alternatively, we can consider the application of an iterative solver which,
during each inner iteration, yields»

Wk AT
k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
with residuals (ρk , rk)

I Iterative methods only require mechanisms for computing products with
Wk and Ak and its transpose, so the algorithm is “matrix-free”
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Algorithm Overview

“Inexact” SQP:

Idea: terminate when ‖(ρk , rk)‖ is “small”

for k = 1, 2, . . .

Compute step:»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
Set πk ≥ πk−1

Line search:

φπk (xk + αkdk) ≤ φπk (xk) + ηαkDφπk (dk)

endfor
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Algorithm Overview

“Inexact” SQP:

Idea: terminate when ‖(ρk , rk)‖ is “small”

for k = 1, 2, . . .

Compute step:»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
Set πk ≥ πk−1

Line search:

φπk (xk + αkdk) ≤ φπk (xk) + ηαkDφπk (dk)

endfor

For any level of inexactness:
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Algorithm Overview

“Inexact” SQP:

Idea: terminate when ‖(ρk , rk)‖ is “small”

for k = 1, 2, . . .

Compute step:»
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k
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–
= −
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k λk
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–
+

»
ρk

rk

–
Set πk ≥ πk−1

Line search:

φπk (xk + αkdk) ≤ φπk (xk) + ηαkDφπk (dk)

endfor

For any level of inexactness:

I Step may be an ascent
direction for φπ

I Penalty parameter may
tend to ∞
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Algorithm Overview

“Inexact” SQP:

We don’t know when to terminate the iterative solver

for k = 1, 2, . . .

Compute step:»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
Set πk ≥ πk−1

Line search:
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endfor

For any level of inexactness:

I Step may be an ascent
direction for φπ

I Penalty parameter may
tend to ∞
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Algorithm Overview

Main idea: inexactness based on models

I Modern optimization methods work with models

I For the merit function

φπ(x) = f (x) + π‖c(x)‖,

define a model about xk :

mπ(d) = fk + gT
k d + 1

2
dTWkd + π‖ck + Akd‖,

I For a given dk , we can estimate the reduction in φπ by evaluating

mredπ(dk) = mπ(0)−mπ(dk)

= −gT
k dk − 1

2
dT

k Wkdk + π(‖ck‖ − ‖rk‖)

(recall rk = ck + Akdk)
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Algorithm Overview

Termination Tests
We may terminate the iteration on»

Wk AT
k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
if the component dk :
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Algorithm Overview

Termination Tests
We may terminate the iteration on»

Wk AT
k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
if the component dk : (1) yields a sufficiently large reduction in the model of
the merit function for the most recent penalty parameter πk−1; i.e.

mredπk−1(dk) ≥ σπk−1‖ck‖
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Algorithm Overview

Termination Tests
We may terminate the iteration on»

Wk AT
k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
if the component dk : (2) yields a reduction in the linear model of the
constraints; i.e., for πk > πk−1

mredπk (dk) ≥ σπk‖ck‖
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Algorithm Overview

An Inexact SQP Algorithm (Byrd, Curtis, and Nocedal, 2007)

Given parameters 0 < ε, τ, σ, η < 1 and 0 < β

Initialize x0, λ0, and π−1 > 0

for k = 0, 1, 2, . . . , until convergence

Set πk = πk−1

Iteratively solve the system»
Wk AT

k
Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
+

»
ρk

rk

–
Terminate the inner iterations when

mredπk (dk ) ≥ σπk‖ck‖
‖ρk‖ ≤ max{β‖ck‖, ε‖gk + AT

k λk‖}
or

‖rk‖ ≤ ε‖ck‖
‖ρk‖ ≤ β‖ck‖

πk ≥
gT
k dk+

1
2
dT

k Wkdk
(1−τ)(‖ck‖−‖rk‖)

Perform line search φπk (xk + αkdk ) ≤ φπk (xk ) + ηαkDφπk (dk )

Set (xk+1, λk+1)← (xk , λk ) + αk (dk , δk )

endfor
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Algorithm Overview

Summary: Our contribution

I SQP is the algorithm of choice for large-scale constrained optimization

I Introducing inexactness is a difficult issue and näıve approaches can fail
to ensure convergence

I We present two simple termination tests for the iterative solver, where the
level of inexactness is based on models of a merit function

I The algorithm is globally convergent

I Numerical experiments are considered next...
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Optimization Test Problems: Robustness
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Optimization Test Problems: Robustness

Question: Is the algorithm robust?

44 problems from standard optimization test sets (CUTEr and COPS)

I Algorithm A: inexactness based on‚‚‚‚»
ρk

rk

–‚‚‚‚ ≤ κ

‚‚‚‚»
gk + AT

k λk

ck

–‚‚‚‚ , 0 < κ < 1

I Algorithm B: inexactness based on model reductions
(Note: can have κ ≥ 1!)

Algorithm Alg. A Alg. B

κ 2−1 2−5 2−10 —

% Solved 45% 80% 86% 100%
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PDE-Constrained Test Problems: Practicality

Outline

Motivating Example: Data Assimilation in Weather Forecasting
Problem Formulation
Solution Techniques

Inexact SQP Methods for Equality Constrained Optimization
Background and Basics
Algorithm Overview

Numerical Results
Optimization Test Problems: Robustness
PDE-Constrained Test Problems: Practicality

Related and Future Work
Inexact SQP for nonconvex optimization

Numerical Methods for PDE-Constrained Optimization University of Colorado and Northwestern University



Motivating Example Inexact SQP Methods Numerical Results Related and Future Work Conclusion

PDE-Constrained Test Problems: Practicality

Question: Is the algorithm practical?
2 model inverse problems in PDE-constrained optimization4

min
(y,z)∈Rn

1
2
‖Qz − d‖2 + γR(y − yref )

s.t. A(y)z = q

where

objective = data fitting + regularization

constraints = PDE

Example applications:

I Elliptic PDE — groundwater modeling, DC resistivity

I Parabolic PDE — optical tomography, electromagnetic imaging

4(Haber and Hanson, 2007)
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PDE-Constrained Test Problems: Practicality

Question: Is the algorithm practical?
First problem (n = 8192, t = 4096)

I Elliptic PDE (groundwater modeling, DC resistivity)

I . . . many details . . .

I Solution obtained in 9 iterations
Sample output:“

Note: κk = ‖(ρk , rk)‖/‖(gk + AT
k λk , ck)‖

”
k ‖KKT‖ Inner Iter. κk T. Test

3 5.22× 10−1 2 9.66× 10−1 new π
4 1.11× 10−1 10 9.39× 10−1 curr. π
5 1.04× 10−1 1 9.60× 10−1 new π

I Overall, average κk ≈ 5.40× 10−1
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PDE-Constrained Test Problems: Practicality

Question: Is the algorithm practical?
Second problem (n = 69632, t = 65536)

I Parabolic PDE (optical tomography, electromagnetic imaging)

I . . . many details . . .

I Solution obtained in 11 iterations
Sample output:“

Note: κk = ‖(ρk , rk)‖/‖(gk + AT
k λk , ck)‖

”
k ‖KKT‖ Inner Iter. κk T. Test

4 1.63× 10−1 1 9.50× 10−1 curr. π
5 1.55× 10−1 2 9.55× 10−1 curr. π
6 1.48× 10−1 3 5.65× 10−1 new π

I Overall, average κk ≈ 4.49× 10−1
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Inexact SQP for nonconvex optimization
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Inexact SQP for nonconvex optimization

Convexity assumption

Step computation procedure

min
d∈Rn

fk + gT
k d + 1

2
dTWkd

s.t. ck + Akd = 0

»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
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Inexact SQP for nonconvex optimization

Nonconvex optimization

I If Wk is not convex in the null space of the constraints

I No guarantee of descent
I Step may be unbounded

I Without a factorization of the primal-dual matrix»
Wk AT

k

Ak 0

–
we may not know if the problem is convex or not

I We could always set Wk to a simple positive definite matrix, but then we
may be distorting second order information (if available)
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Inexact SQP for nonconvex optimization

First step: recognizing good steps

I If the problem is convex, then a solution to»
Wk AT

k

Ak 0

– »
dk

δk

–
= −

»
gk + AT

k λk

ck

–
(1)

is a good step

I If the problem is nonconvex, then a solution to (1) may still be a good
step

I Idea: characterize dk based on properties of the decomposition

dk = uk + vk (Note: ‖dk‖2 = ‖uk‖2 + ‖vk‖2)

where Akuk = 0 and vk lies in range(AT
k )
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Inexact SQP for nonconvex optimization

Central claim

A step is good if either termination test for the inexact SQP algorithm is
satisfied and for some small θ > 0 we have

(a) θ‖uk‖ ≤ ‖vk‖ or (b) dT
k Wkdk ≥ θ‖uk‖2

Notice that

(a) implies that the step dk is sufficiently parallel to vk

(b) implies that the curvature is sufficiently positive along dk
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Inexact SQP for nonconvex optimization

Estimating properties of the step

Observing
‖vk‖ ≥ ‖Akvk‖/‖Ak‖ = ‖Akdk‖/‖Ak‖,

we find
θ‖dk‖ ≤ ‖Akdk‖/‖Ak‖ ⇒ θ‖uk‖ ≤ ‖vk‖

and

dT
k Wkdk ≥ θ(‖dk‖2 − ‖Akdk‖2/‖Ak‖2) ⇒ dT

k Wkdk ≥ θ‖uk‖2
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Inexact SQP for nonconvex optimization

Proposed Algorithm
Apply an iterative solver to the primal-dual system

I Stop if a termination test is satisfied and

I ... step is sufficiently parallel to vk

θ‖dk‖ ≤ ‖Akdk‖/‖Ak‖

I ... or curvature is sufficiently positive

dT
k Wkdk ≥ θ

(
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

)
I If θ‖dk‖ > ‖Akdk‖/‖Ak‖, then set Wk ← W̃k to satisfy

θ
“
‖dk‖2 − ‖Akdk‖2/‖Ak‖2

”
≤ dT

k W̃kdk

and iterate on perturbed system
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Conclusion

We have:

1. Described an important and challenging sample problem in
PDE-constrained optimization

2. Described a globally convergent algorithm in the framework of a powerful
algorithm: sequential quadratic programming

3. The algorithm has shown to be robust and efficient for realistic
applications

4. Described some ideas for extending the approach to nonconvex problems
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