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Introduction

PDE-constrained optimization

min f (x)

s.t. cE(x) = 0

(PDE)

cI(x) ≥ 0

Problem is infinite-dimensional
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Introduction

Inverse problems
Recover a parameter k(x) based on data collected from propagating waves

min
y,k

1

2

X
j

X
m

(yj (xm)− yj,m)2 + α(β‖k‖2
L2(Ω)

+ ‖∇k‖2
(L2(Ω))n

)

s.t.

8>><>>:
∆yj (x) + S(x)k(x)2yj (x)− S(x)(k2

0 − k(x)2)y i
j = 0, x in Ω

yj = 0, x on ∂Ω

l(x) ≤ k(x) ≤ u(x), x in Ω

PDE-Constrained and Nonsmooth Optimization COR@L Seminar



PDE-Constrained Optimization Nonsmooth Optimization Conclusion

Introduction

Inverse problems
Recover a parameter k(x) based on data collected from propagating waves

min
y,k

1

2

X
j

X
m

(yj (xm)− yj,m)2 + α(β‖k‖2
L2(Ω)

+ ‖∇k‖2
(L2(Ω))n

)

s.t.

8>><>>:
∆yj (x) + S(x)k(x)2yj (x)− S(x)(k2

0 − k(x)2)y i
j = 0, x in Ω

yj = 0, x on ∂Ω

l(x) ≤ k(x) ≤ u(x), x in Ω

PDE-Constrained and Nonsmooth Optimization COR@L Seminar



PDE-Constrained Optimization Nonsmooth Optimization Conclusion

Introduction

Inverse problems
Recover a parameter k(x) based on data collected from propagating waves

min
y,k

1

2

X
j

X
m

(yj (xm)− yj,m)2 + α(β‖k‖2
L2(Ω)

+ ‖∇k‖2
(L2(Ω))n

)

s.t.

8>><>>:
∆yj (x) + S(x)k(x)2yj (x)− S(x)(k2

0 − k(x)2)y i
j = 0, x in Ω

yj = 0, x on ∂Ω

l(x) ≤ k(x) ≤ u(x), x in Ω

PDE-Constrained and Nonsmooth Optimization COR@L Seminar



PDE-Constrained Optimization Nonsmooth Optimization Conclusion

Introduction

Optimal design

I Regional hyperthermia is a cancer therapy that aims at heating large and
deeply seated tumors by means of radio wave adsorption

I Results in the killing of tumor cells and makes them more susceptible to
other accompanying therapies; e.g., chemotherapy
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Introduction

Optimal design

I Computer modeling can be used to help plan the therapy for each
patient, and it opens the door for numerical optimization

I The goal is to heat the tumor to a target temperature of 43◦C while
minimizing damage to nearby cells
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Introduction

Parameter estimation
I Weather forecasting

I If the initial state of the atmosphere (temperatures, pressures, wind
patterns, humidities) were known at a certain point in time, then an
accurate forecast could be obtained by integrating atmospheric model
equations forward in time

I Flow described by Navier-Stokes and further sophistications of
atmospheric physics and dynamics
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Introduction

Parameter estimation
Limited amount of data (satellites, buoys, planes, ground-based sensors)

I Each observation is subject to error

I Nonuniformly distributed around the globe (satellite paths,
densely-populated areas)
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Newton’s method

Nonlinear equations

I Newton’s method

F(x) = 0 ⇒ ∇F(xk)dk = −F(xk)

I Judge progress by the merit function

φ(x) , 1
2
‖F(x)‖2

I Direction is one of descent since

∇φ(xk)T dk = F(xk)T∇F(xk)dk = −‖F(xk)‖2 < 0

(Note the consistency between the step computation and merit function!)
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Newton’s method

Equality constrained optimization

I Consider
min
x∈Rn

f (x)

s.t. c(x) = 0

I Lagrangian is
L(x , λ) , f (x) + λT c(x)

so the first-order optimality conditions are

∇L(x , λ) =

»
∇f (x) +∇c(x)λ

c(x)

–
, F(x , λ) = 0
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Newton’s method

Merit function

I Simply minimizing

ϕ(x , λ) = 1
2
‖F(x , λ)‖2 = 1

2

‚‚‚‚»∇f (x) +∇c(x)λ
c(x)

–‚‚‚‚2

is generally inappropriate for constrained optimization

I We use the merit function

φ(x ;π) , f (x) + π‖c(x)‖

where π is a penalty parameter
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Newton’s method

Minimizing a penalty function
Consider the penalty function for

min (x − 1)2, s.t. x = 0 i.e. φ(x ;π) = (x − 1)2 + π|x |

for different values of the penalty parameter π

Figure: π = 1 Figure: π = 2
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Newton’s method

Algorithm 0: Newton method for optimization

(Assume the problem is sufficiently convex and regular)
for k = 0, 1, 2, . . .

I Solve the primal-dual (Newton) equations»
H(xk , λk) ∇c(xk)
∇c(xk)T 0

– »
dk

δk

–
= −

»
∇f (xk) +∇c(xk)λk

c(xk)

–
I Increase π, if necessary, so that Dφk(dk ;πk)� 0 (e.g., πk ≥ ‖λk + δk‖)
I Backtrack from αk ← 1 to satisfy the Armijo condition

φ(xk + αkdk ;πk) ≤ φ(xk ;πk) + ηαkDφk(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Newton’s method

Convergence of Algorithm 0

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk)T has full row rank with singular values bounded
below by a positive constant

I (Convexity) uT H(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn satisfying
u 6= 0 and ∇c(xk)T u = 0

Theorem
(Han (1977)) The sequence {(xk , λk)} yields the limit

lim
k→∞

‚‚‚‚»∇f (xk) +∇c(xk)λk

c(xk)

–‚‚‚‚ = 0
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Inexactness

Large-scale primal-dual algorithms

I Computational issues:

I Large matrices to be stored
I Large matrices to be factored

I Algorithmic issues:

I The problem may be nonconvex
I The problem may be ill-conditioned

I Computational/Algorithmic issues:

I No matrix factorizations makes difficulties more difficult
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Inexactness

Nonlinear equations

I Compute
∇F(xk)dk = −F(xk) + rk

requiring (Dembo, Eisenstat, Steihaug (1982))

‖rk‖ ≤ κ‖F(xk)‖, κ ∈ (0, 1)

I Progress judged by the merit function

φ(x) , 1
2
‖F(x)‖2

I Again, note the consistency...

∇φ(xk)T dk = F(xk)T∇F(xk)dk = −‖F(xk)‖2+F(xk)T rk ≤ (κ−1)‖F(xk)‖2 < 0
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Inexactness

Optimization

I Compute»
H(xk , λk) ∇c(xk)
∇c(xk)T 0

– »
dk

δk

–
= −

»
∇f (xk) +∇c(xk)λk

c(xk)

–
+

»
ρk

rk

–
satisfying ‚‚‚‚»ρk

rk

–‚‚‚‚ ≤ κ ‚‚‚‚»∇f (xk) +∇c(xk)λk

c(xk)

–‚‚‚‚ , κ ∈ (0, 1)

I If κ is not sufficiently small (e.g., 10−3 vs. 10−12), then dk may be an
ascent direction for our merit function; i.e.,

Dφk(dk ;πk) > 0 for all πk ≥ πk−1

I Our work begins here... inexact Newton methods for optimization

I We cover the convex case, nonconvexity, irregularity, inequality constraints
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Inexactness

Model reductions

I Define the model of φ(x ;π):

m(d ;π) , f (x) +∇f (x)T d + π(‖c(x) +∇c(x)T d‖)

I dk is acceptable if

∆m(dk ;πk) , m(0;πk)−m(dk ;πk)

= −∇f (xk)T dk + πk(‖c(xk)‖ − ‖c(xk) +∇c(xk)T dk‖)� 0

I This ensures Dφk(dk ;πk)� 0 (and more)
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Inexactness

Termination test 1
The search direction (dk , δk) is acceptable if‚‚‚‚»ρk

rk

–‚‚‚‚ ≤ κ‚‚‚‚»∇f (xk) +∇c(xk)λk

c(xk)

–‚‚‚‚ , κ ∈ (0, 1)

and if for πk = πk−1 and some σ ∈ (0, 1) we have

∆m(dk ;πk) ≥ max{ 1
2
dT

k H(xk , λk)dk , 0}+ σπk max{‖c(xk)‖, ‖rk‖ − ‖c(xk)‖}| {z }
≥ 0 for any d
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Inexactness

Termination test 2
The search direction (dk , δk) is acceptable if

‖ρk‖ ≤ β‖c(xk)‖, β > 0

and ‖rk‖ ≤ ε‖c(xk)‖, ε ∈ (0, 1)

Increasing the penalty parameter π then yields

∆m(dk ;πk) ≥ max{ 1
2
dT

k H(xk , λk)dk , 0}+ σπk‖c(xk)‖| {z }
≥ 0 for any d
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Inexactness

Algorithm 1: Inexact Newton for optimization
(Byrd, Curtis, Nocedal (2008))
for k = 0, 1, 2, . . .

I Iteratively solve»
H(xk , λk) ∇c(xk)
∇c(xk)T 0

– »
dk

δk

–
= −

»
∇f (xk) +∇c(xk)λk

c(xk)

–
until termination test 1 or 2 is satisfied

I If only termination test 2 is satisfied, increase π so

πk ≥ max

(
πk−1,

∇f (xk)T dk + max{ 1
2
dT

k H(xk , λk)dk , 0}
(1− τ)(‖c(xk)‖ − ‖rk‖)

)
I Backtrack from αk ← 1 to satisfy

φ(xk + αkdk ;πk) ≤ φ(xk ;πk)− ηαk∆m(dk ;πk)

I Update iterate (xk+1, λk+1)← (xk , λk) + αk(dk , δk)
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Inexactness

Convergence of Algorithm 1

Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous. Also,

I (Regularity) ∇c(xk)T has full row rank with singular values bounded
below by a positive constant

I (Convexity) uT H(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn satisfying
u 6= 0 and ∇c(xk)T u = 0

Theorem
(Byrd, Curtis, Nocedal (2008)) The sequence {(xk , λk)} yields the limit

lim
k→∞

‚‚‚‚»∇f (xk) +∇c(xk)λk

c(xk)

–‚‚‚‚ = 0
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Inexactness

Handling nonconvexity and rank deficiency

I There are two assumptions we aim to drop:

I (Regularity) ∇c(xk)T has full row rank with singular values
bounded below by a positive constant

I (Convexity) uTH(xk , λk)u ≥ µ‖u‖2 for µ > 0 for all u ∈ Rn

satisfying u 6= 0 and ∇c(xk)Tu = 0

e.g., the problem is not regular if it is infeasible, and it is not convex if
there are maximizers and/or saddle points

I Without them, Algorithm 1 may stall or may not be well-defined
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Inexactness

No factorizations means no clue

I We might not store or factor»
H(xk , λk) ∇c(xk)
∇c(xk)T 0

–
so we might not know if the problem is nonconvex or ill-conditioned

I Common practice is to perturb the matrix to be»
H(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T −ξ2I

–
where ξ1 convexifies the model and ξ2 regularizes the constraints

I Poor choices of ξ1 and ξ2 can have terrible consequences in the algorithm
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Inexactness

Our approach for global convergence

I Decompose the direction dk into a normal component (toward the
constraints) and a tangential component (toward optimality)

I We impose a specific type of trust region constraint on the vk step in
case the constraint Jacobian is (near) rank deficient
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Inexactness

Handling nonconvexity

I In computation of dk = vk + uk , convexify the Hessian as in»
H(xk , λk) + ξ1I ∇c(xk)
∇c(xk)T 0

–
by monitoring iterates

I Hessian modification strategy: Increase ξ1 whenever

‖uk‖2 > ψ‖vk‖2, ψ > 0

1
2
uT

k (H(xk , λk) + ξ1I )uk < θ‖uk‖2, θ > 0
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Inexactness

Algorithm 2: Inexact Newton (regularized)
(Curtis, Nocedal, Wächter (2009))
for k = 0, 1, 2, . . .

I Approximately solve

min 1
2
‖c(xk ) +∇c(xk )T v‖2, s.t. ‖v‖ ≤ ω‖(∇c(xk ))c(xk )‖

to compute vk satisfying Cauchy decrease

I Iteratively solve»
H(xk , λk ) + ξ1I ∇c(xk )
∇c(xk )T 0

– »
dk

δk

–
= −

»
∇f (xk ) +∇c(xk )λk

−∇c(xk )T vk

–
until termination test 1 or 2 is satisfied, increasing ξ1 as described

I If only termination test 2 is satisfied, increase π so

πk ≥ max

(
πk−1,

∇f (xk )T dk + max{ 1
2
uT

k (H(xk , λk ) + ξ1I )uk , θ‖uk‖2}
(1− τ)(‖c(xk )‖ − ‖c(xk ) +∇c(xk )T dk‖)

)
I Backtrack from αk ← 1 to satisfy

φ(xk + αkdk ;πk ) ≤ φ(xk ;πk )− ηαk∆m(dk ;πk )

I Update iterate (xk+1, λk+1)← (xk , λk ) + αk (dk , δk )
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Inexactness

Convergence of Algorithm 2
Assumption
The sequence {(xk , λk)} is contained in a convex set Ω over which f , c, and
their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Nocedal, Wächter (2009)) If all limit points of {∇c(xk)T} have full
row rank, then the sequence {(xk , λk)} yields the limit

lim
k→∞

‚‚‚‚»∇f (xk) +∇c(xk)λk

c(xk)

–‚‚‚‚ = 0.

Otherwise,
lim

k→∞
‖(∇c(xk))c(xk)‖ = 0

and if {πk} is bounded, then

lim
k→∞

‖∇f (xk) +∇c(xk)λk‖ = 0
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Inexactness

Handling inequalities

I Interior point methods are attractive for large applications

I Line-search interior point methods that enforce

c(xk) +∇c(xk)T dk = 0

may fail to converge globally (Wächter, Biegler (2000))

I Fortunately, the trust region subproblem we use to regularize the
constraints also saves us from this type of failure!
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Inexactness

Algorithm 2 (Interior-point version)
I Apply Algorithm 2 to the logarithmic-barrier subproblem

min f (x)− µ
qX

i=1

ln s i , s.t. cE(x) = 0, cI(x)− s = 0

for µ→ 0

I Define 2664
H(xk , λE,k , λI,k ) 0 ∇cE(xk ) ∇cI(xk )

0 µI 0 −Sk

∇cE(xk )T 0 0 0
∇cI(xk )T −Sk 0 0

3775
2664

dx
k

d s
k

δE,k
δI,k

3775
so that the iterate update has»

xk+1

sk+1

–
←
»
xk

sk

–
+ αk

»
dx

k
Skd s

k

–
I Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in

the algorithm to maintain s ≥ max{0, cI(x)}
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Inexactness

Convergence of Algorithm 2 (interior-point)

Assumption
The sequence {(xk , λE,k , λI,k)} is contained in a convex set Ω over which f ,
cE , cI , and their first derivatives are bounded and Lipschitz continuous

Theorem
(Curtis, Schenk, Wächter (2009))

I For a given µ, Algorithm 2 yields the same limits as in the equality
constrained case

I If Algorithm 2 yields a sufficiently accurate solution to the barrier
subproblem for each {µj} → 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point x̄ of {xj}, then there exist
Lagrange multipliers λ̄ such that the first-order optimality conditions of
the nonlinear program are satisfied
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Results

Implementation details

I Incorporated in IPOPT software package (Wächter)

I inexact algorithm yes

I Linear systems solved with PARDISO (Schenk)

I SQMR (Freund (1994))

I Preconditioning in PARDISO

I incomplete multilevel factorization with inverse-based pivoting
I stabilized by symmetric-weighted matchings

I Optimality tolerance: 1e-8
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Results

CUTEr and COPS collections

I 745 problems written in AMPL

I 645 solved successfully

I 42 “real” failures

I Robustness between 87%-94%

I Original IPOPT: 93%
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Results

Helmholtz

N n p q # iter CPU sec (per iter)
32 14724 13824 1800 37 807.823 (21.833)
64 56860 53016 7688 25 3741.42 (149.66)

128 227940 212064 31752 20 54581.8 (2729.1)
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Results

Boundary control

min 1
2

R
Ω(y(x)− yt(x))2dx

s.t. −∇ · (ey(x) · ∇y(x)) = 20 in Ω

y(x) = u(x) on ∂Ω

2.5 ≤ u(x) ≤ 3.5 on ∂Ω

where
yt(x) = 3 + 10x1(x1 − 1)x2(x2 − 1) sin(2πx3)

N n p q # iter CPU sec (per iter)
16 4096 2744 2704 13 2.8144 (0.2165)
32 32768 27000 11536 13 103.65 (7.9731)
64 262144 238328 47632 14 5332.3 (380.88)

Original IPOPT with N = 32 requires 238 seconds per iteration
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Results

Hyperthermia treatment planning

min 1
2

R
Ω(y(x)− yt(x))2dx

s.t. −∆y(x)− 10(y(x)− 37) = u∗M(x)u in Ω

37.0 ≤ y(x) ≤ 37.5 on ∂Ω

42.0 ≤ y(x) ≤ 44.0 in Ω0

where
uj = aje

iφj , Mjk (x) =< Ej (x),Ek (x) >, Ej = sin(jx1x2x3π)

N n p q # iter CPU sec (per iter)
16 4116 2744 2994 68 22.893 (0.3367)
32 32788 27000 13034 51 3055.9 (59.920)

Original IPOPT with N = 32 requires 408 seconds per iteration
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Results

Groundwater modeling

min 1
2

R
Ω(y(x)− yt(x))2dx + 1

2
α
R

Ω[β(u(x)− ut(x))2 + |∇(u(x)− ut(x))|2]dx

s.t. −∇ · (eu(x) · ∇yi (x)) = qi (x) in Ω, i = 1, . . . , 6

∇yi (x) · n = 0 on ∂ΩZ
Ω

yi (x)dx = 0, i = 1, . . . , 6

− 1 ≤ u(x) ≤ 2 in Ω

where
qi = 100 sin(2πx1) sin(2πx2) sin(2πx3)

N n p q # iter CPU sec (per iter)
16 28672 24576 8192 18 206.416 (11.4676)
32 229376 196608 65536 20 1963.64 (98.1820)
64 1835008 1572864 524288 21 134418. (6400.85)

Original IPOPT with N = 32 requires approx. 20 hours for the first iteration
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Summary and future work

Summary

I We have a new framework for inexact Newton methods for optimization

I Convergence results are as good (and sometimes better) than exact
methods

I Preliminary numerical results are encouraging
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Summary and future work

Future work

I Tune the method for specific applications

I Incorporate useful techniques such as filters, second-order corrections,
specialized preconditioners

I Use (approximate) elimination techniques so that larger (e.g.,
time-dependent) problems can be solved
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SQP

Constrained optimization of smooth functions

I Consider constrained optimization problems of the form

min
x

f (x)

s.t. c(x) ≤ 0

where f and c are smooth (equality constraints OK, too)

I At xk , solve the SLP/SQP subproblem

min
d

fk +∇f T
k d + 1

2
dT Hkd

s.t. ck +∇cT
k d ≤ 0, ‖d‖ ≤ ∆k

to compute the search direction dk
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SQP

SQP illustration: Objective model
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SQP

SQP illustration: Constraint model
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SQP

Practicalities

I Since the linearized constraints may be inconsistent, we solve

min
d

ρ(fk +∇f T
k d) +

X
s i + 1

2
dT Hkd

s.t. ck +∇cT
k d ≤ s, s ≥ 0,

where ρ > 0 is a penalty parameter

I We perform a line search on the penalty function

φ(x ; ρ) , ρf (x) +
X

max{0, c i (x)}

to promote global convergence
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SQP

Line search

I A model of the penalty function is given by

qk(d ; ρ) , ρ(fk +∇f T
k d) +

X
max{0, c i

k +∇c i
k
T

d}+ 1
2
dT Hkd

I Solving the SQP subproblem is equivalent to minimizing qk(d ; ρ)

I The reduction in qk(d ; ρ) yielded by dk is

∆qk(dk ; ρ) , qk(0; ρ)− qk(dk ; ρ)

I We impose the sufficient decrease condition

φ(xk + αkdk ; ρ) ≤ φ(xk ; ρ)− ηαk∆qk(dk ; ρ)
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SQP

Penalty-SQP method
for k = 0, 1, 2, . . .

I Solve the SQP subproblem

min
d

ρ(fk +∇f T
k d) +

X
s i + 1

2
dT Hkd

s.t. ck +∇cT
k d ≤ s, s ≥ 0

or, equivalently, solve

min
d

qk(d ; ρ) , ρ(fk +∇f T
k d) +

X
max{0, c i

k +∇c i
k
T

d}+ 1
2
dT Hkd

to compute dk

I Backtrack from αk = 1 to satisfy

φ(xk + αkdk ; ρ) ≤ φ(xk ; ρ)− ηαk∆qk(dk ; ρ)

I Update xk+1 ← xk + αkdk
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GS

Unconstrained optimization of nonsmooth functions
I Consider the unconstrained optimization problem

min
x

f (x)

where f may be nonsmooth (but is at least locally Lipschitz)

I The prototypical example is the absolute value function:
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GS

Clarke subdifferential

I Suppose f is differentiable over an open dense set D
I Let

B(x ′, ε) , {x | ‖x − x ′‖ ≤ ε}

I The Clarke subdifferential is

∂̄f (x ′) =
\
ε>0

cl conv ∇f (B(x ′, ε) ∩ D)

I A point x ′ is called Clarke stationary if 0 ∈ ∂̄f (x ′)
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GS

ε-stationarity

I The Clarke ε-subdifferential is given by

∂̄f (x ′, ε) = cl conv ∂̄f (B(x ′, ε) ∩ D)

I A point x ′ is called ε-stationary if 0 ∈ ∂̄f (x ′, ε)

I ... find ε-stationary point, reduce ε, find ε-stationary point,...
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GS

Gradient sampling: Robust steepest descent

I (Burke, Lewis, Overton, 2005)

I We restrict iterates to the open dense set D
I Ideally, at xk , for a given ε we would solve

min
d

fk + max
x∈Bk

{∇f (x)T d}+ 1
2
dT Hkd

where Bk = B(xk , ε) ∩ D
I However, we can only approximate this step by solving

min
d

fk + max
x∈Bk

{∇f (x)T d}+ 1
2
dT Hkd

where Bk = {xk , xk1, . . . , xkp} ⊂ B(xk , ε) ∩ D
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GS

GS illustration: Objective model
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GS

GS illustration: Objective model
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GS

GS illustration: Objective model
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GS

GS illustration: Objective model
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GS

GS illustration: Objective model
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GS method

for k = 0, 1, 2, . . .

I Sample points {xk1, . . . , xkp} in B(xk , ε) ∩ D
I Solve the GS subproblem

min
d

fk + max
x∈Bk

{∇f (x)T d}+ 1
2
dT Hkd

to compute dk

I Backtrack from αk = 1 to satisfy

f (xk + αkdk) ≤ f (xk)− ηαk‖dk‖2

I Update xk+1 ≈ xk + αkdk (to ensure xk+1 ∈ D)

I If ‖dk‖ ≤ ε, then reduce ε
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SQP-GS

Constrained optimization of nonsmooth functions

I Consider constrained optimization problems of the form

min
x

f (x)

s.t. c(x) ≤ 0

where f and c may be nonsmooth (equality constraints OK, too)

I We may consider solving

min
x

φ(x ; ρ) , ρf (x) +
X

max{0, c i (x)}

or even
min

x
ϕ(x ; ρ) , ρf (x) + max

i
max{0, c i (x)}

but this makes me... :-(
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SQP-GS

SQP and GS

I The SQP subproblem is

min
d

ρz +
X

s i + 1
2
dT Hkd

s.t. fk +∇f T
k d ≤ z

ck +∇cT
k d ≤ s, s ≥ 0

I The GS subproblem is

min
d

z + 1
2
dT Hkd

s.t. fk +∇f (x)T d ≤ z , ∀ x ∈ Bk
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SQP-GS

SQP-GS

I The SQP-GS subproblem is

min
d,z,s

ρz +
X

s i + 1
2
dT Hkd

s.t. fk +∇f (x)T d ≤ z , ∀ x ∈ B0
k

c i
k +∇c i (x)T d ≤ s i , s i ≥ 0, ∀ x ∈ Bi

k , i = 1, . . . ,m

where Bi
k = {xk , x

i
k1, . . . , x

i
kp} ⊂ B(xk , ε) for i = 0, . . . ,m

I This is equivalent to

min
d

ρmax
x∈B0

k

(fk +∇f (x)T d)+
X

max
x∈Bi

k

max{0, c i
k +∇c i (x)T d , 0}+ 1

2
dT Hkd

i.e., mind qk(d ; ρ), where now qk(d ; ρ) is a robust model of φ(x ; ρ)
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SQP-GS

SQP-GS illustration: Constraint model
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SQP-GS

SQP-GS illustration: Constraint model
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SQP-GS

SQP-GS illustration: Constraint model
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SQP-GS

SQP-GS illustration: Constraint model
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SQP-GS

SQP-GS illustration: Constraint model
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SQP-GS

SQP-GS method
for k = 0, 1, 2, . . .

I Sample points {x i
k1, . . . , x

i
kp} in B(xk , ε) ∈ Di for i = 0, . . . ,m

I Solve the SQP-GS subproblem

min
d,z,s

ρz +
X

s i + 1
2
dT Hkd

s.t. fk +∇f (x)T d ≤ z , ∀ x ∈ B0
k

c i
k +∇c i (x)T d ≤ s i , s i ≥ 0, ∀ x ∈ Bi

k , i = 1, . . . ,m

to compute dk

I Backtrack from αk = 1 to satisfy

φ(xk + αkdk ; ρ) ≤ φ(xk ; ρ)− ηαk∆qk(dk ; ρ)

I Update xk+1 ≈ xk + αkdk (to ensure xk+1 ∈ ∩iDi )

I If ∆qk(dk ; ρ) ≤ ε, then reduce ε
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SQP-GS

Global convergence

I Assumption 1: The functions f and c i , i = 1, . . . ,m, are locally Lipschitz
and continuously differentiable on open dense subsets of Rn

I Assumption 2: The sequence of iterates and sample points are contained
in a convex set over which the functions f and c i , i = 1, . . . ,m, and their
first derivatives are bounded

I Assumption 3: For universal constants ξ ≥ ξ > 0, the Hessian matrices

satisfy ξ‖d‖2 ≤ dT Hkd ≤ ξ‖d‖2 for all d ∈ Rn
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SQP-GS

Global convergence

I Lemma 1: ∆qk(dk ; ρ) = 0 if and only if xk is ε-stationary

I Lemma 2: The one-sided directional derivative of the penalty function
satisfies

φ′(dk ; ρ) ≤ dT
k Hkdk < 0

and so dk is a descent direction for φ(x ; ρ) at xk

I Lemma 3: Suppose the sample size is p ≥ n + 1. If the current iterate xk

is sufficiently close to a stationary point x ′ of the penalty function

φ(x ; ρ), then there exists a nonempty open set of sample sets such that

the solution to the SQP-GS subproblem dk yields an arbitrarily small

∆qk(dk ; ρ)

I Carathéodory’s Theorem

I Theorem: With probability one, every cluster point of {xk} is feasible and
stationary for φ(x ; ρ)
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Results

Implementation

I Prototype implementation in MATLAB (available soon?)

I QP subproblems solved with MOSEK

I BFGS approximations of Hessian of penalty function

I (Lewis and Overton, 2009)

I ρ decreased conservatively
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Results

Example 1: Nonsmooth Rosenbrock

min
x

8|x2
1 − x2|+ (1− x1)2

s.t. max{
√

2x1, 2x2} ≤ 1
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Results

Example 1: Nonsmooth Rosenbrock
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Results

Example 2: Entropy minimization

Find a N × N matrix X that solves

min
X

ln

 
KY

j=1

λj(A ◦ X T X )

!
s.t. ‖Xj‖ = 1, j = 1, . . . ,N

where λj(M) denotes the jth largest eigenvalue of M, A is a real symmetric
N ×N matrix, ◦ denotes the Hadamard matrix product, and Xj denotes the jth
column of X
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Results

Example 2: Entropy minimization

N n K f (SQP-GS) f (GS)

2 4 1 1.00000e+00 1.00000e+00
4 16 2 7.46296e-01 7.46286e-01
6 36 3 6.33589e-01 6.33477e-01
8 64 4 5.60165e-01 5.58820e-01

10 100 5 2.20724e-01 2.17193e-01
12 144 6 1.24820e-01 1.22226e-01
14 196 7 8.21835e-02 8.01010e-02
16 256 8 5.73762e-02 5.57912e-02
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Results

Example 3(a): Compressed sensing (`1 norm)
Recover a sparse signal by solving

min
x
‖x‖1

s.t. Ax = b

where A is a 64× 256 submatrix of a discrete cosine transform (DCT) matrix

PDE-Constrained and Nonsmooth Optimization COR@L Seminar



PDE-Constrained Optimization Nonsmooth Optimization Conclusion

Results

Example 3(a): Compressed sensing (`1 norm)
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Results

Example 3(b): Compressed sensing (`0.5 norm)
Recover a sparse signal by solving

min
x
‖x‖0.5

s.t. Ax = b

where A is a 64× 256 submatrix of a discrete cosine transform (DCT) matrix
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Results

Example 3(b): Compressed sensing (`0.5 norm)

Figure: k = 1
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Results

Example 3(b): Compressed sensing (`0.5 norm)

Figure: k = 10
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Results

Example 3(b): Compressed sensing (`0.5 norm)

Figure: k = 25
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Results

Example 3(b): Compressed sensing (`0.5 norm)

Figure: k = 50
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Results

Example 3(b): Compressed sensing (`0.5 norm)

Figure: k = 200
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Results

Example 3(b): Compressed sensing (`0.5 norm)
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Summary and future work

Summary

I We have presented a globally convergent algorithm for the solution of
constrained, nonsmooth, and nonconvex optimization problems

I The algorithm follows a penalty-SQP framework and uses Gradient
Sampling to make the search direction calculation robust

I Preliminary results are encouraging
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Summary and future work

Future work

I Tune updates for ε and ρ

I Allow for special handling of smooth/convex/linear functions

I Investigate SLP vs. SQP

I Extensions for particular applications; e.g., specialized sampling
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Thanks!!
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