PDE-Constrained and Nonsmooth Optimization

Frank E. Curtis

COR@L Seminar

October 1, 2009

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Introduction

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

PDE-constrained optimization

min
$$f(x)$$

s.t. $c_{\mathcal{E}}(x) = 0$
 $c_{\mathcal{I}}(x) \ge 0$

Introduction

PDE-constrained optimization

min
$$f(x)$$

s.t. $c_{\mathcal{E}}(x) = 0$ (PDE)
 $c_{\mathcal{I}}(x) \ge 0$

Problem is infinite-dimensional

Introduction

Inverse problems

Recover a parameter k(x) based on data collected from propagating waves

PDE-Constrained Optimization

Inverse problems

Recover a parameter k(x) based on data collected from propagating waves

$$\begin{split} & \min_{y,k} \ \frac{1}{2} \sum_{j} \sum_{m} (y_{j}(x_{m}) - y_{j,m})^{2} + \alpha (\beta \|k\|_{L^{2}(\Omega)}^{2} + \|\nabla k\|_{(L^{2}(\Omega))^{n}}^{2}) \\ & \text{s.t.} \ \begin{cases} \Delta y_{j}(x) + S(x)k(x)^{2}y_{j}(x) - S(x)(k_{0}^{2} - k(x)^{2})y_{j}^{i} = 0, \ x \text{ in } \Omega \\ & y_{j} = 0, \ x \text{ on } \partial\Omega \\ & l(x) \leq k(x) \leq u(x), \ x \text{ in } \Omega \end{cases} \end{split}$$

Inverse problems

Recover a parameter k(x) based on data collected from propagating waves

$$\min_{y,k} \frac{1}{2} \sum_{j} \sum_{m} (y_{j}(x_{m}) - y_{j,m})^{2} + \alpha(\beta \|k\|_{L^{2}(\Omega)}^{2} + \|\nabla k\|_{(L^{2}(\Omega))^{n}}^{2})$$
s.t.
$$\begin{cases} \Delta y_{j}(x) + S(x)k(x)^{2}y_{j}(x) - S(x)(k_{0}^{2} - k(x)^{2})y_{j}^{i} = 0, x \text{ in } \Omega \\ y_{j} = 0, x \text{ on } \partial\Omega \\ l(x) \leq k(x) \leq u(x), x \text{ in } \Omega \end{cases}$$

Introduction

Optimal design

- Regional hyperthermia is a cancer therapy that aims at heating large and deeply seated tumors by means of radio wave adsorption
- Results in the killing of tumor cells and makes them more susceptible to other accompanying therapies; e.g., chemotherapy

Optimal design

- Computer modeling can be used to help plan the therapy for each patient, and it opens the door for numerical optimization
- ► The goal is to heat the tumor to a target temperature of 43°C while minimizing damage to nearby cells

Introduction

Parameter estimation

► Weather forecasting

- ▶ If the initial state of the atmosphere (temperatures, pressures, wind patterns, humidities) were known at a certain point in time, then an accurate forecast could be obtained by integrating atmospheric model equations forward in time
- Flow described by Navier-Stokes and further sophistications of atmospheric physics and dynamics

Introduction

Parameter estimation

Limited amount of data (satellites, buoys, planes, ground-based sensors)

- ► Each observation is subject to error
- Nonuniformly distributed around the globe (satellite paths, densely-populated areas)

Newton's method

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Nonlinear equations

▶ Newton's method

$$\mathcal{F}(x) = 0$$
 \Rightarrow $\nabla \mathcal{F}(x_k) d_k = -\mathcal{F}(x_k)$

Judge progress by the merit function

$$\phi(x) \triangleq \frac{1}{2} \|\mathcal{F}(x)\|^2$$

Direction is one of descent since

$$\nabla \phi(x_k)^T d_k = \mathcal{F}(x_k)^T \nabla \mathcal{F}(x_k) d_k = -\|\mathcal{F}(x_k)\|^2 < 0$$

(Note the consistency between the step computation and merit function!)

Equality constrained optimization

Consider

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c(x) = 0$

Lagrangian is

$$\mathcal{L}(x,\lambda) \triangleq f(x) + \lambda^{T} c(x)$$

so the first-order optimality conditions are

$$\nabla \mathcal{L}(x,\lambda) = \begin{bmatrix} \nabla f(x) + \nabla c(x)\lambda \\ c(x) \end{bmatrix} \triangleq \mathcal{F}(x,\lambda) = 0$$

Merit function

► Simply minimizing

$$\varphi(x,\lambda) = \frac{1}{2} \|\mathcal{F}(x,\lambda)\|^2 = \frac{1}{2} \left\| \begin{bmatrix} \nabla f(x) + \nabla c(x)\lambda \\ c(x) \end{bmatrix} \right\|^2$$

is generally inappropriate for constrained optimization

We use the merit function

$$\phi(x;\pi) \triangleq f(x) + \pi \|c(x)\|$$

where π is a penalty parameter

Minimizing a penalty function

Consider the penalty function for

min
$$(x-1)^2$$
, s.t. $x = 0$ i.e. $\phi(x; \pi) = (x-1)^2 + \pi |x|$

for different values of the penalty parameter π

Figure: $\pi = 1$

Figure: $\pi = 2$

Algorithm 0: Newton method for optimization

(Assume the problem is sufficiently convex and regular) for k = 0, 1, 2, ...

► Solve the primal-dual (Newton) equations

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix}$$

- ▶ Increase π , if necessary, so that $D\phi_k(d_k; \pi_k) \ll 0$ (e.g., $\pi_k \ge ||\lambda_k + \delta_k||$)
- **Backtrack** from $\alpha_k \leftarrow 1$ to satisfy the Armijo condition

$$\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) + \eta \alpha_k D\phi_k(d_k; \pi_k)$$

▶ Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k(d_k, \delta_k)$

Convergence of Algorithm 0

Assumption

The sequence $\{(x_k, \lambda_k)\}$ is contained in a convex set Ω over which f, c, and their first derivatives are bounded and Lipschitz continuous. Also,

- ▶ $(Regularity) \nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
- (Convexity) $u^T H(x_k, \lambda_k) u \ge \mu \|u\|^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \ne 0$ and $\nabla c(x_k)^T u = 0$

Theorem

(Han (1977)) The sequence $\{(x_k, \lambda_k)\}$ yields the limit

$$\lim_{k\to\infty} \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k)\lambda_k \\ c(x_k) \end{bmatrix} \right\| = 0$$

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Large-scale primal-dual algorithms

- Computational issues:
 - Large matrices to be stored
 - Large matrices to be factored
- Algorithmic issues:
 - ► The problem may be nonconvex
 - The problem may be ill-conditioned
- Computational/Algorithmic issues:
 - No matrix factorizations makes difficulties more difficult

Nonlinear equations

Compute

$$\nabla \mathcal{F}(x_k) d_k = -\mathcal{F}(x_k) + r_k$$

requiring (Dembo, Eisenstat, Steihaug (1982))

$$||r_k|| \leq \kappa ||\mathcal{F}(x_k)||, \quad \kappa \in (0,1)$$

Progress judged by the merit function

$$\phi(x) \triangleq \frac{1}{2} \|\mathcal{F}(x)\|^2$$

Again, note the consistency...

$$\nabla \phi(x_k)^T d_k = \mathcal{F}(x_k)^T \nabla \mathcal{F}(x_k) d_k = -\|\mathcal{F}(x_k)\|^2 + \mathcal{F}(x_k)^T r_k \le (\kappa - 1)\|\mathcal{F}(x_k)\|^2 < 0$$

Optimization

Compute

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} + \begin{bmatrix} \rho_k \\ r_k \end{bmatrix}$$

satisfying

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \le \kappa \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\|, \quad \kappa \in (0, 1)$$

▶ If κ is not sufficiently small (e.g., 10^{-3} vs. 10^{-12}), then d_{κ} may be an ascent direction for our merit function; i.e.,

$$D\phi_k(d_k; \pi_k) > 0$$
 for all $\pi_k \ge \pi_{k-1}$

- Our work begins here... inexact Newton methods for optimization
- ▶ We cover the convex case, nonconvexity, irregularity, inequality constraints

Model reductions

▶ Define the model of $\phi(x; \pi)$:

$$m(d; \pi) \triangleq f(x) + \nabla f(x)^T d + \pi(||c(x) + \nabla c(x)^T d||)$$

 $ightharpoonup d_k$ is acceptable if

$$\Delta m(d_k; \pi_k) \triangleq m(0; \pi_k) - m(d_k; \pi_k) = -\nabla f(x_k)^T d_k + \pi_k (\|c(x_k)\| - \|c(x_k) + \nabla c(x_k)^T d_k\|) \gg 0$$

▶ This ensures $D\phi_k(d_k; \pi_k) \ll 0$ (and more)

Termination test 1

The search direction (d_k, δ_k) is acceptable if

$$\left\| \begin{bmatrix} \rho_k \\ r_k \end{bmatrix} \right\| \leq \kappa \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix} \right\|, \quad \kappa \in (0, 1)$$

and if for $\pi_k = \pi_{k-1}$ and some $\sigma \in (0,1)$ we have

$$\Delta m(d_k; \pi_k) \ge \underbrace{\max\{\frac{1}{2}d_k^T H(x_k, \lambda_k) d_k, 0\} + \sigma \pi_k \max\{\|c(x_k)\|, \|r_k\| - \|c(x_k)\|\}}_{}$$

 \geq 0 for any d

Termination test 2

The search direction (d_k, δ_k) is acceptable if

$$\|
ho_k\| \le eta \|c(x_k)\|, \quad eta > 0$$
 and $\|r_k\| \le \epsilon \|c(x_k)\|, \quad \epsilon \in (0,1)$

Increasing the penalty parameter π then yields

$$\Delta m(d_k; \pi_k) \geq \max\{\frac{1}{2}d_k^T H(x_k, \lambda_k) d_k, 0\} + \sigma \pi_k \|c(x_k)\|$$

 \geq 0 for any d

Algorithm 1: Inexact Newton for optimization

(Byrd, Curtis, Nocedal (2008)) for $k = 0, 1, 2, \dots$

► Iteratively solve

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ c(x_k) \end{bmatrix}$$

until termination test 1 or 2 is satisfied

▶ If only termination test 2 is satisfied, increase π so

$$\pi_k \geq \max \left\{ \pi_{k-1}, \frac{\nabla f(x_k)^T d_k + \max\{\frac{1}{2} d_k^T H(x_k, \lambda_k) d_k, 0\}}{(1 - \tau)(\|c(x_k)\| - \|r_k\|)} \right\}$$

▶ Backtrack from $\alpha_k \leftarrow 1$ to satisfy

$$\phi(x_k + \alpha_k d_k; \pi_k) \leq \phi(x_k; \pi_k) - \eta \alpha_k \Delta m(d_k; \pi_k)$$

▶ Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k(d_k, \delta_k)$

Convergence of Algorithm 1

Assumption

The sequence $\{(x_k, \lambda_k)\}$ is contained in a convex set Ω over which f, c, and their first derivatives are bounded and Lipschitz continuous. Also,

- (Regularity) $\nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
- (Convexity) $u^T H(x_k, \lambda_k) u \ge \mu \|u\|^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \ne 0$ and $\nabla c(x_k)^T u = 0$

Theorem

(Byrd, Curtis, Nocedal (2008)) The sequence $\{(x_k, \lambda_k)\}$ yields the limit

$$\lim_{k\to\infty} \left\| \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k)\lambda_k \\ c(x_k) \end{bmatrix} \right\| = 0$$

Inexactness

Handling nonconvexity and rank deficiency

- ▶ There are two assumptions we aim to drop:
 - ▶ (Regularity) $\nabla c(x_k)^T$ has full row rank with singular values bounded below by a positive constant
 - (Convexity) $u^T H(x_k, \lambda_k) u \ge \mu \|u\|^2$ for $\mu > 0$ for all $u \in \mathbb{R}^n$ satisfying $u \ne 0$ and $\nabla c(x_k)^T u = 0$
 - e.g., the problem is not regular if it is infeasible, and it is not convex if there are maximizers and/or saddle points
- Without them, Algorithm 1 may stall or may not be well-defined

No factorizations means no clue

▶ We might not store or factor

$$\begin{bmatrix} H(x_k, \lambda_k) & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix}$$

so we might not know if the problem is nonconvex or ill-conditioned

Common practice is to perturb the matrix to be

$$\begin{bmatrix} H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\ \nabla c(x_k)^T & -\xi_2 I \end{bmatrix}$$

where ξ_1 convexifies the model and ξ_2 regularizes the constraints

Poor choices of ξ_1 and ξ_2 can have terrible consequences in the algorithm

Inexactness

Our approach for global convergence

▶ Decompose the direction d_k into a normal component (toward the constraints) and a tangential component (toward optimality)

▶ We impose a specific type of trust region constraint on the v_k step in case the constraint Jacobian is (near) rank deficient

Handling nonconvexity

▶ In computation of $d_k = v_k + u_k$, convexify the Hessian as in

$$\begin{bmatrix} H(x_k, \lambda_k) + \xi_1 I & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix}$$

by monitoring iterates

▶ Hessian modification strategy: Increase ξ_1 whenever

$$\begin{split} \|u_k\|^2 > \ \psi \|v_k\|^2, \quad \psi > 0 \\ \frac{1}{2} u_k^T \big(H(x_k, \lambda_k) + \frac{\xi_1}{2} I \big) u_k < \ \theta \|u_k\|^2, \quad \theta > 0 \end{split}$$

Algorithm 2: Inexact Newton (regularized)

(Curtis, Nocedal, Wächter (2009))

for k = 0, 1, 2, ...

Approximately solve

$$\min \frac{1}{2} \|c(x_k) + \nabla c(x_k)^T v\|^2$$
, s.t. $\|v\| \le \omega \|(\nabla c(x_k))c(x_k)\|$

to compute v_k satisfying Cauchy decrease

Iteratively solve

$$\begin{bmatrix} H(x_k, \lambda_k) + \underbrace{\xi_1} I & \nabla c(x_k) \\ \nabla c(x_k)^T & 0 \end{bmatrix} \begin{bmatrix} d_k \\ \delta_k \end{bmatrix} = - \begin{bmatrix} \nabla f(x_k) + \nabla c(x_k) \lambda_k \\ -\nabla c(x_k)^T v_k \end{bmatrix}$$

until termination test 1 or 2 is satisfied, increasing ξ_1 as described

If only termination test 2 is satisfied, increase π so

$$\pi_k \geq \max \left\{ \pi_{k-1}, \frac{\nabla f(\mathbf{x}_k)^T d_k + \max\{\frac{1}{2} u_k^T (H(\mathbf{x}_k, \lambda_k) + \xi_1 I) u_k, \theta \|u_k\|^2\}}{(1 - \tau)(\|c(\mathbf{x}_k)\| - \|c(\mathbf{x}_k) + \nabla c(\mathbf{x}_k)^T d_k\|)} \right\}$$

▶ Backtrack from $\alpha_k \leftarrow 1$ to satisfy

$$\phi(x_k + \alpha_k d_k; \pi_k) \le \phi(x_k; \pi_k) - \eta \alpha_k \Delta m(d_k; \pi_k)$$

▶ Update iterate $(x_{k+1}, \lambda_{k+1}) \leftarrow (x_k, \lambda_k) + \alpha_k(d_k, \delta_k)$

Convergence of Algorithm 2

Assumption

The sequence $\{(x_k, \lambda_k)\}$ is contained in a convex set Ω over which f, c, and their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Nocedal, Wächter (2009)) If all limit points of $\{\nabla c(x_k)^T\}$ have full row rank, then the sequence $\{(x_k, \lambda_k)\}$ yields the limit

$$\lim_{k\to\infty}\left\|\begin{bmatrix}\nabla f(x_k)+\nabla c(x_k)\lambda_k\\c(x_k)\end{bmatrix}\right\|=0.$$

Otherwise,

$$\lim_{k\to\infty}\|(\nabla c(x_k))c(x_k)\|=0$$

and if $\{\pi_k\}$ is bounded, then

$$\lim_{k\to\infty} \|\nabla f(x_k) + \nabla c(x_k)\lambda_k\| = 0$$

Inexactness

Handling inequalities

- ▶ Interior point methods are attractive for large applications
- Line-search interior point methods that enforce

$$c(x_k) + \nabla c(x_k)^T d_k = 0$$

may fail to converge globally (Wächter, Biegler (2000))

Fortunately, the trust region subproblem we use to regularize the constraints also saves us from this type of failure!

Algorithm 2 (Interior-point version)

Apply Algorithm 2 to the logarithmic-barrier subproblem

$$\min f(x) - \mu \sum_{i=1}^{q} \ln s^{i}, \quad \text{s.t. } c_{\mathcal{E}}(x) = 0, \ c_{\mathcal{I}}(x) - s = 0$$

for $\mu o 0$

Define

$$\begin{bmatrix} H(x_k, \lambda_{\mathcal{E},k}, \lambda_{\mathcal{I},k}) & 0 & \nabla c_{\mathcal{E}}(x_k) & \nabla c_{\mathcal{I}}(x_k) \\ 0 & \mu I & 0 & -S_k \\ \nabla c_{\mathcal{E}}(x_k)^T & 0 & 0 & 0 \\ \nabla c_{\mathcal{I}}(x_k)^T & -S_k & 0 & 0 \end{bmatrix} \begin{bmatrix} d_k^x \\ d_k^s \\ \delta_{\mathcal{E},k} \\ \delta_{\mathcal{I},k} \end{bmatrix}$$

so that the iterate update has

$$\begin{bmatrix} x_{k+1} \\ s_{k+1} \end{bmatrix} \leftarrow \begin{bmatrix} x_k \\ s_k \end{bmatrix} + \alpha_k \begin{bmatrix} d_k^x \\ S_k d_k^s \end{bmatrix}$$

▶ Incorporate a fraction-to-the-boundary rule in the line search and a slack reset in the algorithm to maintain $s \ge \max\{0, c_{\mathcal{I}}(x)\}$

Inexactness

Convergence of Algorithm 2 (interior-point)

Assumption

The sequence $\{(x_k, \lambda_{\mathcal{E},k}, \lambda_{\mathcal{I},k})\}$ is contained in a convex set Ω over which f, $c_{\mathcal{E}}$, $c_{\mathcal{I}}$, and their first derivatives are bounded and Lipschitz continuous

Theorem

(Curtis, Schenk, Wächter (2009))

- For a given μ, Algorithm 2 yields the same limits as in the equality constrained case
- ▶ If Algorithm 2 yields a sufficiently accurate solution to the barrier subproblem for each $\{\mu_j\} \to 0$ and if the linear independence constraint qualification (LICQ) holds at a limit point \bar{x} of $\{x_j\}$, then there exist Lagrange multipliers $\bar{\lambda}$ such that the first-order optimality conditions of the nonlinear program are satisfied

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Implementation details

- ► Incorporated in IPOPT software package (Wächter)
 - ▶ inexact_algorithm yes
- Linear systems solved with PARDISO (Schenk)
 - SQMR (Freund (1994))
- Preconditioning in PARDISO
 - ▶ incomplete multilevel factorization with inverse-based pivoting
 - stabilized by symmetric-weighted matchings
- Optimality tolerance: 1e-8

CUTEr and COPS collections

- 745 problems written in AMPL
- ▶ 645 solved successfully
- 42 "real" failures
- ► Robustness between 87%-94%
- Original IPOPT: 93%

Helmholtz

Ν	n	р	q	# iter	CPU sec (per iter)
32	14724	13824	1800	37	807.823 (21.833)
64	56860	53016	7688	25	3741.42 (149.66)
128	227940	212064	31752	20	54581.8 (2729.1)

Boundary control

$$\min \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx$$
s.t. $-\nabla \cdot (e^{y(x)} \cdot \nabla y(x)) = 20 \text{ in } \Omega$

$$y(x) = u(x) \text{ on } \partial\Omega$$

$$2.5 \le u(x) \le 3.5 \text{ on } \partial\Omega$$

where

$$y_t(x) = 3 + 10x_1(x_1 - 1)x_2(x_2 - 1)\sin(2\pi x_3)$$

Ν	n	p	q	# iter	CPU sec (per iter)
16	4096	2744	2704	13	2.8144 (0.2165)
32	32768	27000	11536	13	103.65 (7.9731)
64	262144	238328	47632	14	5332.3 (380.88)

Original IPOPT with N = 32 requires 238 seconds per iteration

Hyperthermia treatment planning

min
$$\frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx$$

s.t. $-\Delta y(x) - 10(y(x) - 37) = u^* M(x) u$ in Ω
 $37.0 \le y(x) \le 37.5$ on $\partial\Omega$
 $42.0 \le y(x) \le 44.0$ in Ω_0

where

$$u_j = a_j e^{i\phi_j}, \quad M_{jk}(x) = \langle E_j(x), E_k(x) \rangle, \quad E_j = \sin(jx_1x_2x_3\pi)$$

Ν	n	p	q	# iter	CPU sec (per iter)
16	4116	2744	2994	68	22.893 (0.3367)
32	32788	27000	13034	51	3055.9 (59.920)

Original IPOPT with N=32 requires 408 seconds per iteration

Groundwater modeling

$$\begin{aligned} &\min \ \frac{1}{2} \int_{\Omega} (y(x) - y_t(x))^2 dx + \frac{1}{2} \alpha \int_{\Omega} [\beta(u(x) - u_t(x))^2 + |\nabla(u(x) - u_t(x))|^2] dx \\ &\text{s.t.} \quad -\nabla \cdot (e^{u(x)} \cdot \nabla y_i(x)) = q_i(x) \quad \text{in } \Omega, \quad i = 1, \dots, 6 \\ &\nabla y_i(x) \cdot n = 0 \quad \text{on } \partial\Omega \\ &\int_{\Omega} y_i(x) dx = 0, \quad i = 1, \dots, 6 \\ &-1 \leq u(x) \leq 2 \quad \text{in } \Omega \end{aligned}$$

where

$$q_i = 100 \sin(2\pi x_1) \sin(2\pi x_2) \sin(2\pi x_3)$$

Ν	l n	p	q	# iter	CPU sec (per iter)
16	28672	24576	8192	18	206.416 (11.4676)
32	229376	196608	65536	20	1963.64 (98.1820)
64	1835008	1572864	524288	21	134418. (6400.85)

Original IPOPT with N=32 requires approx. 20 hours for the first iteration

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Summary

- ▶ We have a new framework for inexact Newton methods for optimization
- Convergence results are as good (and sometimes better) than exact methods
- Preliminary numerical results are encouraging

Summary and future work

Future work

- ► Tune the method for specific applications
- Incorporate useful techniques such as filters, second-order corrections, specialized preconditioners
- Use (approximate) elimination techniques so that larger (e.g., time-dependent) problems can be solved

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Constrained optimization of smooth functions

▶ Consider constrained optimization problems of the form

$$\min_{x} f(x)$$

s.t. $c(x) \le 0$

where f and c are smooth (equality constraints OK, too)

At x_k , solve the SLP/SQP subproblem

$$\min_{d} f_k + \nabla f_k^T d + \frac{1}{2} d^T H_k d$$
s.t. $c_k + \nabla c_k^T d \le 0$, $\|d\| \le \Delta_k$

to compute the search direction d_k

SQP illustration: Constraint model

Practicalities

▶ Since the linearized constraints may be inconsistent, we solve

$$\min_{d} \rho(f_k + \nabla f_k^T d) + \sum_{i=1}^{n} s^i + \frac{1}{2} d^T H_k d$$
s.t. $c_k + \nabla c_k^T d \leq s, \quad s \geq 0,$

where $\rho > 0$ is a *penalty parameter*

We perform a line search on the penalty function

$$\phi(x; \rho) \triangleq \rho f(x) + \sum \max\{0, c^i(x)\}$$

to promote global convergence

Line search

A model of the penalty function is given by

$$q_k(d;\rho) \triangleq \rho(f_k + \nabla f_k^T d) + \sum \max\{0, c_k^i + \nabla c_k^{i^T} d\} + \frac{1}{2} d^T H_k d$$

- ▶ Solving the SQP subproblem is equivalent to minimizing $q_k(d; \rho)$
- ▶ The reduction in $q_k(d; \rho)$ yielded by d_k is

$$\Delta q_k(d_k;\rho) \triangleq q_k(0;\rho) - q_k(d_k;\rho)$$

We impose the sufficient decrease condition

$$\phi(x_k + \alpha_k d_k; \rho) \leq \phi(x_k; \rho) - \eta \alpha_k \Delta q_k(d_k; \rho)$$

Penalty-SQP method

for k = 0, 1, 2, ...

► Solve the SQP subproblem

$$\min_{d} \rho(f_k + \nabla f_k^T d) + \sum_{i=1}^{d} s^i + \frac{1}{2} d^T H_k d$$
s.t. $c_k + \nabla c_k^T d \leq s, \quad s \geq 0$

or, equivalently, solve

$$\min_{d} q_k(d; \rho) \triangleq \rho(f_k + \nabla f_k^T d) + \sum \max\{0, c_k^i + \nabla c_k^{iT} d\} + \frac{1}{2} d^T H_k d$$

to compute d_k

▶ Backtrack from $\alpha_k = 1$ to satisfy

$$\phi(x_k + \alpha_k d_k; \rho) \leq \phi(x_k; \rho) - \eta \alpha_k \Delta q_k(d_k; \rho)$$

▶ Update $x_{k+1} \leftarrow x_k + \alpha_k d_k$

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Unconstrained optimization of nonsmooth functions

▶ Consider the unconstrained optimization problem

$$\min_{x} f(x)$$

where f may be nonsmooth (but is at least locally Lipschitz)

▶ The prototypical example is the absolute value function:

Clarke subdifferential

- ightharpoonup Suppose f is differentiable over an open dense set \mathcal{D}
- ▶ Let

$$\mathbb{B}(x',\epsilon) \triangleq \{x \mid ||x - x'|| \le \epsilon\}$$

The Clarke subdifferential is

$$\bar{\partial} f(x') = \bigcap_{\epsilon > 0} \operatorname{cl\ conv}\ \nabla f(\mathbb{B}(x', \epsilon) \cap \mathcal{D})$$

▶ A point x' is called Clarke stationary if $0 \in \bar{\partial} f(x')$

ϵ -stationarity

▶ The Clarke ϵ -subdifferential is given by

$$\bar{\partial} f(x',\epsilon) = \operatorname{cl\ conv}\ \bar{\partial} f(\mathbb{B}(x',\epsilon)\cap\mathcal{D})$$

▶ A point x' is called ϵ -stationary if $0 \in \bar{\partial} f(x', \epsilon)$

▶ ... find ϵ -stationary point, reduce ϵ , find ϵ -stationary point,...

Gradient sampling: Robust steepest descent

- ► (Burke, Lewis, Overton, 2005)
- \blacktriangleright We restrict iterates to the open dense set \mathcal{D}
- ▶ Ideally, at x_k , for a given ϵ we would solve

$$\min_{d} f_{k} + \max_{x \in \mathcal{B}_{k}} \{ \nabla f(x)^{T} d \} + \frac{1}{2} d^{T} H_{k} d$$

where
$$\mathcal{B}_k = \mathbb{B}(x_k, \epsilon) \cap \mathcal{D}$$

However, we can only approximate this step by solving

$$\min_{d} f_k + \max_{x \in \mathcal{B}_k} \{ \nabla f(x)^T d \} + \frac{1}{2} d^T H_k d$$

where
$$\mathcal{B}_k = \{x_k, x_{k1}, \dots, x_{kp}\} \subset \mathbb{B}(x_k, \epsilon) \cap \mathcal{D}$$

PDE-Constrained Optimization

GS method

for k = 0, 1, 2, ...

- ▶ Sample points $\{x_{k1}, \ldots, x_{kp}\}$ in $\mathbb{B}(x_k, \epsilon) \cap \mathcal{D}$
- Solve the GS subproblem

$$\min_{d} f_k + \max_{x \in \mathcal{B}_k} \{ \nabla f(x)^T d \} + \frac{1}{2} d^T H_k d$$

to compute d_k

▶ Backtrack from $\alpha_k = 1$ to satisfy

$$f(x_k + \alpha_k d_k) \le f(x_k) - \eta \alpha_k ||d_k||^2$$

- ▶ Update $x_{k+1} \approx x_k + \alpha_k d_k$ (to ensure $x_{k+1} \in \mathcal{D}$)
- ▶ If $||d_k|| \le \epsilon$, then reduce ϵ

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Constrained optimization of nonsmooth functions

Consider constrained optimization problems of the form

$$\min_{x} f(x)$$

s.t. $c(x) \le 0$

where f and c may be nonsmooth (equality constraints OK, too)

We may consider solving

$$\min_{x} \phi(x; \rho) \triangleq \rho f(x) + \sum_{i} \max\{0, c^{i}(x)\}\$$

or even

$$\min_{x} \varphi(x; \rho) \triangleq \rho f(x) + \max_{i} \max\{0, c^{i}(x)\}$$

but this makes me... :-(

SQP and GS

► The SQP subproblem is

$$\min_{d} \rho z + \sum_{i} s^{i} + \frac{1}{2} d^{T} H_{k} d$$
s.t. $f_{k} + \nabla f_{k}^{T} d \leq z$

$$c_{k} + \nabla c_{k}^{T} d \leq s, \ s \geq 0$$

The GS subproblem is

$$\min_{d} z + \frac{1}{2} d^{T} H_{k} d$$
s.t. $f_{k} + \nabla f(x)^{T} d \leq z, \ \forall \ x \in \mathcal{B}_{k}$

► The SQP-GS subproblem is

$$\begin{aligned} & \min_{d,z,s} \rho z + \sum s^i + \frac{1}{2} d^T H_k d \\ & \text{s.t. } f_k + \nabla f(x)^T d \leq z, \ \forall \ x \in \mathcal{B}_k^0 \\ & c_k^i + \nabla c^i(x)^T d \leq s^i, \ s^i \geq 0, \ \forall \ x \in \mathcal{B}_k^i, \ i = 1, \dots, m \end{aligned}$$

where
$$\mathcal{B}_k^i = \{x_k, x_{k1}^i, \dots, x_{kp}^i\} \subset \mathbb{B}(x_k, \epsilon)$$
 for $i = 0, \dots, m$

This is equivalent to

$$\min_{d} \rho \max_{\mathbf{x} \in \mathcal{B}_{b}^{0}} (f_{k} + \nabla f(\mathbf{x})^{T} d) + \sum_{\mathbf{x} \in \mathcal{B}_{b}^{1}} \max \{0, c_{k}^{i} + \nabla c^{i}(\mathbf{x})^{T} d, 0\} + \frac{1}{2} d^{T} H_{k} d$$

i.e., $\min_d q_k(d; \rho)$, where now $q_k(d; \rho)$ is a *robust* model of $\phi(x; \rho)$

SQP-GS illustration: Constraint model

SQP-GS illustration: Constraint model

SQP-GS illustration: Constraint model

SQP-GS

SQP-GS illustration: Constraint model

SQP-GS illustration: Constraint model

SQP-GS method

for k = 0, 1, 2, ...

- ▶ Sample points $\{x_{k1}^i, \ldots, x_{kn}^i\}$ in $\mathbb{B}(x_k, \epsilon) \in \mathcal{D}^i$ for $i = 0, \ldots, m$
- Solve the SQP-GS subproblem

$$\begin{aligned} & \min_{d,z,s} \rho z + \sum s^i + \frac{1}{2} d^T H_k d \\ & \text{s.t. } f_k + \nabla f(x)^T d \leq z, \ \forall \ x \in \mathcal{B}_k^0 \\ & c_k^i + \nabla c^i(x)^T d \leq s^i, \ s^i \geq 0, \ \forall \ x \in \mathcal{B}_k^i, \ i = 1, \dots, m \end{aligned}$$

to compute d_k

▶ Backtrack from $\alpha_k = 1$ to satisfy

$$\phi(x_k + \alpha_k d_k; \rho) \leq \phi(x_k; \rho) - \eta \alpha_k \Delta q_k(d_k; \rho)$$

- ▶ Update $x_{k+1} \approx x_k + \alpha_k d_k$ (to ensure $x_{k+1} \in \cap_i \mathcal{D}^i$)
- ▶ If $\Delta q_k(d_k; \rho) \leq \epsilon$, then reduce ϵ

Global convergence

- Assumption 1: The functions f and c^i , $i=1,\ldots,m$, are locally Lipschitz and continuously differentiable on open dense subsets of \mathbb{R}^n
- Assumption 2: The sequence of iterates and sample points are contained in a convex set over which the functions f and c^i , $i=1,\ldots,m$, and their first derivatives are bounded
- Assumption 3: For universal constants $\overline{\xi} \geq \underline{\xi} > 0$, the Hessian matrices satisfy $\underline{\xi} \|d\|^2 \leq d^T H_k d \leq \overline{\xi} \|d\|^2$ for all $d \in \mathbb{R}^n$

Global convergence

- ▶ Lemma 1: $\Delta q_k(d_k; \rho) = 0$ if and only if x_k is ϵ -stationary
- Lemma 2: The one-sided directional derivative of the penalty function satisfies

$$\phi'(d_k;\rho) \leq d_k^T H_k d_k < 0$$

and so d_k is a descent direction for $\phi(x; \rho)$ at x_k

- ▶ Lemma 3: Suppose the sample size is $p \ge n+1$. If the current iterate x_k is sufficiently close to a stationary point x' of the penalty function $\phi(x;\rho)$, then there exists a nonempty open set of sample sets such that the solution to the SQP-GS subproblem d_k yields an arbitrarily small $\Delta q_k(d_k;\rho)$
 - Carathéodory's Theorem
- ▶ Theorem: With probability one, every cluster point of $\{x_k\}$ is feasible and stationary for $\phi(x; \rho)$

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Implementation

- ▶ Prototype implementation in MATLAB (available soon?)
- QP subproblems solved with MOSEK
- BFGS approximations of Hessian of penalty function
 - ▶ (Lewis and Overton, 2009)
- ightharpoonup
 ho decreased conservatively

Example 1: Nonsmooth Rosenbrock

$$\min_{x} 8|x_{1}^{2} - x_{2}| + (1 - x_{1})^{2}$$

s.t.
$$\max\{\sqrt{2}x_{1}, 2x_{2}\} \leq 1$$

Example 1: Nonsmooth Rosenbrock

Example 2: Entropy minimization

Find a $N \times N$ matrix X that solves

$$\min_{X} \ln \left(\prod_{j=1}^{K} \lambda_{j} (A \circ X^{T} X) \right)$$
s.t. $||X_{j}|| = 1, j = 1, ..., N$

where $\lambda_j(M)$ denotes the jth largest eigenvalue of M, A is a real symmetric $N \times N$ matrix, \circ denotes the Hadamard matrix product, and X_j denotes the jth column of X

Example 2: Entropy minimization

N	n	K	f (SQP-GS)	f (GS)
2	4	1	1.00000e+00	1.00000e+00
4	16	2	7.46296e-01	7.46286e-01
6	36	3	6.33589e-01	6.33477e-01
8	64	4	5.60165e-01	5.58820e-01
10	100	5	2.20724e-01	2.17193e-01
12	144	6	1.24820e-01	1.22226e-01
14	196	7	8.21835e-02	8.01010e-02
16	256	8	5.73762e-02	5.57912e-02

Example 3(a): Compressed sensing (ℓ_1 norm)

Recover a sparse signal by solving

$$\min_{x} ||x||_{1}$$

s.t. $Ax = b$

where A is a 64 \times 256 submatrix of a discrete cosine transform (DCT) matrix

Example 3(a): Compressed sensing (ℓ_1 norm)

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Recover a sparse signal by solving

$$\min_{x} \|x\|_{0.5}$$

s.t.
$$Ax = b$$

where A is a 64 \times 256 submatrix of a discrete cosine transform (DCT) matrix

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Example 3(b): Compressed sensing ($\ell_{0.5}$ norm)

Summary and future work

Outline

PDE-Constrained Optimization

Introduction

Newton's method

Inexactness

Results

Summary and future work

Nonsmooth Optimization

Sequential quadratic programming (SQP)

Gradient sampling (GS)

SQP-GS

Results

Summary and future work

Conclusion

Summary and future work

Summary

- ▶ We have presented a globally convergent algorithm for the solution of constrained, nonsmooth, and nonconvex optimization problems
- ► The algorithm follows a penalty-SQP framework and uses Gradient Sampling to make the search direction calculation robust
- Preliminary results are encouraging

Summary and future work

Future work

- ▶ Tune updates for ϵ and ρ
- ► Allow for special handling of smooth/convex/linear functions
- Investigate SLP vs. SQP
- Extensions for particular applications; e.g., specialized sampling

PDE-Constrained Optimization