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Large-scale constrained optimization

Consider large-scale problems of the form

min f(x)
st. cf(x)=0
Z(x)>0
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Large-scale constrained optimization

Consider large-scale problems of the form

min f(x)
st. cf(x)=0
Z(x)>0

True problem of interest is infinite-dimensional
Equality constraints include a discretized PDE

x = (y, u) is composed of states y and controls u

vV vV v v

Inequality constraints include control (and state?) bounds
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Strengths

We propose an algorithm for large-scale nonlinear optimization:
It can handle ill-conditioned /rank-deficient problems

It can handle nonconvex problems

Inexactness is allowed and controlled with loose conditions
The conditions are implementable (in fact, implemented)
The algorithm is globally convergent

It can handle problems with control and state constraints

vV Vv v Vv Y

Numerical results are very encouraging so far
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Weaknesses

Aim to have an algorithm for PDE-constrained optimization, but so far:
» We solve for a single discretization
» We use finite-dimensional norms
» Our implementation does not exploit structure
» We need further experimentation on interesting problems
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Weaknesses

Aim to have an algorithm for PDE-constrained optimization, but so far:
» We solve for a single discretization
» We use finite-dimensional norms
» Our implementation does not exploit structure
» We need further experimentation on interesting problems

I'll close the talk with questions; you might have the answers!
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Interior-point methods

» Add slacks to form the logarithmic-barrier subproblem

min f(x) —,uZInsi

ieT
sit. cf(x) =0
c(x)=s

» The first-order optimality conditions are

VF(x) 4+ V& (x)A\E + VCI(X)/\I 0
—uSte—NT =0

cE(x)=0

cI(x)—=s=0

along with s >0
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Newton's method

> Newton iteration involves the linear system

Ho o 0 Ve Vg [dx Vi + VEEX + VAT
2
0 uSt 0 g | us e M
veeT 0 0 o | |6 T c
veZ' -1 o o | Lo G — Sk

» Search direction computation followed by a line search
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Usual questions

» How do we ensure global convergence?

» How do we solve ill-conditioned problems?

» How do we handle nonconvexity?

I
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Usual answers

» How do we ensure global convergence?

» KKT conditions (convex case)
» Merit/penalty function
> Filter

» How do we solve ill-conditioned problems?
» Matrix modifications
» Trust regions

» How do we handle nonconvexity?

» Matrix modifications
> Trust regions

I
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More questions

For large-scale problems:
» What if the derivative matrices cannot be stored?
» What if the derivative matrices cannot be factored?
We can use iterative in place of direct methods:
» Can we allow inexactness?

» How do we ensure global convergence, handle ill-conditioning, and
handle nonconvexity if solutions are inexact?
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Scaling and slack reset

» We begin by scaling the Newton system

Hi 0 Ve Ve [dr Vi + VeEAE + VI AL
0 . Qi 0 —5Sk 8; L —pe — Sk)\f

Vi 0 0 0 | [65| cf

veZl -s. o o]l i — Sk

» Primal-dual matrix now has nicer properties

» The use of a slack reset
sk > max{0, ¥ (xx)}

allows easier infeasibility detection
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:

Rank deficiency

He 0 Ve Ve [dy Vh + VEEN + VAT
0 . Qy 0 —Si s B —pe — Sk)\f
Vet 0 0 0 AR cf
A et — sk

vl —-S. 00

If the constraint Jacobian is singular or ill-conditioned

» The system may be inconsistent
» The search directions (d7, d§, 0%, 67) may blow up

» The line search may break down

I
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:

Matrix modifications

He 0 Veg Vi [dr Vi + VEEA + VAT
0 Qy 0 —Sk le —pe — Sk)\f
veET 0 —eloo | |ef| T £
6L et — sk

VeIl -5 0 =<l
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Interior-Point with Inexact Steps Numerical Results
:

Introduction

Matrix modifications

He 0 Ve Ve [d; Vi + VEEN + VAT
0 Qy 0 —Si s — e — SME
T k| — _ k
Vet 0 ¢ 0 5¢ ct
veZl -s. o el LoF Cic — Sk

However, without matrix factorizations (i.e., no idea of the inertia)
» When should this modification be performed?

» What value should & take? How large?
» How do we ensure that in the end we solve the right problem?

I
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Failure of line search methods

» Recall the counter-example of Wichter and Biegler (2000)

feasible region

(x959)

I I
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Step decomposition
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Normal step

1 £ eT x
min = [ Ick ] 4 vCkIT 0 [‘.”;]
2 Ck — Sk VCk —Sk Vi
£ va £
s.t. ‘:’f <w Ve Vg K
1720 | 0 —Si c;;r — sk
» QP w/ trust region constraint
» Trust region radius is zero at
first-order minimizers of infeasibility
> Radius updates automatically
» Solve w/ CG or inexact dogleg
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Tangential step
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Tangential step
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Nonconvexity
» During primal-dual step computation, convexify the Hessian
Hy + &1 0 Vef Vit
0 Qp + &1 0 -5
veeT 0 0 0
VT -s. 00

(i.e. increase &) whenever

] [He+€l 0 ujj<9ujf2
iis 0 Q+él |G i

for some ¢,6 > 0
» In our tests, modifications are few and early
» We avoid having to develop conditions for inexact projections
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Primal-dual step computation

We can be brave and approach the full system (avoid normal step)

Hi 0 Vc& Vi [ax
0 Qu 0 =S| |gs

. k
veeT 0o o0 o | |6
veZl -s. o o Lo

Vi + Ve XS + VeI AL
—pue — Sk)\f
i

z
Ci, — Sk

.. or compute a normal step, then approach the perturbed system

Hi 0 Ve Vi [dr
0 Qx 0 -5k a;
veem 0 0 o ||of
VT —s. o o |6

Vi + VeEXS + VcEAE
—pe — Sk)\f
T X
*ng Vi
—Vk v+ d;
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Primal-dual step computation

We can be brave and approach the full system (avoid normal step)

Hi 0 Vc& Vi [ax
0 Qu 0 =S| |gs

. k
veeT 0o o0 o | |6
veZl -s. o o Lo

Vi + Ve XS + VeI AL
—pue — Sk)\f
i

z
Ci, — Sk

.. or compute a normal step, then approach the perturbed system

Hi 0 Ve Vi [dr
0 Qx 0 -5k a;
veem 0 0 o ||of
VT —s. o o |6

How do we allow inexact solutions?

Vi + VeEXS + VcEAE
—pe — Sk)\f
T X
*ng Vi
—Vk v+ d;
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Consistency between the direction and the merit function

» In unconstrained optimization and nonlinear equations, there is
always consistency (even w/ inexact steps) between the step
computation and the function that measures progress

» In constrained optimization, however, our search direction is based
on optimality conditions

VF(x) + V€ ()N 4+ VT (x)AT
_/1*5 1, _ )\I
£ (x)
I (x)—s

but we judge progress by a merit function

B(x,s;m) = F(x) — Zlns +7

i€eZ

=0

ER]

» Consistency is not automatic! A direction that may reduce the KKT
error may not be a direction of descent for the merit function

I I
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Model reductions

v

We ensure consistency by requiring model reductions

v

Define the model of ¢(x, s; 7) at (xk, sk):

mi(d*,d*; ) & f + V] d* — '“Z Ins — pd®

ieT
+7r<

ERRCHN
G sl v s Lo

Amy(dy, di;m) 2 mi(0,0; 7)) — my(dy, di; ) >0

)

v

dy is acceptable if

» This ensures descent (and more)
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Termination tests

He 0 Ve Ve [dy Vi + VeEX + VEN] g
0 S 0 =Sqidgrl —pe — S o
veel 0 0 o |le| T ¢ ot
vzl -s. o o) Lo G — Sk P

Search direction is acceptable if

» (TT1) dual residual is sufficiently small, tangential component is
bounded by normal component or by sufficient convexity, and model
reduction is sufficiently large for current penalty parameter

» (TT2) dual residual is sufficiently small, tangential component is
bounded by normal component or by sufficient convexity, and
sufficient progress in linearized feasibility (model reduction obtained
with increase in penalty parameter)

» (TT3) sufficient progress in reducing dual infeasibility

I
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Interior-point algorithm with inexact step computations

(C., Schenk, and Waichter (2009))
fork=0,1,2,...
» Approximately solve for a normal step (optional?)

» |teratively solve the primal-dual equations until TT1, TT2, or TT3 is
satisfied, modifying the Hessian matrix when appropriate

» If only termination test 2 is satisfied, then increase 7

» Backtrack from ay < 1 to satisfy fraction-to-the-boundary and
sufficient decrease conditions for the merit function ¢

» Update the iterate
> Reset the slacks
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Convergence (inner iteration)
Assumption

The sequence {(x, sk, A\{, AF)} is contained in a convex set Q over which
f, c¢, cZ, and their first derivatives are bounded and Lipschitz continuous

Theorem ) )
If all limit points of the constraint Jacobians have full row rank, then

Vi + VeEAE + VAT

lim —ne — SAL =0
k— 00 < :
CZ: — Sk
Otherwise,
. Vef vt of _
lim H [ 0 =S| |F —slll 0
and if {my} is bounded, then
im [V e+ VeE A + VM| 0
k— oo —pe — Skkf
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Convergence (outer iteration)

Theorem

If the algorithm yields a sufficiently accurate solution to the barrier
subproblem for each {11;} — 0 and if the linear independence constraint
qualification (LICQ) holds at a limit point X of {x;}, then there exist
Lagrange multipliers \ such that the first-order optimality conditions of
the nonlinear program are satisfied

I
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Outline

Numerical Results

Interior-Point Algorithm with Inexact Step Computations 33 of 43




Introduction Interior-Point with Inexact Steps Numerical Results Summary and Future Work
: :

Implementation details

v

Incorporated in IPOPT software package (Wachter)
> inexact_algorithm yes

Linear systems solved with PARDISO (Schenk)
> SQMR (Freund (1994))

Preconditioning in PARDISO

> incomplete multilevel factorization with inverse-based pivoting
> stabilized by symmetric-weighted matchings

v

v

v

Optimality tolerance: le-8
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CUTEr and COPS collections

684 problems written in AMPL
580 solved successfully
Robustness: ~85%

Original IPOPT: ~94%

vV v v v
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Parameter estimation for Helmholtz equation

Recover parameter k based on data collected from propagating waves

Tre kol

2
50
s
¢
a
2
0
6
] [ 14 ae [} 1 -

Reconsnod k)

B

N | n | p | q | # iter | CPU sec (per iter)
32 14724 13824 1800 37 807.823 (21.833)
64 56860 53016 7688 25 3741.42 (149.66)
128 | 227940 | 212064 | 31752 20 54581.8 (2729.1)
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Boundary control

min 5 [ () = ()

{ V.- (ey(X) - Vy(x))
s.t.

y(x)

25 < u(x)

where

<

20

u(x)
3.5

in Q
on 99
on 09

ye(x) = 34+ 10x1(x1 — 1)x2(x2 — 1) sin(27x3)

N | n | p | q | # iter | CPU sec (per iter)
16 4096 2744 2704 13 2.8144 (0.2165)
32 32768 27000 | 11536 13 103.65 (7.9731)
64 | 262144 | 238328 | 47632 14 5332.3 (380.88)

Original IPOPT with N = 32 requires 238 seconds per iteration

Interior-Point Algorithm with Inexact Step Computations
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Hyperthermia treatment planning

1
min 5 [ (/) = ve())?

—Ay(x) —10(y(x) —37) = u*M(x)u inQ
s.t. 370 < y(x) < 375 on 9Q
420 < y(x) < 440 in Qo

where )
up = a;e’®, My (x) =< Ej(x), Ex(x) >, E; = sin(jxixoxsm)

N | n | p | q | # iter | CPU sec (per iter)
16 4116 2744 2994 68 22.893 (0.3367)
32 | 32788 | 27000 | 13034 51 3055.9 (59.920)

Original IPOPT with N = 32 requires 408 seconds per iteration
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Groundwater modeling

min 5 [ (/00 = ye(0)ebe+ S [ [8(ulo) = ue()? + V() = (o)) Ple

where

—V - (e"® . Vyi(x)) = qi(x) inQ, i=1,...,6
Vyi(x)-n = 0 on 9Q
/y;(x)dx = 0, i=1,...,6
Q
-1 < ux) < 2 in Q
g; = 1005sin(27x1 ) sin(27x2) sin(27mx3)
N | n | p | q | # iter | CPU sec (per iter) |
16 28672 24576 8192 18 | 206.416 (11.4676)
32 229376 196608 65536 20 | 1963.64 (98.1820)
64 | 1835008 | 1572864 | 524288 21 | 134418. (6400.85)

Original IPOPT with N = 32 requires approx. 20 hours for the first iteration
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Summary and Future Work
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Summary

We proposed an algorithm for large-scale nonlinear optimization:
It can handle ill-conditioned /rank-deficient problems

It can handle nonconvex problems

Inexactness is allowed and controlled with loose conditions
The conditions are implementable (in fact, implemented)
The algorithm is globally convergent

It can handle problems with control and state constraints

vV Vv v Vv Y

Numerical results are very encouraging so far
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Future work and questions

What are we missing (to really solve PDE-constrained problems)?
» PDE-specific preconditioners
» Use of appropriate norms
» Mesh refinement, error estimators

What does it take to transform an algorithm for finite-dimensional
optimization into one for solving infinite-dimensional problems?

» Can the finite-dimensional solver be a black-box?

» If not, to what extent do the outer and inner algorithms need to be
coupled? (Do all components of the finite-dimensional solver need
to be checked for their effect on the infinite-dimensional problem?)

What interesting problems may be solved with our approach?
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