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Motivation

Interior-point methods are the workhorse for deterministic nonlinearly constrained optimization.

» Ipopt, Knitro, LOQO, etc.
Before our work, there were no stochastic interior-point methods with convergence guarantees.
Why not?

» Stochastic algorithms for constrained optimization are not widely studied

> .. .except for projection methods, manifold-based methods, and conditional gradient methods.

P Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous

» ...but barrier functions (e.g., logarithmic barrier) have neither property.

In our first paper and this talk, we focus on the bound-constrained case.

» I will end with the additional discussion about the generally constrained case.

TAn idea was proposed, but there was a flaw in the analysis.
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Bound-constrained setting

Given f: R™ — R and (I,u) € R™ x R" with | < u, consider

min f(z)

zER™
st.l<z<wu

If = is a minimizer, then for some (y, z) one has
Vfi(z)—y+2=0, 0<(z—0)Ly>0, 0<(u—=x)Lz>0.

(We can handle infinite bounds, but in this talk consider finite bounds for simplicity....)
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Textbook algorithm

For all u € Ry, consider the barrier-augmented function

bz, 1) = () — Y log(wi — 1) — p Y log(u; — ;).
=1 =1

Algorithm IPM : Interior-point method (textbook version)

1: choose an initial point 1 € (I,u) and barrier parameter o € Ry,

2: for all k € {1,2,...} do

3 if [[Vag(ap, pr—1)ll2 < Opp—1 then set pup < pp1 else set py + pr—1
4: compute descent direction dj, (e.g., —V(xg, pr))

5 set g max € (0,1] by fraction-to-the-boundary rule to ensure

Tl + g maxdr — 1 > e(xp — 1) and u — () + ap maxdi) > €(u — )

6: set o € (0, 0tk max] to ensure sufficient decrease ¢(xp41, tr) K O(Th, i)
7: end for

Note: Essentially a nested-loop algorithm with inner loop having fixed p
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Major challenges for the stochastic setting
Stationarity test:
» Computing ||Vz¢(zk, pr—1)||2 is intractable

» Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:
> Tying fraction to current iterate x; leads to issues

P ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

—plog(zi)

I I
Stochastic-Gradient-based Interior-Point Methods 8 of 32




Single-Loop Interior-Point (SLIP) Method Stochastic Bound-Constrained Setting Generally Constrained Setting Conclusion
000008000000 0000000000 0000 [e]e]e}

Our approach

Our approach is based on two coupled ideas:
> prescribed decreasing barrier parameter sequence {ug} \( 0 (single-loop algorithm!)
» prescribed {0} \, 0 and enforcement of

Thp1 € N Or) = {z €R" : 1+ 0 <z <u—04}

“Wait! Is it worthwhile to have an algorithm like this?!”

» Our experiments say yes!
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Deterministic setting
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Relative performance of SLIP vs. PGM, deterministic setting, training logistic regression (left) and neural
network models with one hidden layer with cross-entropy loss (right).
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Proposed algorithm

Algorithm SLIP : Single-loop interior-point method

1: choose an initial point z1 € Nz u)(00), {#x} N0, {0k} N\ 0
2: for all k € {1,2,...} do
3: compute descent direction dj (e.g., estimating —V(x, 1r))
4: set
. 1
A &~ ———(————5
L+ 2u,6, 2

5: set v € (0,1] to ensure

Ty < T + Ypodr € Ny (0k)

6: end for

Note: Our paper considers a more general framework; this is a simplified instance

I I
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Key observation

Our first key observation is that the algorithm essentially acts equivalently to minimize
n n
b, p) = f(@) —p Y _log(zi — i) — 'y log(u; — ;)
i=1 i=1

and
~ Ui — T4
bz, ) = f(x) — p Z log —n Z log

where ¥ is sufficiently large such that =Y € [0,1] and H €00, 1] for all i € [n].

The latter is simply a shifted form of the other.
» They have the same gradients! Voé(z, 1) = Ved(z, 1)
> For the latter, i < p implies that ¢(z, &) < ¢(x, ).

The algorithm uses ¢, but our analysis can focus on monotonically decreasing {@(zy, 1)}

I I
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Critical lemmas, deterministic setting
Lemma,
For all k € N, one finds for L, :== L + 2;%0,:2 that

(@1, k) < (@, k) + Vad(@r, k)T (Thg1 — Tn) + 5 Lillzrsr — zill3,
so {on} ={L;'} = G(xrs1,bh11) < d(@h, k) — 2veanl| Vad(@r, ue)l3-

Lemma

For all k € N, one finds that 7y is bounded below by the minimum of 1 and

—1 ( %,UkA

a — 2 0k | (kg b )T
o\ + SrvsA >( ! k=)

Thus, with t € [~1,0), {ur} = {p1k'}, {0x—1} = {60k}, and {ax} = {L; '}, one finds that

oo
Z'ykak =00 and {uke,;_ll} 1is bounded.
k=1
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Convergence guarantee, deterministic setting

Theorem
One finds that
lim inf ||V ¢(zk, )3 = 0,

and, for any infinite-cardinality set KK C N such that {Vz¢(xk, k) tkex — 0 and {zk}rexc — T, the limit
point T is a KKT point (i.e., there exists § and Z such that (Z,7,z) satisfies KKT conditions).

I
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Why does it work?

— g log(+)

Or—1
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Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen more carefully!
> Notably, v; needs to be chosen based on knowledge of noise bound.
» For the deterministic setting, {ux} = {p1k?} and {0x_1} = {0ok'} for t = —1 implies

1 t
{an} = {m} = O(k"),

but for stochastic setting, step-size sequence {ay} can no longer decrease at same rate as {py }.

» It needs to decrease more slowly than {ux} (although rates can be arbitrarily close).

I I
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Accounting for the error

The issue arises from the following lemma.

Lemma
For all k € N, one finds that

(X1, rt1) — B X, i)
< - FkAk“vx(Z)(Xka/‘k)“iI—l + Tk ApVad(X, )T Hy N (Vo (X, i) — Qi)
k

-+ %F%Aix,;}nmfw,s,k||Qk||§,k_1.

Using {p1} = {p1k~ '} and {051} = {60k~ 1}, so {ax} = O(k?), leaves the final term uncontrolled!

I I
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Parameter rule

Given prescribed (ty,tg,ta) € (—00, — 1) X (—o0, — é) X (—00,0) such that t,, = tg, t;, +ta € [—1,0), and
ty + 2ta € (—oo,—1) along with prescnbed Qpuff € ]R>O, {ak, buff} - R>07 Youff € ]R>0, and
{7k, busi} C Ry such that oy pug < apugk?' and g bug < Youk' for all k € N, the algorithm employs

A
. Ak, min T 2 —0
Ak, mink"® b5 (Kvf,B,00T000)A

Ok min ‘= = ———75 Yk min = min ¢ 1 —
ty s B+2uK0; 2’ ’ ’ g max(KV f,B,00 t0co+uEK0, ~ 1) ’
Q. max ‘= Ok min T Qk,buffs and Yk,max ‘= min{l, Yk, min T "Yk,buff}

. . . A mink'®
and makes a (run-and-iterate-dependent) choice aj € min {LiZ—G_Z’ ak,max} for all k € N.
MY
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Acceptable rate values

to
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=t ty =t1g
by + 2t = —1
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Convergence guarantee, stochastic setting

Theorem
Suppose t € (—1, —%) and to € (—o00,0) have
t+ta € [—1,0) and t+ 2tn € (—o0, —1)
and for some o € R, one has for all k € N that
E[Gk|Fk] = VI(Xk) and [|Gr — Vf(Xp)l2 <o
Then, with {u} = {u1k'}, {0k—1} = {6ok'}, and {ar} = {L; 'k'~}, one finds that

liminf || Vaod(Xg, ux)l|3 = 0 almost surely.
k— o0

Consequently, considering any realization {z} of {Xy}, for any infinite-cardinality set K C N such that
{Vaed(zk, pr)tkex — 0 and {zr}kex — T, the limit point T is a KKT point.

I
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Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which
@41 < Projy ) (zk + ard)-

Experiments involve:
P binary classification problems with LIBSVM datasets
> two classifiers:

> logistic regression (convex) and
» neural network with one hidden layer and cross-entropy loss (nonconvex)

» performance measure
f(mSLIP) _ f(mPSGM)

end end
€ (_15 1)
max{f(z354"), fF(eE5FM), 1}
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Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural
network models with one hidden layer with cross-entropy loss (right).
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Stochastic setting, logistic regression

training loss, stochastic, 1 epoch testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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Stochastic setting, neural network with cross-entropy loss

; training loss, stochastic, 1 epoch , testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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SLIP algorithm

Algorithm SLIP : Single-loop interior-point method

1: choose an initial point 1 € N, ,j(00), {#e} N0, {0k} O
2: forall k € {1,2,...} do
3: compute descent direction dj. (e.g., estimating —Vé(z, pk))
4: set
- 1
Qg &= ———————5
L+ 2,uk0k 2

5: set v, € (0,1] to ensure

Th1 & Tk + Yeagdr € N o) ()

6: end for

How can this be extended for the generally constrained setting?
» This is a feasible algorithm.
> Neighborhood enforcement is the real issue! Constraint value depends nonlinearly on ~g.

I I
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Search direction conditions

@
st. Az =b ¢ ) = f(@) — p 1, log(—ci(a)) |
c(z) <0

Need an initial point 1 € R™ satisfying
Azi =b and c(z1) <0,
and, with P :=T — AT(AAT)~1 A, to ensure/assume that, for all k € N, one can compute dj, satisfying
Ad, =0
¢IPqrllz < lldillz < ClIPaxll2
—(Par)"dx > ¢||Pag|l2lldk 2
Vei(on)Tdy < —L7lldyllz for all i€ {j € [m] : —np < ciwn)}-

I
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Main challenge

T —q
r+d
X
Vei1(0) <---
-~
.
-~
Q

Veo (0)

Assuming nice conditions (e.g., on the left, not on the right) and parameter choices similar to the
bound-constrained case, we prove that the projected gradient of the barrier-augmented function vanishes
and, if a limit point satisfies the LICQ, then the limit point is a KKT point.
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Summary

Presented a single-loop interior-point method for solving bound-constrained problems, with
» prescribed barrier and “neighborhood” parameter sequences,
» no need for stationarity tests, fraction-to-the-boundary rules, or line searches,
P> convergence guarantees in deterministic and stochastic settings, and

» promising numerical performance!

Presented an overview of our extension to the “generally constrained” setting.

» There is more to be done!
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