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Constrained optimization (deterministic)

Consider
2 1@
s.t. ce(z) =0
cz(z) <0

where f: R™ - R, cg : R" — R™¢ and ¢z : R™ — R™Z are smooth
> Physics-constrained, resource-constrained, etc.
> Long history of algorithms (penalty, SQP, interior-point, etc.)
» Comprehensive theory (even with lack of constraint qualifications)
» Effective software (Ipopt, Knitro, LOQO, etc.)
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Constrained optimization (stochastic constraints)

Consider

mmin f(x)
s.t. cg(x) =0
cz(z,w) S0

where f: R™ —- R, cg : R™ — R™€ and ¢z : R x Q — R™Z

» Various modeling paradigms:

> ...stochastic optimization
> ... (distributionally) robust optimization
> ...chance-constrained optimization
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Motivation #1: Network optimization

I I
Algorithms for Deterministically Constrained Stochastic Optimization 7 of 45




Motivation SG and SQP Adaptive SQP Stoc

astic SQP Worst-Case Complexity Extensions Conclusion

Motivation #2: Physics-constrained learning

AR

ot

Photo: Lars Ruthotto, “An Optimal Control Framework for Efficient Training of Deep Neural Networks”
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Motivation #3: Fair learning
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Constrained optimization (stochastic objective)

Consider

min f(z) = E[F(z,w)]

st cg(z) =0
cz(z) <0

where f:R" xR, FF: R" x Q@ - R, ¢g : R - R™¢ and ¢z : R" — R™Z
» w has probability space (2, F, P)
» E[] with respect to P
» Classical applications under uncertainty, constrained DNN training, etc.
> Besides cases involving a deterministic equivalent...
'S

. very few algorithms so far (mostly penalty methods)

I I
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What kind of algorithm do we want?

Need to establish what we want/expect from an algorithm.
Note: We are interested in the fully stochastic regime.t

We assume:

» Feasible methods are not tractable

> ... s0 no projection methods, Frank-Wolfe, etc.
> “T'wo-phase” methods are not effective

>

. so should not search for feasibility, then optimize.

v

Only enforce convergence in expectation.

Finally, want to use techniques that can generalize to diverse settings.

 Alternatively, see Na, Anitescu, Kolar (2021, 2022)
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This talk

Consider equality constrained stochastic optimization:

min f(2) = E[F(z,w)

s.t. ce(z) =0

Adaptive SQP method for deterministic setting

Stochastic SQP method for stochastic setting

Convergence in expection (comparable to SG for unconstrained setting)
Worst-case complexity on par with stochastic subgradient method

Numerical experiments are very promising

vV VY vV VvV VY

Various open questions!
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Sequential quadratic optimization (SQP)

Consider

. 1@

st.c(z) =0

with J = Ve and H > 0 (for simplicity), two viewpoints:

min f(z)+ Vf(z)'d+ 1d"Hd
or deR™

V(@) + J@)Ty] _
o(x) ]‘0

s.t. c(z) + J(z)d =0

both leading to the same “Newton-SQP system”:

AR

Je o 0] |yk Ck

I I
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SQP illustration

Figure: Illustrations of SQP subproblem solutions
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SQP

> Algorithm guided by merit function, with adaptive parameter 7, defined by
Pz, 7) = 7f(x) + [le(@) [
a model of which is defined as
a(z, 7,V f(z),d) = 7(f(z) + V(&) d+ 3d" Hd) + ||e(z) + J (z)d|]1
> For a given d € R™ satisfying c(z) + J(z)d = 0, the reduction in this model is
Aq(x, 7,V f(2),d) = —7(Vf(2)"d + 5d" Hd) + |[e()]]r,

and it is easily shown that

¢I(x7 T, d) S _Aq(xa T, Vf(:v), d)

I I
Algorithms for Deterministically Constrained Stochastic Optimization 16 of 45




Motivation SG and SQP Adaptive SQP Stochastic SQP Worst-Case Complexity Extensions Conclusion

SQP with backtracking line search

Algorithm SQP-B

1: choose g € R™, 71 € R, (, 0 € (0,1), n € (0,1)
2: for k € {0,1,2,...} do

3: compute step: solve
[ -]
Je 0] Yk Ck
4: update merit parameter: set 75 to ensure Ag(xg, 7, Vf(zr), dr) > 0, offered by
(1 —o)lleklls . T T
T < if Vf(zg) di+dj, Hedg, >0

V f(zp)Tdy + dF Hydy, fzx) k

5: compute step size: backtracking line search to ensure 41 < xp + oy dy yields
F(@k+1,Tk) < ¢(@k, TR) — Nk Aq(@k, i, V f (21), dic)

6: end for

I I
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Convergence theory

Assumption
> f,¢c, Vf, and J bounded and Lipschitz
> singular values of J bounded below (i.e., the LICQ)
> uT Hyu > ¢||lul|2 for all w € Null(Jy,) for all k € N

Theorem SQP-B
> {ak} > amin for some apmin >0
> {7k} > Tmin for some Tyin > 0

> Aq(zg, Tk, V(xk),dr) — 0 implies

ldkllz =0, llegllz =0, [V f(zx) + T yxll2 = 0

I I
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Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro (1951)

Sutton Monro, former Lehigh faculty member

Algorithms for Deterministically Constrained Stochastic Optimization 19 of 45
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Stochastic gradient (not descent)
Consider the stochastic optimization problem

min f(z) = E[F(z,w)]

where Vf : R® — R" is Lipschitz continuous with constant L

Algorithm SG : Stochastic Gradient

1: choose an initial point g € R™ and step sizes {ax} > 0
2: for k € {0,1,2,...} do

3 set Tpy1 < Tk — apgk, where Egfgr] = Vf(zx) and Eg[llgr — Vf(ar)[|3] < M
4: end for

Not a descent method! ...but eventual descent in expectation:

f@r1) = f@n) < VF@@e) (pg1 — 2x) + 2 Lllzgsr — 23
—oxVf(zi) gk + 0iLlgell3
= Eplf(zrt1)] — f(zr) < —aplVF(@p)l3 + 2oi LEx[||gxl3]-

Markovian: x4 depends only on zj; and random choice at iteration k.

I
Algorithms for Deterministically Constrained Stochastic Optimization 20 of 45




Motivation SG and SQP Adaptive SQP Stochastic SQP Worst-Case Complexity Extensions Conclusion

SG illustration

Figure: SG with fixed step size (left) vs. diminishing step sizes (right)

Algorithms for Deterministically Constrained Stochastic Optimization 21 of 45




Worst-Case Complexity

Extensions

Conclusion

SG and SQP Adaptive SQP Stochastic SQP

Motivation

SG theory

Theorem SG

= Vi(xx) and Bxlllgr — VS (@x)|3] < M for all k € N:

Since E[gk]
k
2 IVI@E)IE| <o)

Jj=1

k
ak=e(l) — B3 o[ Vi@)I3| 0
(Ej:laj) i=1

. 2 _
— l}crglgéf E[|Vf(zk)|l3] =0

Q
e
I
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Outline

Adaptive (Deterministic) SQP
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Toward stochastic SQP

v

In a stochastic setting, line searches are (likely) intractable

v

However, for Vf and V¢, may have Lipschitz constants (or estimates)
Step #1: Design an adaptive SQP method with

v

step sizes determined by Lipschitz constant estimates

v

Step #2: Design a stochastic SQP method on this approach

I I
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Primary challenge: Nonsmoothness
In SQP-B, step size is chosen based on reducing the merit function.

The merit function is nonsmooth! An upper bound is
d(zg + apdy, ) — O(Tk, k)
< apmeVf(zr) de + 11— agllleslls = llexlls + 3 (teLi + T g llde 13

where Ly and T'y, are Lipschitz constant estimates for f and ||c||1 at =k

2 2 2
El B 3
- “ “

Figure: Three cases for upper bound of ¢

Idea: Choose ay, to ensure sufficient decrease using this bound
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SQP with adaptive step sizes

Algorithm SQP-A

1: choose g € R™, 7_1 € Ry, 0 € (0,1), n € (0,1)
2: for k € {0,1,2,...} do

3: compute step: solve
5 )65
Ik 0] vk C
4: update merit parameter: set 7 to ensure Agq(xg, 7, Vf(zg),dg) > 0, offered by
(A = o)lleklls T T
T < if Vf(zr) di +dj, Hpdg, >0

Vf(zr)Tdy + df Hydy k

5: compute step size: set

2(1 = n)Aq(xy, 7, Vf(zg), di)
-

ag 5 and & < A — s
(T Li + Ti)lldi I3 (T L + i) llde I3
6: then
ap ifap <1
ap +— <1 if ap <1< ag
ap ifa, >1
7 then set x4 < = + apdy and continue or update Ly and/or 'y and return to step 5
8: end for

4llex

Convergence theory: Ezactly the same as for SQP-B.

Algorithms for Deterministically Constrained Stochastic Optimization
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Outline

Stochastic SQP
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Stochastic setting

Consider the stochastic problem:

min f(z) =E[F(z,w)]

s.t. c(z) =0

Let us assume only the following:

Assumption

For all k € N, one can compute g, with

Eilgr] = Vf(zx) and Billlgr — VF(z)3] < M

K] []=-[a]

Important: Given zy, the values (cg, Ji, Hx) are determined

Search directions computed by:

I
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Stochastic SQP with adaptive step sizes

(For simplicity, assume Lipschitz constants L and I" are known.)

Algorithm : Stochastic SQP

1: choose zg € R™, 71 € Ry, 0 € (0,1), {Bx} € (0,1]
2: for k € {0,1,2,...} do

3: compute step: solve
Hy  JE [de] — _ [ox
Ji 0 Yk Ck
4: update merit parameter: set 7 to ensure Aq(zg, Tk, gk, di) > 0, offered by
(1 —o)llekllr T T
k< 7 if gpdy +dj Hpdp >0
gfFdy + dF Hydy,
5: compute step size: set
BrAq(zk, Tk, 9k, k) - ~ 4flckllL
— v e and ap + ap — P T—
(T L +T)ldg I3 (T L+ D)lldg I3
6: then
ap ifa, <1
ap <1 if ap, <1< ay,
ap ifap >1
T then wp 1 < xp + agdy
8: end for
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step size control

The sequence {8} allows us to consider, like for SG,

> a fixed step size

» diminishing step sizes (e.g., O(1/k))
Unfortunately, additional control on the step size is needed

> too small: insufficient progress

> too large: ruins progress toward feasibility / optimality
We never know when the step size is too small or too large!
Idea: Project @ and &y onto

T T

where 6 € R is a user-defined parameter

I I
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Fundamental lemmas

Lemma
For all k € N, for any realization of gi, one finds
H(ag + apdy, 7k) — $(@k, Tk)

< —apAq(@r, 7o, VE(@r), dp ) + S0 BrAd(@h, Tiy 9 die) + apme V()T (dy — d

true
k

)

O(Bk), “deterministic” O(B%),stochastic/noise due to adaptive oy

Lemma
For all k € N, one finds

Eplde] = di"®, Exlyx] = ", and Ex[llde — di"*l2] = O(VM)

as well as
V()T dire > Exlgf di] > (Vf(z)Tdi)™ = ¢T'M and

Ex[df Hydy) > difve” Hydive

Algorithms for Deterministically Constrained Stochastic Optimization
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Good merit parameter behavior

Lemma

If {7} eventually remains fized at sufficiently small Trmin > 0, then for large k

Ex (o7 V1 (zx) " (dr — dif)] = BimminO(VM)

Theorem

If {7x} eventually remains fized at sufficiently small Tmin > 0, then for large k

k
Br=6(1) = E %ZAq(wj,Tmin,Vf(Ij),d}rue) < O(M)
j=1

1 1 £
Bk:e(g) = L (k—>Z:BjAQ(wijminyvf(mj),d;-rue -0

j=183) j=1

I I
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Good merit parameter behavior

Lemma

If {7} eventually remains fized at sufficiently small Trmin > 0, then for large k

Ex (o7 V1 (zx) " (dr — dif)] = BimminO(VM)

Theorem

If {7x} eventually remains fized at sufficiently small Tmin > 0, then for large k

Br=6(1) = E

?r-lr—‘

k
> (lgs + Iy ell2 + llesll2) | < O(M)
j=1

J

k

By =6 ( 5 Z B;(llg; + ITy 12 + llesl1a) | = 0
=1Fj) j=1

I I
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Poor merit parameter behavior

{m} \(0:

» cannot occur if ||gr — V f(zk)||2 is bounded uniformly

» occurs with small probability if distribution of gx has fast decay
{7k} remains too large:

» if there exists p € (0, 1] such that, for all k in infinite K,

Py (g d + max{d] Hydg, 0} > Vf(wp) i + max{(df) T Hydi,0}] > p

then occurs with probability zero

I I
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Numerical results
Matlab software: https://github.com/frankecurtis/StochasticSQP

CUTE problems with noise added to gradients with different noise levels
» Stochastic SQP: 102 iterations
» Stochastic Subgradient: 10% iterations and tuned over 11 values of 7

10 10"
Stochastic SQP Stochastic SQP
* Stochastic Subgradient + Stochastic Subgradient
10%F . R . 10%F . . v 1
* + * + * + + + i ; i é
+ + +

0 * 1 (8 (=] 1
AR ; ; T SO B T :
(<} o 1
& i 5 L Py i '

. - = 1
z10? ] 2107 & vl
3 + + + © T 1
@ b4 é 1 1
10 . i 1 S0t} i i 1

+ * 1 1
. i 1 1
10°F [ 10°F ! ' ! 1
H 1 1 1 1 1 1
1 1 1 1 1 1 1
08— L .i_ L 1 1] 108F 1 1 1 ]
108 10 102 107 10® 107 102 107
Noise Level Noise Level

' fapy ety ;m Tigiig)s '
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Outline

Worst-Case Iteration Complexity
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Complexity of deterministic algorithm
All reductions in the merit function can be cast in terms of smallest T.

Lemma 7

If {7} eventually remains fized at sufficiently small Tmin, then for any € € (0,1) there exists
(k1,K2) € (0,00) x (0,00) such that, for all k,

llgx + J{yk” >eor ekl >e¢ = Aq(xk, Tk,drx) > min{k1, K2Tmin }€.

Since Tmin is determined by the initial point, it will be reached.

Theorem 8

For any € € (0,1), there exists (k1,k2) € (0,00) x (0,00) such that
gk + T yrll < € and /llexllr < e

in a number of iterations no more than

(T—l(fo — fing) + ||60||1) 2

min{K1, K2Tmin }

I I
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Challenge in the stochastic setting

We are minimizing a function that is changing during the optimization.

In the stochastic setting, minimum 7 is not determined by the initial point.

> Even if we assume 7, > Tmin > 0 for all k in any realization, the final value of the merit parameter 7 is
not determined.

» This means we cannot cast all reductions in terms of some fixed 7.

\Ad

\./

Y

\ 4
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Worst-case iteration complexity of (5(6_4)

Theorem 9
Suppose the algorithm is run kmax iterations with
> Bk =7/VFkmax + 1 and
> the merit parameter is reduced at most smax € {0,1,..., kmax} times.

Let k« be sampled uniformly over {1,...,kmax}. Then, with probability 1 — 4,

7-1(fo = fint) + llcolls + M
(T—1 — Tmin) (Smax log(kmax) + log(1/9))

Elllgr, + Ji, yk. 13 + llex. 1] <

+
\/kmax + 1

Theorem 10

If the stochastic gradient estimates are sub-Gaussian, then w.p. 1 —§

Smmax = O (log (1°g (kn:s))) '

Algorithms for Deterministically Constrained Stochastic Optimization
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Recent work (under review): No LICQ
Remove constraint qualification
> infeasible and/or degenerate problems
» step decomposition method
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Figure: Box plots for feasibility errors (left)
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Recent work (under review): Matrix-free methods

Inexact subproblem solves

> stochasticity and inexactness(!)
» applicable for large-scale, e.g., PDE-constrained

10* 10*
5 —
1070 + . i 102
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10%r E L = L
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; 5 .0 | ]
w
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Figure: Box plots for feasibility errors (left) and optimality errors (right).
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Current work: Inequality constraints

Inequality constraints
> SQP

> interior-point

Main challenge: For equalities only, subproblem solution on linearized constraints remains unbiased:

Ck—i-Jkak:O <= Ekz’l)k-i-ﬂk
with vy € Range(J{) and @ € Null(Jy)
has Ek [’l_l,k] = Uk-

However, when inequalities are present, subproblem solution is biased.
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Summary

Consider equality constrained stochastic optimization:

min f(z) = E[F(z,w)

st.cg(z) =0

> Adaptive SQP method for deterministic setting
Stochastic SQP method for stochastic setting

Convergence in expection (comparable to SG for unconstrained setting)

>
>
» Worst-case complexity on par with stochastic subgradient method
> Numerical experiments are very promising

>

Various extensions (on-going)
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