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Constrained optimization (deterministic)

Consider

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

where f : Rn → R, cE : Rn → RmE , and cI : Rn → RmI are continuously differentiable

▶ Physics-constrained, resource-constrained, etc.

▶ Long history of algorithms (penalty, SQP, interior-point, etc.)

▶ Comprehensive theory (even with lack of constraint qualifications)

▶ Effective software (Ipopt, Knitro, LOQO, etc.)

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 5 of 44



Motivation Stochastic SQP Extensions Conclusion

Learning: Prediction function

Our aim is to determine a prediction function p ∈ P, where P is some family of functions, such that

min
x∈Rn

1

no

no∑
j=1

ℓ(

p(aj)

x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

yields an accurate prediction corresponding to any given input feature vector aj .
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Learning: Prediction function, parameterized

For practicality, let us say that the family is parameterized by some vector x such that

min
x∈Rn

1

no

no∑
j=1

ℓ(

p(aj , x)

, bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

yields an accurate prediction corresponding to any given input feature vector aj .

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 6 of 44



Motivation Stochastic SQP Extensions Conclusion

Learning: Supervised

In the context of supervised learning, we have known input-output pairs {(aj , bj)}no
j=1, then

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

becomes our empirical-loss training problem to determine the optimal parameter vector x.
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Learning: Supervised and regularized

If, in addition, we aim to impose some structure on the solution x, then we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) + r(x)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where r is a regularization function.
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Learning: Supervised and regularized

If, in addition, we aim to impose some structure on the solution x, then we may consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) + r(x)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where r is a regularization function. But is this the right approach for informed learning?
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Learning: Supervised and informed with soft constraints

Added to the loss (e.g., mean-squared error or other data-fitting term), we might consider

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj) +
1

nc

nc∑
j=1

ϕ(p(ãj , x), . . . , b̃j)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

where {(ãj , b̃j)}nc
j=1 are some known input-output pairs and ϕ encodes known information.
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Learning: Supervised and informed through layer design

Another viable approach is to embed information through the prediction function itself such that

min
x∈Rn

1

no

no∑
j=1

ℓ(p̂(aj , x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

ensures that information is enforced with every forward pass. (Expense?)
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Learning: Supervised and informed with hard constraints

Back to the “original” family for p, how about imposing hard constraints during training, as in

min
x∈Rn

1

no

no∑
j=1

ℓ(p(aj , x), bj)

s.t. φ(p(ãj , x), . . . , b̃j) = 0 (or ≤ 0) for all i ∈ {1, . . . , nc}

such that we restrict attention to functions that are informed implicitly?
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Expected-loss training problems

For the sake of generality/generalizability, the expected-loss objective function is∫
A×B

ℓ(p(a, x), b)dP(a, b) ≡ Eω [F (x, ω)] =: f(x).

One might consider various paradigms for imposing the constraints:

▶ expectation constraints

▶ (distributionally) robust constraints

▶ probabilistic (i.e., chance) constraints

For our recent work, we consider constraints whose values and derivatives can be computed:

cE(x) = 0 and cI(x) ≤ 0

e.g., as in imposing a fixed set of constraints corresponding to a fixed set of sample data.
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Physics-informed learning (e.g., PINNs)

Photo: Karniadakis et al.
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Fair learning
Let

▶ A be a feature vector

▶ Z be a sensitive feature vector

▶ B be the output/label

Given a prediction function p and loss ℓ, the expected-loss minimization problem is

min
x∈Rn

E

p
ϕ

([
A
Z

]
, x

)
︸ ︷︷ ︸

B̂

, B


 .

However, the resulting loss might not be fair between subgroups in the population.

▶ Various criteria related to fairness (e.g., demographic parity, equalized odds, equalized opportunity)
leading to various measures (e.g., accuracy equality, disparate impact, etc.)

▶ For example, in binary classification, disparate impact may be expressed as the constraint

P[B̂ = b|Z = 1] = P[b̂ = b|Z = 0] for each b ∈ {−1, 1}
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Constrained optimization (stochastic algorithms)

Our approach (as a stepping stone to tackling more difficult settings) is to consider

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0

▶ Classical applications under uncertainty, constrained DNN training, etc.

▶ Besides cases involving a deterministic equivalent...

▶ ... very few algorithms so far (mostly penalty methods)
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Equality-constrained setting (to start)

Consider the equality-constrained optimization problem:

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. c(x) = 0

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 12 of 44
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What kind of algorithm do we want?

Need to establish what we want/expect from an algorithm.

Note: We are interested in the fully stochastic regime.†

We assume:

▶ Feasible methods are not tractable

▶ ... so no projection methods, Frank-Wolfe, etc.

▶ “Two-phase” methods are not effective

▶ ... so should not search for feasibility, then optimize.

Finally, want to use techniques that can generalize to diverse settings.

†Alternatively, see Na, Anitescu, Kolar (2021, 2022) and others
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Stochastic gradient method (SG)

Stochastic approximation by Herbert Robbins and Sutton Monro (1951)

Sutton Monro, former Lehigh faculty member
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Stochastic gradient (not descent)

Suppose ∇f : Rn → Rn is Lipschitz continuous with constant L

Algorithm SG : Stochastic Gradient

1: choose an initial point x1 ∈ Rn and step sizes {αk} > 0
2: for k ∈ {1, 2, . . . } do
3: set xk+1 ← xk − αkgk, where E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M
4: end for

Notation: {(xk, gk)} is a realization of the stochastic process {(Xk, Gk)} with filtration {Fk}

Not a descent method! . . . but eventual descent in expectation:

f(Xk+1)− f(Xk) ≤ ∇f(Xk)T (Xk+1 −Xk) + 1
2
L∥Xk+1 −Xk∥22

= −αk∇f(Xk)TGk + 1
2
α2
kL∥Gk∥22

=⇒ E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk].

Markovian: In any run, xk+1 depends only on xk and random choice at iteration k.

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 15 of 44
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SG theory

Theorem SG

Since E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M for all k ∈ N:

αk =
1

L
=⇒ E

 1

k

k∑
j=1

∥∇f(Xj)∥22

 = O(M)

αk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 αj

) k∑
j=1

αj∥∇f(Xj)∥22

→ 0

=⇒ lim inf
k→∞

E[∥∇f(Xk)∥22] = 0
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SG illustration

Figure: SG with fixed step size (left) vs. diminishing step sizes (right)
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Sequential quadratic optimization (SQP)

Consider

min
x∈Rn

f(x)

s.t. c(x) = 0

with J ≡ ∇c and H positive definite over Null(J), two viewpoints:

[
∇f(x) + J(x)T y

c(x)

]
= 0 or

min
d∈Rn

f(x) +∇f(x)T d + 1
2
dTHd

s.t. c(x) + J(x)d = 0

both leading to the same “Newton-SQP system”:[
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
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SQP illustration

Figure: Illustrations of SQP subproblem solutions
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SQP with backtracking line search
Algorithm guided by merit function with adaptive parameter τ defined by

ϕ(x, τ) = τf(x) + ∥c(x)∥1

Algorithm SQP w/ line search

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)
2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
4: update merit parameter: set τk to ensure

ϕ′(xk, τk, dk) ≤ −∆q(xk, τk,∇f(xk), dk)≪ 0

5: compute step size: backtracking line search to ensure xk+1 ← xk + αkdk yields

ϕ(xk+1, τk) ≤ ϕ(xk, τk)− ηαk∆q(xk, τk,∇f(xk), dk)

6: end for

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 20 of 44
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Convergence theory

Assumption

▶ f , c, ∇f , and J bounded and Lipschitz

▶ singular values of J bounded below (i.e., the LICQ)

▶ uTHku ≥ ζ∥u∥22 for all u ∈ Null(Jk) for all k ∈ N

Theorem

▶ {αk} ≥ αmin for some αmin > 0

▶ {τk} ≥ τmin for some τmin > 0

▶ ∆q(xk, τk,∇f(xk), dk)→ 0 implies optimality error vanishes, specifically,

∥dk∥2 → 0, ∥ck∥2 → 0, ∥∇f(xk) + JT
k yk∥2 → 0

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 21 of 44
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Toward stochastic SQP

▶ In a stochastic setting, line searches are (likely) intractable

▶ However, for ∇f and ∇c, may have Lipschitz constants L and Γ

▶ Step #1: Design an adaptive SQP method with

step sizes determined by Lipschitz constants

▶ Step #2: Design a stochastic SQP method based on this approach

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 22 of 44
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SQP with adaptive step sizes

Algorithm SQP w/o line search

1: choose x1 ∈ Rn, τ0 ∈ R>0, η ∈ (0, 1)

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
∇f(xk)

ck

]
4: update merit parameter: set τk to ensure

ϕ
′
(xk, τk, dk) ≤ −∆q(xk, τk,∇f(xk), dk)≪ 0

5: compute step size: set

α̂k ←
2(1− η)∆q(xk, τk,∇f(xk), dk)

(τkL + Γ)∥dk∥22
and α̃k ← α̂k −

4∥ck∥1
(τkL + Γ)∥dk∥22

6: then

αk ←


α̂k if α̂k < 1

1 if α̃k ≤ 1 ≤ α̂k

α̃k if α̃k > 1

7: then set xk+1 ← xk + αkdk
8: end for

Convergence theory: Nearly identical as for SQP w/ line search.
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Stochastic SQP with adaptive step sizes

Algorithm : Stochastic SQP

1: choose x1 ∈ Rn, τ0 ∈ R>0, {βk} ∈ (0, 1]

2: for k ∈ {1, 2, . . . } do
3: compute step: solve [

Hk JT
k

Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
4: update merit parameter: set τk to ensure

ϕ
′
(xk, τk, dk) ≤ −∆q(xk, τk, gk, dk)≪ 0

5: compute step size: set

α̂k ←
βk∆q(xk, τk, gk, dk)

(τkL + Γ)∥dk∥22
and α̃k ← α̂k −

4∥ck∥1
(τkL + Γ)∥dk∥22

6: then

αk ←


α̂k if α̂k < 1

1 if α̃k ≤ 1 ≤ α̂k

α̃k if α̃k > 1

7: then xk+1 ← xk + αkdk
8: end for

Assume {gk} is a realization of {Gk} with E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)∥22|Fk] ≤M

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 24 of 44
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Fundamental lemma

Recall in the unconstrained setting that

E[f(Xk+1)|Fk]− f(Xk) ≤ −αk∥∇f(Xk)∥22 + 1
2
α2
kLE[∥Gk∥22|Fk]

Lemma

For all k ∈ N one finds (before taking expectations)

ϕ(Xk+1, Tk+1) − ϕ(Xk, Tk)

≤ −Ak∆q(Xk, Tk,∇f(Xk), D
true
k )︸ ︷︷ ︸

O(βk), “deterministic”

+ 1
2Akβk∆q(Xk, Tk, Gk, Dk)︸ ︷︷ ︸

O(β2
k
), stochastic/noise

+AkTk∇f(Xk)
T
(Dk − D

true
k )︸ ︷︷ ︸

due to adaptive Ak

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 25 of 44
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Good merit parameter behavior

Lemma

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0. Then, for large k,

Eω [AkTk∇f(Xk)T (Dk −Dtrue
k )|Fk ∩ E] = β2

kT
′O(
√
M)

Theorem

Conditioned on E, for large k, one finds

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

∆q(Xj , T ′,∇f(Xj), Dtrue
j )

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj∆q(Xj , T ′,∇f(Xj), Dtrue
j )

→ 0
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Good merit parameter behavior

Lemma

Let E := event that {Tk} eventually remains constant at T ′ ≥ τmin > 0. Then, for large k,

Eω [AkTk∇f(Xk)T (Dk −Dtrue
k )|Fk ∩ E] = β2

kT
′O(
√
M)

Theorem

Conditioned on E, for large k, one finds

βk = Θ(1) =⇒ E

 1

k

k∑
j=1

(∥∇f(Xj) +∇c(Xj)TY true
j ∥2 + ∥c(Xj)∥2)

 = O(M)

βk = Θ

(
1

k

)
=⇒ E

 1(∑k
j=1 βj

) k∑
j=1

βj(∥∇f(Xj) +∇c(Xj)TY true
j ∥2 + ∥c(Xj)∥2)

→ 0
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Poor merit parameter behavior

{Tk} ↘ 0:

▶ cannot occur if ∥Gk −∇f(Xk)∥2 is bounded uniformly

▶ occurs with small probability if distribution of Gk has “small tails”

{Tk} remains too large:

▶ under a modest assumption, occurs with probability zero

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 27 of 44
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Numerical results: (Matlab) https://github.com/frankecurtis/StochasticSQP
CUTE problems with noise added to gradients with different noise levels
▶ Stochastic SQP: 103 iterations
▶ Stochastic Subgradient: 104 iterations and tuned over 11 values of penalty parameter

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Summary

Since our original work, we have considered various extensions.

▶ stronger convergence guarantees (convergence in probability → almost-sure convergence)

▶ convergence of Lagrange multiplier estimates

▶ relaxed constraint qualifications

▶ worst-case complexity guarantees

▶ generally constrained problems (with inequality constraints as well)

▶ interior-point methods

▶ iterative linear system solvers and inexactness

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 30 of 44
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Almost-sure convergence of merit function value

Convergence of the algorithm is driven by the exact merit function

ϕτ (X) = τf(X) + ∥c(X)∥

Reductions in a local model of ϕτ can be tied to a stationarity measure

∆qτ (X,∇f(X), H,Dtrue) ∼ ∥∇f(X) +∇c(X)Y ∥2 + ∥c(X)∥

Lemma

Suppose E[Gk|Fk] = ∇f(Xk) and E[∥Gk −∇f(Xk)|Fk∥2] ≤M . Then, by a classical theorem of Robbins
and Siegmund (1971), one finds that, almost surely,

lim
k→∞

{ϕτ (Xk)} exists and is finite and

lim inf
k→∞

∆qτ (Xk,∇f(Xk), Hk, D
true
k ) = 0

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 31 of 44
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Almost-sure convergence of the primal iterates

If {Xk} stays within a neighborhood of x∗ almost surely, where x∗ is a stationary point at which a
generalization of the Polyak– Lojasiewicz condition holds, then almost-sure convergence follows:

Theorem

Suppose that there exists x∗ ∈ X with c(x∗) = 0, µ ∈ R>1, and ϵ ∈ R>0 such that for all

x ∈ Xϵ,x∗ := {x ∈ X : ∥x− x∗∥2 ≤ ϵ}

one finds that

ϕτ (x)− ϕτ (x∗)

{
= 0 if x = x∗

∈ (0, µ(τ∥Z(x)T∇f(x)∥22 + ∥c(x)∥2)] otherwise,

where for all x ∈ Xϵ,x∗ one defines Z(x) ∈ Rn×(n−m) as some orthonormal matrix whose columns form a
basis for the null space of ∇c(x)T . Then, if lim sup

k→∞
{∥Xk − x∗∥2} ≤ ϵ almost surely, it follows that

{ϕτ (Xk)} a.s.−−−→ ϕτ (x∗), {Xk}
a.s.−−−→ x∗, and

{[
∇f(Xk) +∇c(Xk)Y true

k
c(Xk)

]}
a.s.−−−→ 0.

Stochastic Algorithms for Continuous Optimization with Nonlinear Constraints 32 of 44
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Lagrange multiplier convergence

Theorem

Suppose (x∗, y∗) is a stationary point. Then, for any k ∈ N, one finds ∥Xk − x∗∥2 ≤ ϵ implies

∥Yk − y∗∥2 ≤ κy∥Xk − x∗∥2 + r−1∥∇f(Xk)−Gk∥2
and ∥Y true

k − y∗∥2 ≤ κy∥Xk − x∗∥2 for some (κ, r) ∈ R>0 × R>0.

Computed multipliers always have error. Consider averaged multipliers {Y avg
k } instead.

Theorem

If the iterate sequence converges almost surely to x∗, i.e., {Xk}
a.s.−−−→ x∗, then

{Y true
k } a.s.−−−→ y∗ and {Y avg

k } a.s.−−−→ y∗.
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Constrained logistic regression: australian dataset (LIBSVM)
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Relaxing constraint qualifications

Use a step decomposition method, handled infeasible and/or degenerate problems as well.

Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Complexity of O(ϵ−2) for deterministic algorithm

All reductions in the merit function can be cast in terms of smallest τ .

Since τmin is determined by the initial point, it will be reached.

Theorem

For any ϵ ∈ (0, 1), there exists (κ1, κ2) ∈ (0,∞)× (0,∞) such that

∥∇f(xk) + JT
k yk∥ ≤ ϵ and

√
∥ck∥1 ≤ ϵ

in a number of iterations no more than(
τ0(f1 − finf) + ∥c1∥1

min{κ1, κ2τmin}

)
ϵ−2.
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Complexity of Õ(ϵ−4) for stochastic algorithm

Theorem

Suppose the algorithm is run kmax iterations with

▶ βk = γ/
√
kmax + 1 and

▶ the merit parameter is reduced at most smax ∈ {0, 1, . . . , kmax} times.

Let K∗ be sampled uniformly over {1, . . . , kmax}. Then, with probability 1− δ,

E[∥∇f(XK∗ ) + J(XK∗ )TY true
k∗ ∥22 + ∥c(XK∗ )∥1] ≤

τ0(f(x1)− finf) + ∥c(x1)∥1 + M
√
kmax + 1

+
(τ−1 − τmin)(smax log(kmax) + log(1/δ))

√
kmax + 1

Theorem

If the stochastic gradient estimates are sub-Gaussian, then w.p. 1− δ̄

smax = O
(

log

(
log

(
kmax

δ̄

)))
.
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Inequality-constrained optimization
Stochastic SQP for inequality constrained problems

▶ employed in an ϵ-constraint method for fair machine learning
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Interior-point methods
Stochastic single-loop algorithm (prescribed barrier sequence {µk} ↘ 0) with convergence guarantees.

Figure: Deterministic setting (left) and stochastic setting (right)
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Iterative methods and inexactness

Inexact subproblem solves

▶ stochasticity and inexactness(!)

Iterative methods employed to solve [
Hk JT

k
Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
termination tests to determine when an inexact solution is sufficient for convergence.
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Physics-informed learning

Figure: True solution (left) and predicted solutions (right).
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Summary

Consider stochastic-gradient-based algorithms for solving problems of the form:

min
x∈Rn

f(x), where f(x) = Eω [F (x, ω)]

s.t. cE(x) = 0

cI(x) ≤ 0

Equality-constraints-only setting:

▶ convergence in probability with complexity guarantees

▶ almost-sure convergence of primal iterates and averaged Lagrange multipliers

▶ relaxed constraint qualifications

▶ inexact subproblem solves

Generally constrained setting (with inequality constraints as well):

▶ stochastic SQP

▶ stochastic interior-point (bounds only so far, but generally constrained in progress)
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