Second-Order Methods for Stochastic Optimization

Frank E. Curtis, Lehigh University

involving joint work with

Léon Bottou, Facebook AI Research
Jorge Nocedal, Northwestern University
“Optimization Methods for Large-Scale Machine Learning”
http://arxiv.org/abs/1606.04838

Columbia University, Department of IEOR

16 October 2017
Outline

- Perspectives on Nonconvex Optimization
- GD, SG, and Beyond
- Stochastic Quasi-Newton
- Self-Correcting Properties of BFGS
- Proposed Algorithm: SC-BFGS
- Summary
Outline

Perspectives on Nonconvex Optimization

- GD, SG, and Beyond
- Stochastic Quasi-Newton
- Self-Correcting Properties of BFGS
- Proposed Algorithm: SC-BFGS

Summary
Consider the problem to find \(w \in \mathbb{R}^d \) to minimize \(f \) subject to being in \(\mathcal{W} \subseteq \mathbb{R}^d \):

\[
\min_{w \in \mathcal{W}} f(w). \tag{P}
\]

Interested in algorithms for solving (P) when \(f \) might not be convex.

Nonconvex optimization is experiencing a heyday!

- nonlinear least squares
- training deep neural networks
- subspace clustering
- ...
Nonlinear optimization has had parallel developments

These worlds are (finally) colliding! Where should emphasis be placed?
First- versus second-order

First-order methods follow a steepest descent methodology:

$$w_{k+1} \leftarrow w_k - \alpha_k \nabla f(w_k)$$

Second-order methods follow Newton’s methodology:

$$w_{k+1} \leftarrow w_k - \alpha_k [\nabla^2 f(w_k)]^{-1} \nabla f(w_k),$$

which one should view as minimizing a quadratic model of f at w_k:

$$f(w_k) + \nabla f(w_k)^T (w - w_k) + \frac{1}{2} (w - w_k)^T \nabla^2 f(w_k) (w - w_k)$$
First- versus quasi-second-order

First-order methods follow a steepest descent methodology:

\[w_{k+1} \leftarrow w_k - \alpha_k \nabla f(w_k) \]

Second-order methods follow Newton’s methodology:

\[w_{k+1} \leftarrow w_k - \alpha_k M_k \nabla f(w_k) \]

which one should view as minimizing a quadratic model of \(f \) at \(w_k \):

\[
f(w_k) + \nabla f(w_k)^T (w - w_k) + \frac{1}{2} (w - w_k)^T H_k (w - w_k)
\]

Might also replace the Hessian with an approximation \(H_k \) with inverse \(M_k \)
Why second-order???

Traditional motivation:
 ▶ Fast local convergence guarantees

Recent motivation:
 ▶ Better complexity properties
Why second-order???

Traditional motivation:
- Fast local convergence guarantees

Recent motivation:
- Better complexity properties

However, I believe these convey the wrong message, especially when problems
- ... involve stochasticity / randomness
- ... involve nonsmoothness

I believe there are other more appropriate motivations
Early 2010’s

Complexity guarantees for nonconvex optimization algorithms

- Iterations or function/derivative evaluations to achieve
 \[\| \nabla f(w_k) \|_2 \leq \epsilon \]

- Steepest descent (first-order): \(O(\epsilon^{-2}) \)
- Line search (second-order): \(O(\epsilon^{-2}) \)
- Trust region (second-order): \(O(\epsilon^{-2}) \)
- Cubic regularization (second-order): \(O(\epsilon^{-3/2}) \)

Cubic regularization has longer history, but *picks up steam* in early 2010’s:

- Griewank (1981)
- Nesterov & Polyak (2006)
- Weiser, Deuflhard, Erdmann (2007)
- Cartis, Gould, Toint (2011), the ARC method
Researchers have been gravitating to adopt and build on cubic regularization:

- Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
- Carmon, Duchi (2017)
- Kohler, Lucchi (2017)
- Peng, Roosta-Khorasan, Mahoney (2017)

However, *there remains a large gap between theory and practice!*
Researchers have been gravitating to adopt and build on cubic regularization:

- Agarwal, Allen-Zhu, Bullins, Hazan, Ma (2017)
- Carmon, Duchi (2017)
- Kohler, Lucchi (2017)
- Peng, Roosta-Khorasan, Mahoney (2017)

However, there remains a large gap between theory and practice!

Little evidence that cubic regularization methods offer improved performance:

- Trust region (TR) methods remain the state-of-the-art
- TR-like methods can achieve the same complexity guarantees
Trust region methods with optimal complexity
So, why second-order?

For better complexity properties?

▶ Eh, not really...

▶ Many are no better than first-order methods in terms of complexity

▶ ...and ones with better complexity aren’t necessarily best in practice (yet)
So, why second-order?

For better complexity properties?

▶ Eh, not really...
▶ Many are no better than first-order methods in terms of complexity
▶ ...and ones with better complexity aren’t necessarily best in practice (yet)

For fast local convergence guarantees?

▶ Eh, probably not...
▶ Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings
So, why second-order?

For better complexity properties?
 ▶ Eh, not really...
 ▶ Many are no better than first-order methods in terms of complexity
 ▶ ...and ones with better complexity aren’t necessarily best in practice (yet)

For fast local convergence guarantees?
 ▶ Eh, probably not...
 ▶ Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

Then why?
 ▶ Adaptive, natural scaling (gradient descent $\approx 1/L$ while Newton ≈ 1)
 ▶ Mitigate effects of ill-conditioning
 ▶ Easier to tune parameters(?)
 ▶ Better at avoiding saddle points(?)
 ▶ Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old...)
Message of this talk

People want to solve more complicated, nonconvex problems

- ...involving stochasticity / randomness
- ...involving nonsmoothness

We might waste this spotlight on nonconvex optimization if we do not...

- Make clear the gap between theory and practice (and close it!)
- Learn from advances that have already been made
- ...and adapt them appropriately for modern problems
Outline

Perspectives on Nonconvex Optimization

GD, SG, and Beyond

Stochastic Quasi-Newton

Self-Correcting Properties of BFGS

Proposed Algorithm: SC-BFGS

Summary
Stochastic optimization

Over a parameter vector $w \in \mathbb{R}^d$ and given

$$\ell(\cdot; y) \circ h(w; x)$$ (loss w.r.t. “true label” \circ prediction w.r.t. “features”),

consider the unconstrained optimization problem

$$\min_{w \in \mathbb{R}^d} f(w), \text{ where } f(w) = \mathbb{E}_{(x,y)}[\ell(h(w; x), y)].$$
Stochastic optimization

Over a parameter vector $w \in \mathbb{R}^d$ and given

$$\ell(\cdot; y) \circ h(w; x) \text{ (loss w.r.t. “true label” } \circ \text{ prediction w.r.t. “features”),}$$

consider the unconstrained optimization problem

$$\min_{w \in \mathbb{R}^d} f(w), \text{ where } f(w) = \mathbb{E}_{(x, y)}[\ell(h(w; x), y)].$$

Given training set $\{(x_i, y_i)\}_{i=1}^n$, approximate problem given by

$$\min_{w \in \mathbb{R}^d} f_n(w), \text{ where } f_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(h(w; x_i), y_i).$$
Over a parameter vector $w \in \mathbb{R}^d$ and given

$$\ell(\cdot; y) \circ h(w; x)$$ (loss w.r.t. “true label” \circ prediction w.r.t. “features”),

consider the unconstrained optimization problem

$$\min_{w \in \mathbb{R}^d} f(w), \quad \text{where } f(w) = \mathbb{E}_{(x,y)}[\ell(h(w; x), y)].$$

Given training set $\{(x_i, y_i)\}_{i=1}^n$, approximate problem given by

$$\min_{w \in \mathbb{R}^d} f_n(w), \quad \text{where } f_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(h(w; x_i), y_i).$$

For this talk, let’s assume

- f is continuously differentiable, bounded below, and potentially nonconvex;
- ∇f is L-Lipschitz continuous, i.e., $\|\nabla f(w) - \nabla f(\bar{w})\|_2 \leq L\|w - \bar{w}\|_2$.
Gradient descent

Algorithm GD: Gradient Descent
1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
2: for $k \in \{0, 1, 2, \ldots \}$ do
3: set $w_{k+1} \leftarrow w_k - \alpha \nabla f(w_k)$
4: end for

\[f(w_k) \]

w_k
Algorithm GD : Gradient Descent

1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
2: for $k \in \{0, 1, 2, \ldots \}$ do
3: set $w_{k+1} \leftarrow w_k - \alpha \nabla f(w_k)$
4: end for
Algorithm GD : Gradient Descent

1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
2: for $k \in \{0, 1, 2, \ldots \}$ do
3: set $w_{k+1} \leftarrow w_k - \alpha \nabla f(w_k)$
4: end for

$$f(w_k) + \nabla f(w_k)^T (w - w_k) + \frac{1}{2} L \|w - w_k\|^2_2$$
Gradient descent

Algorithm GD: Gradient Descent

1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsize $\alpha > 0$
2: for $k \in \{0, 1, 2, \ldots \}$ do
3: set $w_{k+1} \leftarrow w_k - \alpha \nabla f(w_k)$
4: end for
GD theory

Theorem GD

If \(\alpha \in (0, 1/L] \), then \(\sum_{k=0}^{\infty} \| \nabla f(w_k) \|^2 < \infty \), which implies \(\{ \nabla f(w_k) \} \to 0 \).

Proof.

\[
f(w_{k+1}) \leq f(w_k) + \nabla f(w_k)^T (w_{k+1} - w_k) + \frac{1}{2} L \| w_{k+1} - w_k \|^2
\leq f(w_k) - \frac{1}{2} \alpha \| \nabla f(w_k) \|^2
\]
Theorem GD

If $\alpha \in (0, 1/L]$, then

$$\sum_{k=0}^{\infty} \left\| \nabla f(w_k) \right\|^2 < \infty,$$

which implies $\{\nabla f(w_k)\} \to 0$.

If, in addition, f is c-strongly convex, then for all $k \geq 1$:

$$f(w_k) - f_* \leq (1 - \alpha c)^k (f(x_0) - f_*).$$

Proof.

$$f(w_{k+1}) \leq f(w_k) + \nabla f(w_k)^T (w_{k+1} - w_k) + \frac{1}{2} L \left\| w_{k+1} - w_k \right\|^2$$

$$\leq f(w_k) - \frac{1}{2} \alpha \left\| \nabla f(w_k) \right\|^2$$

$$\leq f(w_k) - \alpha c (f(w_k) - f_*).$$

$$\Rightarrow f(w_{k+1}) - f_* \leq (1 - \alpha c)(f(w_k) - f_*).$$
GD illustration

Figure: GD with fixed stepsize
Stochastic gradient descent

Approximate gradient only; e.g., random i_k and $\nabla_w \ell(h(w; x_{i_k}), y_{i_k}) \approx \nabla f(w)$.

Algorithm SG : Stochastic Gradient

1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsizes $\{\alpha_k\} > 0$
2: for $k \in \{0, 1, 2, \ldots\}$ do
3: \hspace{1em} set $w_{k+1} \leftarrow w_k - \alpha_k g_k$, where $g_k \approx \nabla f(w_k)$
4: end for
Approximate gradient only; e.g., random i_k and $\nabla_w \ell(h(w; x_{i_k}), y_{i_k}) \approx \nabla f(w)$.

Algorithm SG : Stochastic Gradient

1: choose an initial point $w_0 \in \mathbb{R}^n$ and stepsizes $\{\alpha_k\} > 0$
2: for $k \in \{0, 1, 2, \ldots\}$ do
3: set $w_{k+1} \leftarrow w_k - \alpha_k g_k$, where $g_k \approx \nabla f(w_k)$
4: end for

Not a descent method!
\[\cdots \] but can guarantee eventual descent in expectation (with $\mathbb{E}_k [g_k] = \nabla f(w_k)$):
\[
f(w_{k+1}) \leq f(w_k) + \nabla f(w_k)^T (w_{k+1} - w_k) + \frac{1}{2} L \|w_{k+1} - w_k\|_2^2 \\
= f(w_k) - \alpha_k \nabla f(w_k)^T g_k + \frac{1}{2} \alpha_k^2 L \|g_k\|_2^2 \\
\implies \mathbb{E}_k [f(w_{k+1})] \leq f(w_k) - \alpha_k \|\nabla f(w_k)\|_2^2 + \frac{1}{2} \alpha_k^2 L \mathbb{E}_k [\|g_k\|_2^2].
\]

Markov process: w_{k+1} depends only on w_k and random choice at iteration k.
Theorem SG

If $\mathbb{E}_k[\|g_k\|_2^2] \leq M + \|\nabla f(w_k)\|_2^2$, then:

$$\alpha_k = \frac{1}{L} \quad \Rightarrow \quad \mathbb{E} \left[\frac{1}{k} \sum_{j=1}^{k} \|\nabla f(w_j)\|_2^2 \right] \xrightarrow{k \to \infty} M$$

$$\alpha_k = O\left(\frac{1}{k}\right) \quad \Rightarrow \quad \mathbb{E} \left[\sum_{j=1}^{k} \alpha_j \|\nabla f(w_j)\|_2^2 \right] < \infty.$$

(*Assumed unbiased gradient estimates; see paper for more generality.)
Theorem SG

If $\mathbb{E}_k[\|g_k\|_2^2] \leq M + \|\nabla f(w_k)\|_2^2$, then:

$$\alpha_k = \frac{1}{L} \implies \mathbb{E}\left[\frac{1}{k} \sum_{j=1}^{k} \|\nabla f(w_j)\|_2^2 \right] \xrightarrow{k \to \infty} M$$

$$\alpha_k = \mathcal{O}\left(\frac{1}{k}\right) \implies \mathbb{E}\left[\sum_{j=1}^{k} \alpha_j \|\nabla f(w_j)\|_2^2 \right] < \infty.$$

If, in addition, f is c-strongly convex, then:

$$\alpha_k = \frac{1}{L} \implies \mathbb{E}[f(w_k) - f_*] \xrightarrow{k \to \infty} \frac{(M/c)}{2}$$

$$\alpha_k = \mathcal{O}\left(\frac{1}{k}\right) \implies \mathbb{E}[f(w_k) - f_*] = \mathcal{O}\left(\frac{(L/c)(M/c)}{k}\right).$$

(*Assumed unbiased gradient estimates; see paper for more generality.)
SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)
Why SG over GD for large-scale machine learning?

We have seen:

\[
\begin{align*}
\text{GD:} & \quad \mathbb{E}[f_n(w_k) - f_n,\ast] = \mathcal{O}(\rho^k) \quad \text{linear convergence} \\
\text{SG:} & \quad \mathbb{E}[f_n(w_k) - f_n,\ast] = \mathcal{O}(1/k) \quad \text{sublinear convergence}
\end{align*}
\]

So why SG?
Why SG over GD for large-scale machine learning?

We have seen:

\[
\begin{align*}
\text{GD: } & \quad \mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(\rho^k) \quad \text{linear convergence} \\
\text{SG: } & \quad \mathbb{E}[f_n(w_k) - f_{n,*}] = \mathcal{O}(1/k) \quad \text{sublinear convergence}
\end{align*}
\]

So why SG?

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitive</td>
<td>data “redundancy”</td>
</tr>
<tr>
<td>Empirical</td>
<td>SG works well in practice vs. GD</td>
</tr>
<tr>
<td>Theoretical</td>
<td>(\mathbb{E}[f_n(w_k) - f_{n,}] = \mathcal{O}(1/k)) and (\mathbb{E}[f(w_k) - f_] = \mathcal{O}(1/k))</td>
</tr>
</tbody>
</table>
Work complexity

Time, not data, as limiting factor; Bottou, Bousquet (2008) and Bottou (2010).

<table>
<thead>
<tr>
<th>Convergence rate</th>
<th>Cost per iteration</th>
<th>Cost for ϵ-optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD: $\mathbb{E}[f_n(w_k) - f_{n,*}] = O(\rho^k)$</td>
<td>$O(n)$</td>
<td>$n \log(1/\epsilon)$</td>
</tr>
<tr>
<td>SG: $\mathbb{E}[f_n(w_k) - f_{n,*}] = O(1/k)$</td>
<td>$O(1)$</td>
<td>$1/\epsilon$</td>
</tr>
</tbody>
</table>
Work complexity

Time, not data, as limiting factor; Bottou, Bousquet (2008) and Bottou (2010).

<table>
<thead>
<tr>
<th>Convergence rate</th>
<th>Cost per iteration</th>
<th>Cost for ϵ-optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD: $E[f_n(w_k) - f_n,\ast] = O(\rho^k)$</td>
<td>$O(n)$</td>
<td>$n \log(1/\epsilon)$</td>
</tr>
<tr>
<td>SG: $E[f_n(w_k) - f_n,\ast] = O(1/k)$</td>
<td>$O(1)$</td>
<td>$1/\epsilon$</td>
</tr>
</tbody>
</table>

Considering total (estimation + optimization) error as

$$\mathcal{E} = E[f(w^n) - f(w^*)] + E[f(\tilde{w}^n) - f(w^n)] \sim \frac{1}{n} + \epsilon$$

and a time budget T, one finds:

- **SG**: Process as many samples as possible ($n \sim T$), leading to

 $$\mathcal{E} \sim \frac{1}{T}.$$

- **GD**: With $n \sim T / \log(1/\epsilon)$, minimizing \mathcal{E} yields $\epsilon \sim 1/T$ and

 $$\mathcal{E} \sim \frac{1}{T} + \frac{\log(T)}{T}.$$
End of the story?

SG is great! Let’s keep proving how great it is!

- SG avoids steep minima; Keskar, Mudigere, Nocedal, Smelyanskiy (2016)
- … (many more)
End of the story?

SG is great! Let’s keep proving how great it is!

- SG avoids steep minima; Keskar, Mudigere, Nocedal, Smelyanskiy (2016)
- … (many more)

No, we should want more…

- SG requires a lot of tuning
- Sublinear convergence is not satisfactory
- … “linearly” convergent method eventually wins
- … with higher budget, faster computation, parallel?, distributed?

Also, any “gradient”-based method is not scale invariant.
Stochastic Optimization: No Parameter Tuning

Limited memory stochastic gradient method (extends Barzilai-Borwein):

\[x_{k+1} \leftarrow x_k - \alpha_k g_k \quad \text{where} \quad \alpha_k > 0 \ \text{chosen adaptively} \]

Minimizing logistic loss for binary classification with RCV1 dataset
Training a convolutional neural network for classifying digits in *mnist*:

Stochastic-gradient-type method versus one that follows negative curvature:

Overcomes slow initial progress by SG-type method...
Stochastic Optimization: Avoiding Saddle Points / Stagnation

Training a convolutional neural network for classifying digits in \textit{mnist}:

Stochastic-gradient-type method versus one that follows negative curvature:

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xmin=0, xmax=250,
 ymin=0.1, ymax=0.9,
 xlabel={iterations},
 ylabel={testing accuracy},
 legend pos=north west
]
\addplot [domain=0:250, color=blue, samples=50] {0.1 + 0.8 * x / 250};
\addlegendentry{SG}
\addplot [domain=0:250, color=orange, samples=50] {0.1 + 0.8 * x / 250 + 0.1 * sin(2 * pi * x / 250)};
\addlegendentry{NC}
\end{axis}
\end{tikzpicture}
\end{center}

\ldots while still yielding good behavior in terms of \textit{testing} accuracy
What can be improved?

- Stochastic gradient
- Better rate
- Better constant
What can be improved?

- Stochastic gradient
- Better rate
- Better constant

And

- Better rate
- Better constant
Two-dimensional schematic of methods
2D schematic: Noise reduction methods

- stochastic gradient
- noise reduction
 - dynamic sampling
 - gradient aggregation
 - iterate averaging
- batch gradient
2D schematic: Second-order methods

- stochastic gradient
- diagonal scaling
- natural gradient
- Gauss-Newton
- quasi-Newton
- Hessian-free Newton

stochastic Newton
Outline

Perspectives on Nonconvex Optimization

GD, SG, and Beyond

Stochastic Quasi-Newton

Self-Correcting Properties of BFGS

Proposed Algorithm: SC-BFGS

Summary
Quasi-Newton

Only *approximate* second-order information with gradient displacements:

Secant equation $H_k v_k = s_k$ to match gradient of f at w_k, where

$$s_k := w_{k+1} - w_k \quad \text{and} \quad v_k := \nabla f(w_{k+1}) - \nabla f(w_k)$$
Previous work: BFGS-type methods

Much focus on the secant equation \((H_{k+1} \sim \text{Hessian approximation})\)

\[
H_{k+1} s_k = y_k \quad \text{where} \quad \begin{cases}
 s_k := w_{k+1} - w_k \\
 y_k := \nabla f(w_{k+1}) - \nabla f(w_k)
\end{cases}
\]

and an appropriate replacement for the gradient displacement:

\[
y_k \leftarrow \nabla f(w_{k+1}, \xi_k) - \nabla f(w_k, \xi_k)
\]

use same seed
oLBFGS, Schraudolph et al. (2007)
SGD-QN, Bordes et al. (2009)
RES, Mokhtari & Ribeiro (2014)

or

\[
y_k \leftarrow \left(\sum_{i \in S^H_k} \nabla^2 f(w_{k+1}, \xi_{k+1,i}) \right) s_k
\]

use action of step on subsampled Hessian
SQN, Byrd et al. (2015)
Goldfarb et al. (2016)

Is this the right focus? Is there a better way (especially for nonconvex \(f\))?
Proposal

Propose a quasi-Newton method for stochastic (nonconvex) optimization

- exploit self-correcting properties of BFGS-type updates
 - Powell (1976)
 - Ritter (1979, 1981)
 - Werner (1978)
 - Byrd, Nocedal (1989)
Outline

- Perspectives on Nonconvex Optimization
- GD, SG, and Beyond
- Stochastic Quasi-Newton
- Self-Correcting Properties of BFGS
- Proposed Algorithm: SC-BFGS
- Summary
BFGS-type updates

Inverse Hessian and Hessian approximation updating formulas ($s_k^Tv_k > 0$):

\[
M_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^Tv_k}\right)^T M_k \left(I - \frac{v_k s_k^T}{s_k^Tv_k}\right) + \frac{s_k s_k^T}{s_k^Tv_k}
\]

\[
H_{k+1} \leftarrow \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k}\right) + \frac{v_k v_k^T}{s_k^Tv_k}
\]

- These satisfy secant-type equations

\[
M_{k+1}v_k = s_k \quad \text{and} \quad H_{k+1}s_k = v_k,
\]

but these are not critical for this talk.
Consider the matrices (which only depend on \(s_k \) and \(H_k \), not \(g_k \))

\[
P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.
\]

Both \(H_k \)-orthogonal projection matrices (i.e., idempotent and \(H_k \)-self-adjoint).

- \(P_k \) yields \(H_k \)-orthogonal projection onto \(\text{span}(s_k) \).
- \(Q_k \) yields \(H_k \)-orthogonal projection onto \(\text{span}(s_k) \perp H_k \).
Consider the matrices (which only depend on s_k and H_k, not g_k!)

$$P_k := \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \quad \text{and} \quad Q_k := I - P_k.$$

Both H_k-orthogonal projection matrices (i.e., idempotent and H_k-self-adjoint).

- P_k yields H_k-orthogonal projection onto $\text{span}(s_k)$.
- Q_k yields H_k-orthogonal projection onto $\text{span}(s_k)^\perp H_k$.

 Returning to the Hessian update:

$$H_{k+1} \leftarrow \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \right)^T H_k \left(I - \frac{s_k s_k^T H_k}{s_k^T H_k s_k} \right) + \frac{v_k v_k^T}{s_k^T v_k}$$

- Curvature projected out along $\text{span}(s_k)$
- Curvature corrected by $\frac{v_k v_k^T}{s_k^T v_k} = \left(\frac{v_k v_k^T}{\|v_k\|^2} \right) \left(\frac{\|v_k\|^2}{v_k^T M_{k+1} v_k} \right)$ (inverse Rayleigh).
Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 3 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists $\{\eta, \theta\} \subset \mathbb{R}^+$ such that

$$\eta \leq s_k^T v_k \|s_k\|^2_2$$

and

$$\|v_k\|^2_2 s_k^T v_k \leq \theta.$$

Then, for any $p \in (0, 1)$, there exist constants $\{\iota, \kappa, \lambda\} \subset \mathbb{R}^+$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pk \rceil$ values of $k \in \{1, \ldots, K\}$:

$$\iota \leq s_k^T H_k s_k \|s_k\|^2_2 \|H_k s_k\|^2_2$$

and

$$\kappa \leq \|H_k s_k\|^2_2 \|s_k\|^2_2 \leq \lambda.$$
Self-correcting properties of Hessian update

Since curvature is constantly projected out, what happens after many updates?

Theorem 3 (Byrd, Nocedal (1989))

Suppose that, for all k, there exists $\{\eta, \theta\} \subset \mathbb{R}_{++}$ such that

$$
\eta \leq \frac{s_k^T v_k}{\|s_k\|_2^2} \quad \text{and} \quad \frac{\|v_k\|_2^2}{s_k^T v_k} \leq \theta.
$$

Then, for any $p \in (0, 1)$, there exist constants $\{\iota, \kappa, \lambda\} \subset \mathbb{R}_{++}$ such that, for any $K \geq 2$, the following relations hold for at least $\lceil pK \rceil$ values of $k \in \{1, \ldots, K\}$:

$$
\iota \leq \frac{s_k^T H_k s_k}{\|s_k\|_2 \|H_k s_k\|_2} \quad \text{and} \quad \kappa \leq \frac{\|H_k s_k\|_2}{\|s_k\|_2} \leq \lambda.
$$

Proof technique.

Building on work of Powell (1976), involves bounding growth of

$$
\gamma(H_k) = \text{tr}(H_k) - \ln(\det(H_k)).
$$
Self-correcting properties of inverse Hessian update

Rather than focus on superlinear convergence results, we care about the following.

Corollary 4

Suppose the conditions of Theorem 3 hold. Then, for any \(p \in (0, 1) \), there exist constants \(\{\mu, \nu\} \subset \mathbb{R}^{++} \) such that, for any \(K \geq 2 \), the following relations hold for at least \(\lceil pK \rceil \) values of \(k \in \{1, \ldots, K\} \):

\[
\mu \|\bar{g}_k\|_2^2 \leq \bar{g}_k^T M_k \bar{g}_k \quad \text{and} \quad \|M_k \bar{g}_k\|_2^2 \leq \nu \|\bar{g}_k\|_2^2
\]

Here \(\bar{g}_k \) is the vector such that the iterate displacement is

\[w_{k+1} - w_k = s_k = -M_k \bar{g}_k \]

Proof sketch.

Follows simply after algebraic manipulations from the result of Theorem 3, using the facts that \(s_k = -M_k \bar{g}_k \) and \(M_k = H_k^{-1} \) for all \(k \).
Our main idea is to use a carefully selected type of damping:

- Choosing \(v_k \leftarrow y_k := g_{k+1} - g_k \) yields standard BFGS, but we consider
 \[
 v_k \leftarrow \beta_k Hs_k + (1 - \beta_k)\tilde{y}_k
 \]
 for some \(\beta_k \in [0, 1] \) and \(\tilde{y}_k \in \mathbb{R}^n \).

This scheme preserves the self-correcting properties of BFGS.
Outline

Perspectives on Nonconvex Optimization

GD, SG, and Beyond

Stochastic Quasi-Newton

Self-Correcting Properties of BFGS

Proposed Algorithm: SC-BFGS

Summary
Algorithm SC : Self-Correcting BFGS Algorithm

1: Choose $w_1 \in \mathbb{R}^d$.
2: Set $g_1 \approx \nabla f(w_1)$.
3: Choose a symmetric positive definite $M_1 \in \mathbb{R}^{d \times d}$.
4: Choose a positive scalar sequence $\{\alpha_k\}$.
5: for $k = 1, 2, \ldots$ do
6: \hspace{1em} Set $s_k \leftarrow -\alpha_k M_k g_k$.
7: \hspace{1em} Set $w_{k+1} \leftarrow w_k + s_k$.
8: \hspace{1em} Set $g_{k+1} \approx \nabla f(w_{k+1})$.
9: \hspace{1em} Set $y_k \leftarrow g_{k+1} - g_k$.
10: \hspace{1em} Set $\beta_k \leftarrow \min\{\beta \in [0, 1] : v(\beta) := \beta s_k + (1 - \beta)\alpha_k y_k \text{ satisfies } (\star)\}$.
11: \hspace{1em} Set $v_k \leftarrow v(\beta_k)$.
12: \hspace{1em} Set $M_{k+1} \leftarrow \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right)^T M_k \left(I - \frac{v_k s_k^T}{s_k^T v_k}\right) + \frac{s_k s_k^T}{s_k^T v_k}$.
13: end for
Global convergence theorem

Theorem (Bottou, Curtis, Nocedal (2016))

Suppose that, for all k, there exists a scalar constant $\rho > 0$ such that

$$-\nabla f(w_k)^T \mathbb{E}_{\xi_k}[M_k g_k] \leq -\rho \|\nabla f(w_k)\|^2,$$

and there exist scalars $\sigma > 0$ and $\tau > 0$ such that

$$\mathbb{E}_{\xi_k} [\|M_k g_k\|^2] \leq \sigma + \tau \|\nabla f(w_k)\|^2.$$

Then, $\{\mathbb{E}[f(w_k)]\}$ converges to a finite limit and

$$\lim \inf_{k \to \infty} \mathbb{E}[\nabla f(w_k)] = 0.$$

Proof technique.

Follows from the critical inequality

$$\mathbb{E}_{\xi_k}[f(w_{k+1})] - f(w_k) \leq -\alpha_k \nabla f(w_k)^T \mathbb{E}_{\xi_k}[M_k g_k] + \alpha_k^2 L \mathbb{E}_{\xi_k} [\|M_k g_k\|^2].$$
Numerical Experiments: a1a

logistic regression, data a1a, diminishing stepsizes
Numerical Experiments: rcv1

SC-L and SC-L-s: limited memory variants of SC and SC-s, respectively:

logistic regression, data rcv1, diminishing stepsizes
Numerical Experiments: mnist

- deep neural network, data mnist, diminishing stepsizes
Outline

Perspectives on Nonconvex Optimization

GD, SG, and Beyond

Stochastic Quasi-Newton

Self-Correcting Properties of BFGS

Proposed Algorithm: SC-BFGS

Summary
Why second-order?

For better complexity properties?
 ▶ Eh, not really...
 ▶ Many are no better than first-order methods in terms of complexity
 ▶ …and ones with better complexity aren’t necessarily best in practice (yet)

For fast local convergence guarantees?
 ▶ Eh, probably not...
 ▶ Hard to achieve, especially in large-scale, nonsmooth, or stochastic settings

Then why?
 ▶ Adaptive, natural scaling (gradient descent $\approx 1/L$ while Newton ≈ 1)
 ▶ Mitigate effects of ill-conditioning
 ▶ Easier to tune parameters (?)
 ▶ Better at avoiding saddle points (?)
 ▶ Better trade-off in parallel and distributed computing settings

(Also, opportunities for NEW algorithms! Not analyzing the same old…)
Message of this talk

People want to solve more complicated, nonconvex problems

▶ … involving stochasticity / randomness
▶ … involving nonsmoothness

We might waste this spotlight on nonconvex optimization if we do not…

▶ Make clear the gap between theory and practice (and close it!)
▶ Learn from advances that have already been made
▶ … and adapt them *appropriately* for modern problems
References

For references, please see

- http://coral.ise.lehigh.edu/frankecurtis/publications

Please also visit the OptML @ Lehigh website!

- http://optml.lehigh.edu