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Optimization

Consider optimization problems of the form

min
x∈X

f(x).

Problems arise throughout science and engineering:

I statistics, e.g., model fitting

I control, e.g., optimal trajectory

I operations research, e.g., minimizing cost

I economics, e.g., maximizing utility

I geophysics, e.g., seismic inversion
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Optimization algorithms

What do we want from optimization algorithms?

Practitioners:

I reliable

I fast

I easy-to-use/write software

Algorithm designers and theorists:

I convergence guarantees

I convergence rate guarantees

I “simplicity”
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Convex vs. nonconvex optimization

No one is an expert in all types of optimization problems/algorithms.

I continuous vs. discrete

I unconstrained vs. constrained

I nonlinear vs. linear

I deterministic vs. stochastic

I nonconvex vs. convex

I smooth vs. nonsmooth

I finite- vs. infinite-dimensional

In this talk, I focus on the classes above (in blue), where:

“Key distinction is not linear vs. nonlinear, but convex vs. nonconvex.”
- Rockafellar (paraphrased)

I’ll also touch on issues related to stochastic algorithms.
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Convex optimization: support vector machines

A typical example of a convex optimization problem:

I finding a support vector machine classifier

I classically linear, but can find nonlinear classifiers with kernels
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Nonconvex optimization: deep neural networks

Prevalent example of a nonconvex optimization problem:

I training a deep neural network

I often nonsmooth as well (but this is swept under the rug)
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Convex vs. nonconvex optimization

What are the key differences?

x1 x2

f(x1)

f(x2)

αx1 + (1− α)x2

αf(x1) + (1− α)f(x2)

f(αx1 + (1− α)x2)

x

f(x)

strict

local

minimum

local

minima

strict

global

minimum

Advantages in convex optimization:

I affine (global) underestimators

I strong duality

I local minimizers are global minimizers
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Local vs. global minimizers

Even 10 years ago, common sentiment among many continuous optimizers:

If your (continuous) problem is nonconvex, then it’s a bad formulation.

A related sentiment, also felt by some optimizers:

If your problem is nonconvex and your algorithm is not guaranteed to
find a global minimizer, then it is not a worthwhile algorithm.

On the contrary, there are worthwhile problems that are nonconvex, and
algorithms that do not find global minimizers are worthwhile.
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Example: (deep) learning
“Gradient Descent Converges to Minimizers”

I Lee, Simchowitz, Jordan, and Recht

“Gradient Descent Only Converges to Minimizers”

I Panageas and Piliouras

“Gradient Descent Finds Global Minima of Deep Neural Networks”

I Du, Lee, Li, Wang, and Zhai

“SGD Converges to Global Minimum in Deep Learning via Star-Convex Path”

I Zhou, Yang, Zhang, Liang, and Tarokh

“On the Global Convergence of Gradient Descent for Over-parameterized Models
using Optimal Transport”

I Chizat and Bach

. . . amongst many others

Key ideas:

I random initialization and/or

I random perturbations to directions
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Example: `0-norm minimization / complementarity constraints
“Complementarity Formulations of `0-norm Optimization Problems”

I Feng, Mitchell, Pang, Shen, and Waechter

“`0-norm Minimization for Basis Selection”

I Wipf and Rao

“Solving mathematical program with complementarity constraints as nonlinear
programs”

I Fletcher and Leyffer

“An interior point method for mathematical programs with complementarity
constraints (MPCCs)”

I Raghunathan and Biegler
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Example: chance-constrained optimization
Optimization problem with chance/probabilistic constraints:

min
x∈Rn

f(x) s.t. P[c(x, ξ) ≤ 0] ≥ 1− α

Deterministic approximation through cardinality constraints:

min
x∈Rn

f(x) s.t. |{i ∈ I : c(x, ξi) ≤ 0}| ≥ N −M

“A Sequential Algorithm for Solving Nonlinear Optimization Problems with
Chance Constraints”

I Curtis, Waechter, and Zavala
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Take-home messages

Two messages, in my opinion:

(1) Nonconvexity cannot always be avoided. And that’s OK!

(2) Local search methods are useful, despite no global solution guarantee.

The questions then become:

(a) What kinds of algorithms are worth designing?

(b) How should we compare algorithm performance?

My overall message in the remainder of the talk:

Continuous optimization has become too theoretical in recent years!

I too much emphasis on theoretical performance guarantees;

I not enough emphasis on practical performance;

I typical analyses and numerical experiments are biasing optimizers toward
certain algorithms, and we should snap out of it

I “gone down a bit of a rathole here” — S.J.W.
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History

Nonlinear continuous optimization has seen parallel developments

convexity

Fenchel

Rockafellar

Nemirovski

Nesterov

subgradient
inequality

convergence,
complexity
guarantees

smoothness

Powell

Fletcher

Goldfarb

Nocedal

sufficient
decrease

convergence,
fast local

convergence

These worlds have (finally) collided! Has it been beneficial?
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Convex setting

Consider the problem
min
x∈Rn

f(x),

where f : Rn → R is

I convex and

I L-smooth, i.e., ∇f is Lipschitz with constant L.

Gradient descent employs the iteration

xk+1 ← xk −
1

L
∇f(xk).

It is well known that this algorithm yields

f(xk)− f(x∗) ≤
1

2k
(L‖x0 − x∗‖22).
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Nesterov acceleration

Famously, Nesterov proved that gradient descent is not optimal

I . . . over iterative algorithms that impose

xk ∈ x0 + span{∇f(x0), . . . ,∇f(xk−1)}.

I Key insight is that of generating estimate sequences.

Theoretical benefit can be seen in that

f(xk)− f(x∗) ≤
1

2k
(L‖x0 − x∗‖22) (gradient method)

f(xk)− f(x∗) ≤
4

(k + 2)2
(L‖x0 − x∗‖22) (optimal method)

This theoretical bound is tight.
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Practical performance
In convex optimization. . .

practical performance is also often better for “better complexity” method.

min
x∈Rn

log

(
m∑
i=1

exp(aTi x+ bi)

)

Image courtesy of Maryam Fazel (lecture notes)
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Nonconvex setting

What about nonconvex settings?

Issue #1: Unreasonable to consider suboptimality or distance to a solution, i.e.,

f(xk)− f(x∗) or ‖xk − x∗‖

Instead, consider approximate stationarity conditions, e.g.

‖∇f(xk)‖2 ≤ ε

or
‖∇f(xk)‖2 ≤ εg and min(eig(∇2f(xk))) ≥ −εH

Aside: Who’s to say these are appropriate?

I Neither offers a guarantee for suboptimality or distance to a solution

I We are choosing the condition to benefit our algorithms!
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Gradient descent

Issue #2: Typical analysis is extremely conservative.

Consider gradient descent with

xk+1 ← xk −
1

L
∇f(xk).

We are interested in the set

G(εg) := {x ∈ Rn : ‖∇f(x)‖2 ≤ εg},

in particular, we aim to bound the cardinality of

Kg(εg) := {k ∈ N : xk 6∈ G(εg)}.
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Upper bound on |Kg(εg)|

Using sk = −
1

L
∇f(xk) and the upper bound

fk+1 ≤ fk +∇f(xk)T sk +
1

2
L‖sk‖22,

one finds for xk /∈ G(εg) that

fk − fk+1 ≥
1

2L
‖∇f(xk)‖22

=⇒ (f0 − finf) ≥
1

2L
|Kg(εg)|ε2g

=⇒ |Kg(εg)| ≤
2L(f0 − finf)

ε2g
.

Hence, gradient descent yields εg-approximate first-order stationarity in

O(ε−2
g ) iterations.
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“Nice” f

But what if f is “nice”?

. . . e.g., satisfying the Polyak-Lojasiewicz condition (for c ∈ R>0), i.e.,

f(x)− f∗ ≤
1

2c
‖∇f(x)‖22 for all x ∈ Rn.

Now consider the set

F(εf ) := {x ∈ Rn : f(x)− f∗ ≤ εf}

and consider an upper bound on the cardinality of

Kf (εf ) := {k ∈ N : xk 6∈ F(εf )}.
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Upper bound on |Kf (εf )|
Using sk = −

1

L
∇f(xk) and the upper bound

fk+1 ≤ fk +∇f(xk)T sk +
1

2
L‖sk‖22,

one finds for xk /∈ F(εf ) that

fk − fk+1 ≥
1

2L
‖∇f(xk)‖22 ≥

c

L
(fk − f∗)

=⇒
(

1−
c

L

)
(fk − f∗) ≥ fk+1 − f∗

=⇒
(

1−
c

L

)k
(f0 − f∗) ≥ fk − f∗

=⇒ |Kf (εf )| ≤ log

(
f0 − f∗
εf

)(
log

(
L

L− c

))−1

.

Hence, gradient descent yields εf -approximate optimality in

O
(

log

(
1

εf

))
iterations.
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What’s the difference?

In the “general nonconvex” analysis. . .

. . . the expected decrease for the first step is much more pessimistic:

general nonconvex: f0 − f1 ≥
1

2L
ε2g

PL condition:
(

1−
c

L

)
(f0 − f∗) ≥ f1 − f∗

. . . and it remains more pessimistic throughout!
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Upper bounds on |Kf (εf )| versus |Kg(εg)|

Let f(x) = 1
2
x2, meaning that ∇f(x) = x.

I Let εf = 1
2
ε2g , meaning that F(εf ) = G(εg).

I Let x0 = 10, c = 1, and L = 2. (Similar pictures for any L > 1.)
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Upper bounds on |Kf (εf )| versus |{k ∈ N : 1
2‖∇f(xk)‖2

2 > εg}|

Let f(x) = 1
2
x2, meaning that 1

2
∇f(x)2 = 1

2
x2.

I Let εf = εg , meaning that F(εf ) = G(εg).

I Let x0 = 10, c = 1, and L = 2. (Similar pictures for any L > 1.)
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Tight bounds

Ok, but are the bounds tight? Yes!

Cartis, Gould, Toint (2010)
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Oracle complexity

It’s not only first-order methods.

I Second-order methods finding approximate first-order stationarity:

optimal complexity: O
(
ε−3/2

)
I pth-order methods finding approximate first-order stationarity:

optimal complexity: O
(
ε−(p+1)/p

)
These bounds are tight.

I Carmon, Duchi, Hinder, Sidford (2019)

Nonconvex Optimization: Opportunities and Challenges 30 of 45



Introduction Local vs. Global Search Worst-case Complexity Numerical Comparisons Conclusion

Take-home message #1

Nonconvex functions, even pth order smooth ones, are too diverse.

Better to consider subclasses of problems, or analyze performance regionally:

“Regional complexity analysis of algorithms for nonconvex smooth optimization”

I Curtis and Robinson (2020)
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Take-home message #2

“Better complexity” has yet to mean
“better performance” for nonconvex!

They say:

“Newton’s method is as slow
as gradient descent.”

This essentially ignores reality.

“A trust region algorithm with a worst-case iteration complexity of O(ε−3/2) for
nonconvex optimization”

I Curtis, Robinson, Samadi (2017)
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Performance profiles

A positive development in algorithm comparisons; Dolan and Moré (2002)

Not the first idea, but it became the “gold standard” approach.
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Advantages and disadvantages

Advantages

I one visual

I encapsulates performance over large test set

I shows both speed and reliability

Disadvantages

I selection of solvers can skew results

I even a large test set might not be enough

I do solvers (e.g., default parameters) become biased?

But there is a HUGE positive overall. . .
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Proceed with caution

Selection of solvers can skew results; Gould and Scott (2016)
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Comparisons with “state-of-the-art”

Hard to beat a highly tuned state-of-the-art solver! Curtis (2012)

I’ve seen many papers rejected for this reason.
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Comparisons with “state-of-the-art”

But if you change the test set, it’s a different picture! Curtis (2012)

We should not let one test set (or a few) bias all research.
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Overall positive

The overall positive is that. . .

I people have thought hard about algorithm comparisons.

Besides performance profiles:

I operational characteristics; Strongin and Sergeyev (2000)

I data profiles; Moré and Wild (2009)

I relative minimization profiles; Curtis, Mitchell, Overton (2017)
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Stochastic optimization

There needs to be more work along these lines for stochastic optimization.

I know there has been some, but these have not yet been widely adopted.

It is even more important than in the deterministic setting:

I running a solver on a problem once (or a few times) is not enough

I algorithm variations even more plentiful
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Typical experiment

The results of a typical type of experiment:

Ok, but what about:

I other objectives? other networks? other datasets? other # of epochs?

I other hyperparameter settings? other algorithms?

Only using the same handful of problems, all research is biased toward them.
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Fair comparisons

My goal is not to advocate for one approach for comparisons.

Take-home message:

The only way for algorithm comparisons to be fair would be for them to
include all computational time spent tuning each algorithm.

Asi and Duchi (2019):

I Training a neural network for a single task

I 750,000 CPU days of computation

I ≈ energy eqiuvalent to drive 4,000 Toyota Camrys 380 miles from SF to LA.
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Adaptive stochastic optimization

I advocate for adaptive (second-order) algorithms for stochastic optimization.
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Summary

Take-home messages:

I Nonconvexity cannot always be avoided. And that’s OK!

I Local search methods are useful.

I Continuous optimization has become too theoretical.

I For analysis, “nonconvex” problems are too diverse.

I “Better complexity” 6= “better performance” for nonconvex optimization.

I Need to think hard about empirical comparisions

I . . . especially in the stochastic optimization setting.
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