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Stochastic optimization

Consider

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)],

where ω has probability space (Ω,F , P ), F : Rn × Ω→ R, and f : Rn → R
▶ Simulation-based optimization, machine learning, etc.

y
(input)

simulation or
(deep) neural network
with parameters x

ẑ(x, y)
(output)

▶ Long history of algorithms (stochastic approximation, stochastic average approximation, etc.)

▶ Explosion in interest and number of new algorithms

▶ Various convergence guarantees about algorithms and statistical guarantees about solutions

▶ Algorithms generally “easy” to implement (but tuning is expensive)
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Constrained optimization (deterministic)

Consider

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

where f : Rn → R, cE : Rn → RmE , and cI : Rn → RmI are smooth

▶ Physics-constrained, resource-constrained, etc.

▶ Long history of algorithms (penalty, SQP, interior-point, etc.)

▶ Comprehensive theory (even with lack of constraint qualifications)

▶ Effective software (Ipopt, Knitro, LOQO, etc.)
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Constrained optimization (stochastic constraints)

Consider

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x, ω) ≲ 0

where f : Rn → R, cE : Rn → RmE , and cI : Rn × Ω→ RmI

▶ Various modeling paradigms:

▶ . . . stochastic optimization (i.e., constrain an expectation)

▶ . . . (distributionally) robust optimization

▶ . . . chance-constrained optimization

▶ Algorithms (e.g., based on integer programming techniques) can be expensive
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Motivation #1: Network optimization
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Motivation #2: Physics-informed learning (e.g., PINNs)

Deep learning models have proved to be powerful tools in certain contexts:
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Motivation #2: Physics-informed learning (e.g., PINNs)

Photo: Karniadakis et al.
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Motivation #3: Fair learning
Let
▶ Y be a feature vector
▶ A be a sensitive feature vector
▶ Z be the output/label

Given a model function ϕ and loss ℓ, an optimization problem arising in machine learning has the form:

min
x∈Rn

E(Y,A,Z)

ℓ
ϕ

(
x,

[
Y
A

])
︸ ︷︷ ︸

Ẑ

, Z


 .

However, the resulting “loss” might not be fair between subgroups in the population.
▶ Various criteria related to fairness (e.g., demographic parity, equalized odds, equalized opportunity)

leading to various measures (e.g., accuracy equality, disparate impact, measures conditioned on
outcome, measures conditioned on prediction)

▶ For example, in binary classification, disparate impact asks (a constraint!)

P[Ẑ = z|A = 1] = P[Ẑ = z|A = 0] for each z ∈ {−1, 1}
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Regularized optimization

The typical approach for “informed optimization” is regularization (to avoid constraints)

min
x∈Rn

f(x) + r(x), where f(x) = Eω [F (x, ω)],

where r : Rn × R is often convex and potentially nonsmooth, but this can be computationally expensive
(due to need to tune hyperparameters) and does not guarantee exact satisfaction

An idealized approach might be to consider a problem formulation such as

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x, ω) ≲ 0

but this leads to serious computational tractability issues! (At least for now....)
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Constrained optimization (stochastic objective)

Our approach (as a stepping stone to tackling more difficult settings) is to consider

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0

▶ Classical applications under uncertainty, constrained DNN training, etc.

▶ Besides cases involving a deterministic equivalent...

▶ ... very few algorithms so far (mostly penalty methods)
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Equality-constrained setting (to start)

Consider the equality-constrained optimization problem:

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. c(x) = 0

▶ Adaptive SQP method for deterministic setting

▶ Stochastic SQP method for stochastic setting

▶ Convergence guarantees

▶ Worst-case complexity guarantees

▶ Promising numerical experiments

▶ Various extensions
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What kind of algorithm do we want?

Need to establish what we want/expect from an algorithm.

Note: We are interested in the fully stochastic regime.†

We assume:

▶ Feasible methods are not tractable

▶ ... so no projection methods, Frank-Wolfe, etc.

▶ “Two-phase” methods are not effective

▶ ... so should not search for feasibility, then optimize.

Finally, want to use techniques that can generalize to diverse settings.

†Alternatively, see Na, Anitescu, Kolar (2021, 2022) and others
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Stochastic gradient method (SG)

Stochastic approximation by Herbert Robbins and Sutton Monro (1951)

Sutton Monro, former Lehigh faculty member
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Stochastic gradient (not descent)

Suppose ∇f : Rn → Rn is Lipschitz continuous with constant L

Algorithm SG : Stochastic Gradient

1: choose an initial point x1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } do
3: set xk+1 ← xk − αkgk, where E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M
4: end for

Notation: {(xk, gk)} is a realization of the stochastic process {(Xk, Gk)} with filtration {Fk}

Not a descent method! . . . but eventual descent in expectation:

f(Xk+1)− f(Xk) ≤ ∇f(Xk)
T (Xk+1 −Xk) +

1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)
TGk + 1

2
α2
kL∥Gk∥22

=⇒ Eω [f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLEω [∥Gk∥22|Fk].

Markovian: In any run, xk+1 depends only on xk and random choice at iteration k.
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SG theory

Theorem SG

Since E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M for all k ∈ N:

αk =
1

L
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 = O(M)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Xk)∥22] = 0
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SG illustration

Figure: SG with fixed step size (left) vs. diminishing step sizes (right)
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

with J ≡ ∇c and H positive definite over Null(J), two viewpoints:

[
∇f(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) +∇f(x)T d+ 1
2
dTHd

s.t. c(x) + J(x)d = 0

both leading to the same “Newton-SQP system”:[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
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SQP illustration

Figure: Illustrations of SQP subproblem solutions
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SQP with backtracking line search
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(x, τ) = τf(x) + ∥c(x)∥1

Algorithm SQP w/ line search

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)
2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
4: update merit parameter: set τk to ensure

ϕ′(xk, τk, dk) ≤ −∆q(xk, τk,∇f(xk), dk)≪ 0

5: compute step size: backtracking line search to ensure xk+1 ← xk + αkdk yields

ϕ(xk+1, τk) ≤ ϕ(xk, τk)− ηαk∆q(xk, τk,∇f(xk), dk)

6: end for

Stochastic Algorithms for Solving Constrained Optimization Problems 23 of 50
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Convergence theory

Assumption

▶ f , c, ∇f , and J bounded and Lipschitz

▶ singular values of J bounded below (i.e., the LICQ)

▶ uTHku ≥ ζ∥u∥22 for all u ∈ Null(Jk) for all k ∈ N

Theorem

▶ {αk} ≥ αmin for some αmin > 0

▶ {τk} ≥ τmin for some τmin > 0

▶ ∆q(xk, τk,∇f(xk), dk)→ 0 implies optimality error vanishes, specifically,

∥dk∥2 → 0, ∥ck∥2 → 0, ∥∇f(xk) + JT
k yk∥2 → 0
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Toward stochastic SQP

▶ In a stochastic setting, line searches are (likely) intractable

▶ However, for ∇f and ∇c, may have Lipschitz constants L and Γ

▶ Step #1: Design an adaptive SQP method with

step sizes determined by Lipschitz constants

▶ Step #2: Design a stochastic SQP method based on this approach
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Motivation Stochastic SQP Stochastic Interior-Point Method Conclusion

SQP with adaptive step sizes

Algorithm SQP w/o line search

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
4: update merit parameter: set τk to ensure

ϕ
′
(xk, τk, dk) ≤ −∆q(xk, τk,∇f(xk), dk)≪ 0

5: compute step size: set

α̂k ←
2(1− η)∆q(xk, τk,∇f(xk), dk)

(τkL + Γ)∥dk∥22
and α̃k ← α̂k −

4∥ck∥1
(τkL + Γ)∥dk∥22

6: then

αk ←


α̂k if α̂k < 1

1 if α̃k ≤ 1 ≤ α̂k

α̃k if α̃k > 1

7: then set xk+1 ← xk + αkdk
8: end for

Convergence theory: Nearly identical as for SQP w/ line search.
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Stochastic SQP with adaptive step sizes

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ0 ∈ R>0, {βk} ∈ (0, 1]

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk to ensure

ϕ
′
(xk, τk, dk) ≤ −∆q(xk, τk, gk, dk)≪ 0

5: compute step size: set

α̂k ←
βk∆q(xk, τk, gk, dk)

(τkL + Γ)∥dk∥22
and α̃k ← α̂k −

4∥ck∥1
(τkL + Γ)∥dk∥22

6: then

αk ←


α̂k if α̂k < 1

1 if α̃k ≤ 1 ≤ α̂k

α̃k if α̃k > 1

7: then xk+1 ← xk + αkdk
8: end for

Assume {gk} is a realization of {Gk} with E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M

Stochastic Algorithms for Solving Constrained Optimization Problems 27 of 50
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Fundamental lemma

Recall in the unconstrained setting that

Eω [f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLEω [∥Gk∥22|Fk]

Lemma

For all k ∈ N one finds (before taking expectations)

ϕ(Xk+1, Tk+1) − ϕ(Xk, Tk)

≤ −Ak∆q(Xk, Tk,∇f(Xk), D
true
k )︸ ︷︷ ︸

O(βk), “deterministic”

+ 1
2Akβk∆q(Xk, Tk, Gk, Dk)︸ ︷︷ ︸

O(β2
k
), stochastic/noise

+AkTk∇f(Xk)
T
(Dk − D

true
k )︸ ︷︷ ︸

due to adaptive Ak

Stochastic Algorithms for Solving Constrained Optimization Problems 28 of 50
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Good merit parameter behavior

Lemma

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0. Then, for large k,

Eω [AkTk∇f(Xk)
T (Dk −Dtrue

k )|Fk ∩ E] = β2
kT
′O(
√
M)

Theorem

Conditioned on E, for large k, one finds

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

∆q(Xj , T ′,∇f(Xj), D
true
j )

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj∆q(Xj , T ′,∇f(Xj), D
true
j )

→ 0
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Good merit parameter behavior

Lemma

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0. Then, for large k,

Eω [AkTk∇f(Xk)
T (Dk −Dtrue

k )|Fk ∩ E] = β2
kT
′O(
√
M)

Theorem

Conditioned on E, for large k, one finds

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

(∥∇f(Xj) +∇c(Xj)
TY true

j ∥2 + ∥c(Xj)∥2)

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj(∥∇f(Xj) +∇c(Xj)
TY true

j ∥2 + ∥c(Xj)∥2)

→ 0
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Poor merit parameter behavior

{Tk} ↘ 0:

▶ cannot occur if ∥Gk −∇f(Xk)∥2 is bounded uniformly

▶ occurs with small probability if distribution of Gk has “small tails”

{Tk} remains too large:

▶ under a modest assumption, occurs with probability zero
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Numerical results: (Matlab) https://github.com/frankecurtis/StochasticSQP
CUTE problems with noise added to gradients with different noise levels
▶ Stochastic SQP: 103 iterations
▶ Stochastic Subgradient: 104 iterations and tuned over 11 values of penalty parameter

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Complexity of O(ϵ−2) for deterministic algorithm
All reductions in the merit function can be cast in terms of smallest τ .

Lemma

If {τk} eventually remains fixed at sufficiently small τmin, then for any ϵ ∈ (0, 1) there exists
(κ1, κ2) ∈ (0,∞)× (0,∞) such that, for all k,

∥∇f(xk) + JT
k yk∥ > ϵ or

√
∥ck∥1 > ϵ =⇒ ∆q(xk, τk, dk) ≥ min{κ1, κ2τmin}ϵ.

Since τmin is determined by the initial point, it will be reached.

Theorem

For any ϵ ∈ (0, 1), there exists (κ1, κ2) ∈ (0,∞)× (0,∞) such that

∥∇f(xk) + JT
k yk∥ ≤ ϵ and

√
∥ck∥1 ≤ ϵ

in a number of iterations no more than(
τ0(f1 − finf) + ∥c1∥1

min{κ1, κ2τmin}

)
ϵ−2.
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Complexity of Õ(ϵ−4) for stochastic algorithm

Theorem

Suppose the algorithm is run kmax iterations with

▶ βk = γ/
√
kmax + 1 and

▶ the merit parameter is reduced at most smax ∈ {0, 1, . . . , kmax} times.

Let k∗ be sampled uniformly over {1, . . . , kmax}. Then, with probability 1− δ,

E[∥∇f(xk∗ ) + JT
k∗yk∗∥

2
2 + ∥ck∗∥1] ≤

τ0(f1 − finf) + ∥c1∥1 +M
√
kmax + 1

+
(τ−1 − τmin)(smax log(kmax) + log(1/δ))

√
kmax + 1

Theorem

If the stochastic gradient estimates are sub-Gaussian, then w.p. 1− δ̄

smax = O
(
log

(
log

(
kmax

δ̄

)))
.
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Recent work (under review): No LICQ
Remove constraint qualification
▶ infeasible and/or degenerate problems
▶ step decomposition method

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Recent work (under review): Matrix-free methods
Inexact subproblem solves
▶ stochasticity and inexactness(!)
▶ applicable for large-scale, e.g., PDE-constrained

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Recent work (under review): Inequality-constrained optimization
Theory and application papers:
▶ stochastic SQP for inequality constrained problems
▶ employed in an ϵ-constraint method for fair machine learning
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Motivation

Interior-point methods are the workhorse for large-scale nonlinearly constrained optimization.

▶ Ipopt, Knitro, LOQO, etc.

As far as we are aware, there exist no stochastic interior-point methods with convergence guarantees.

Huh? Why not?

▶ Stochastic optimization with nonlinear, nonconvex constraints is not well studied.

▶ For large-scale problems, people focus on simple constraints (and use projections).

▶ It is difficult! Stochastic algorithms require gradients to be bounded and Lipschitz continuous

▶ ... but the typical (e.g., logarithmic) barrier function has neither property.
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Bound-constrained setting

Consider

min
x∈Rn

f(x)

s.t. l ≤ x ≤ u

where f : Rn → R and (l, u) ∈ Rn × Rn with l < u.

If x is a minimizer, then for some (y, z) one has

∇f(x)− y + z = 0, 0 ≤ (x− l) ⊥ y ≥ 0, 0 ≤ (u− x) ⊥ z ≥ 0.

(In what follows, we can handle infinite bounds, but consider finite bounds for simplicity....)
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Deterministic setting
For a given µ ∈ R>0, consider the barrier-augmented function

ϕ(x, µ) = f(x)− µ
n∑

i=1

log(xi − li)− µ
n∑

i=1

log(ui − xi).

Algorithm IPM : Interior-point method

1: choose an initial point x1 ∈ Rn and barrier parameter µ0 ∈ R>0
2: for k ∈ {1, 2, . . . } do
3: if ∥∇xϕ(xk, µk−1)∥2 ≤ θµk−1 then set µk ≪ µk−1 else set µk ← µk−1

4: compute descent direction dk (e.g., −∇ϕ(xk, µk))
5: set αk,max ∈ (0, 1] by fraction-to-the-boundary rule to ensure

xk + αk,maxdk ∈ [l + ϵxk, u− ϵxk]

6: set αk ∈ (0, αk,max] to ensure sufficient decrease

ϕ(xk+1, µk)≪ ϕ(xk, µk)

7: end for
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Major challenges for the stochastic setting
Stationarity test:

▶ Computing ∥∇xϕ(xk, µk−1)∥2 is intractable

▶ Could estimate it using a stochastic gradient, but this might only give probabilistic guarantee

Fraction-to-the-boundary rule:

▶ Tying fraction to current iterate xk leads to issues

▶ ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

xi

−µ log(xi)
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Our approach

Our approach is based on two coupled ideas:

▶ prescribed decreasing barrier parameter sequence {µk} ↘ 0

▶ prescribed {θk} ↘ 0 and enforcing

xk+1 ∈ N[l,u](θk) := {x ∈ Rn : l + θk ≤ x ≤ u− θk}

“Wait! I thought interior-points worked well because of their complexity properties?!”

▶ This algorithm is completely different and doesn’t have those properties

▶ Is it worthwhile to do this?
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Proposed algorithm

Algorithm SIPM : Stochastic interior-point method

1: choose an initial point x1 ∈ Rn, {µk} = {µ1k−1}, {θk} = {θ1(k + 1)−1}
2: for k ∈ {1, 2, . . . } do
3: compute descent direction dk (e.g., −∇ϕ(xk, µk))
4: set αk ∈ (0, 1] with (see paper)

αk = O
(

1

ℓ∇f + 2µkθ
−2
k

)

5: set γk ∈ (0, 1] to ensure
xk+1 ← xk + γkαkdk ∈ N[l,u](θk)

6: end for

*Paper considers a more general framework; this is a simplified example
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Why does it work?

−µk log(·)

θk−1

θk

−µk+1 log(·)
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Convergence guarantee

Theorem

Suppose that f is bounded below, ∇f is Lipschtiz continuous, µk = µ1k−1 for some sufficiently large
µ1 ∈ R>0 for all k ∈ N, θk = θ1(k + 1)−1 for some sufficiently small θ1 ∈ R>0 for all k ∈ N,

E[Gk|Fk] = ∇f(Xk), and ∥Gk −∇f(Xk)∥2 ≤ σ ∈ R>0.

Then,
lim

k→∞
∥∇xϕ(Xk, µk)∥22 = 0 almost surely.
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Preliminary results: Deterministic
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Preliminary results: Stochastic
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Summary

Consider stochastic-gradient-based algorithms for solving problems of the form:

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0

Stochastic SQP methods

▶ equality-constraints only and inequality-constrained settings

▶ various extensions for solving large-scale problems

▶ convergence and complexity guarantees

▶ very promising experimental results

Stochastic interior-point methods

▶ new frontier with promising results so far
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