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Motivating questions

» How do optimization problems arise in machine learning applications, and
what makes them challenging?

» What have been the most successful optimization methods for large-scale
machine learning, and why?

> What recent advances have been made in the design of algorithms, and what
are open questions in this research area?
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Learning problems and (surrogate) optimization problems

Learn a prediction function h : X — ) to solve

max /Xxy 1[h(z) = y]dP(z,y)

Various meanings for h(z) &~ y depending on the goal:
> Binary classification, with y € {—1,+1}: y - h(z) > 0.
> Regression, with y € R™v: ||h(z) — y|| < 4.
Parameterizing h by w € R%, we aim to solve
max / 1[h(w; x) = y]dP(z,y)
XXy

weRd

Now, common practice is to replace the indicator with a smooth loss. ..
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Stochastic optimization

Over a parameter vector w € R% and given
£(:;y) o h(w;z) (loss w.r.t. “true label” o prediction w.r.t. “features”),
consider the unconstrained optimization problem

féi@l f(w), where f(w) =E ) [¢(h(w;z),y)].

Given training set {(z;,y:)}}—,, approximate problem given by

uIJrél]l? fn(w), where fn(w)= Zé(h(w i), Yi)-

Optimization Methods for Large-Scale Machine Learning 7 of 59
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Image / speech recognition

G444 b A% 4012345

What pixel combinations represent the number 47

What sounds are these? (“Here comes the sun” — The Beatles)
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Deep neural networks

h(w;z) = a;(W; ... (a2(Wa(ar(Wiz + w1)) +w2))...)
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Figure: Illustration of a DNN
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Tradeoffs of large-scale learning

Bottou, Bousquet (2008) and Bottou (2010)

Notice that we went from our true problem

mase /X 1) = 3P,

to say that we’ll find our solution h = h(wj;-) by (approximately) solving

n

1
min — L(h(w;4),Ys)-
weR? m o7

Three sources of error:
> approximation
> estimation

> optimization

I I
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Approximation error

Choice of prediction function family H has important implications; e.g.,

He ={heH:Qh) < C}.

misclassification rate misclassification rate
testing testing
training training
C training time

Figure: Illustration of C' and training time vs. misclassification rate
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Problems of interest

Let’s focus on the expected loss/risk problem

min, f(w), where f(w) =E(y) [(h(w;), )]

and the empirical loss/risk problem

mﬁl fn(w), where fn(w)= Zé(h(w i), Yi)-

we

For this talk, let’s assume
> f is continuously differentiable, bounded below, and potentially nonconvex;
» Vf is L-Lipschitz continuous, i.e., |V f(w) — V f(w)|2 < L||lw — @||2.

I I
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Gradient descent
Aim: Find a stationary point, i.e., w with V f(w) = 0.

Algorithm GD : Gradient Descent

1: choose an initial point wg € R™ and stepsize o > 0
2: for k€ {0,1,2,...} do

3: set wry1 — wi — aV f(wyg)

4: end for

f(wy)

v

Wi
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GD theory

Theorem GD

(oo}

If a € (0,1/L), then > [V f(wy)||3 < oo, which implies {V f(wy)} — 0.
k=0

If, in addition, f is c-strongly convex, then for all k > 1:

Flwp) = fu < (1= ac)*(f(@o) — f+)-

Proof.

Fwrg1) < F(we) + VF(we) T (weg1 — wi) + 3 Ll|lwpt1 — will3
-+ (due to stepsize choice)
< fwg) — 30l VF(we)ll3
< flwr) — ac(f(wk) — f+).
= f(wit1) = f« < (1 = ac)(f(wk) = fx).

I I
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GD illustration

Figure: GD with fixed stepsize
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Stochastic gradient method (SG)

Invented by Herbert Robbins and Sutton Monro in 1951.

[
Sutton Monro, former Lehigh faculty member

Optimization Methods for Large-Scale Machine Learning 17 of 59
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Stochastic gradient deseent

Approximate gradient only; e.g., random 45 so B[V l(h(w; s, ), y;,, )|w] = V f(w).

Algorithm SG : Stochastic Gradient
1: choose an initial point wo € R™ and stepsizes {ax} > 0
2: for k€ {0,1,2,...} do
3: set W41 < Wi — apgk, where g = V f(wy)
4: end for

Not a descent method!
...but can guarantee eventual descent in expectation (with Ex[gx] = V f(wy)):

Fwig1) < flwr) + VF(wr) T (g1 — wi) + 2 Lllwipr — w3

= f(wi) — apVf(we) g + 207 Llgkll3
= Ex[f(wiy1)] < flwr) — ar|VF(wi)ll3 + 50i LEx[l|gxI5]-

Markov process: wy41 depends only on wy and random choice at iteration k.

I I
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SG theory

Theorem SG
If Eglllgrll3] < M + ||V f(wg)||3, then:

e

= E

1
o = —
L

k
DoIVAw)I3| <M
j=1

k
=0(3) = B> alviwl| <o

Jj=1

If, in addition, f is c-strongly convex, then:

o= — Elf(wx) - ] <O (%)
=0(3) = Elftu) - -0 (HEH).

(*Assumed unbiased gradient estimates; see paper for more generality.)

I
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Why O(1/k)?
Mathematically:

oo (e o)
Zakzoo while Zai<oo
k=1 k=1

Graphically (sequential version of constant stepsize result):

o o/2

2a

Optimization Methods for Large-Scale Machine Learning 20 of 59
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SG illustration

Figure: SG with fixed stepsize (left) vs. diminishing stepsizes (right)
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Outline

GD vs. SG
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Why SG over GD for large-scale machine learning?

GD:  E[fn(wk) — fn,«] = O(p¥) linear convergence
SG:  E[fn(wk) — fn,«] = O(1/k)  sublinear convergence
So why SG?

Motivation | Explanation

Intuitive data “redundancy”
Empirical SG vs. L-BFGS with batch gradient (below)
Theoretical | E[fn(wg) — fn,«] = O(1/k) and E[f(wg) — f«] = O(1/k)

LBFGS

Empirical Risk

. ™~

15 25
Accessed Data Points

I
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Work complexity
Time, not data, as limiting factor; Bottou, Bousquet (2008) and Bottou (2010).

Time Time for
Convergence rate per iteration e-optimality
GD:  E[fn(wg) = fns] = 0"  + O(n) = nlog(1/e)
8G:  E[fn(wi) — fnx] =O(1/k) + o) = 1/e

Considering total (estimation + optimization) error as
£ =E[f(w") = f(w*)] +E[f(@") = f(w")] ~ ; +e

and a time budget 7, one finds:
» SG: Process as many samples as possible (n ~ 7)), leading to
1
En~ —.
T

» GD: With n ~ 7 /log(1/€), minimizing & yields e ~ 1/7 and

log(T) 1
T + T

&

I I
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Outline

Beyond SG
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End of the story?

SG is great! Let’s keep proving how great it is!
» SG is “stable with respect to inputs”
> SG avoids “steep minima”

» SG avoids “saddle points”
> ...(many more)

No, we should want more. ..

v

SG requires a lot of “hyperparameter” tuning

v

Sublinear convergence is not satisfactory
> ... “linearly” convergent method eventually wins
> ... with higher budget, faster computation, parallel?, distributed?

Also, any “gradient”-based method is not scale invariant.
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What can be improved?

E[f(wg) — f] = O (%)

stochastic better
gradient rate

better
constant

I
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What can be improved?

E[f(wg) — f] = O (%)

stochastic better
gradient rate

better better rate and
constant better constant

I
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Two-dimensional schematic of methods

stochastic batch
gradient gradient
- — = > /)
noise reduction ,/
stochastic batch
Newton Newton

I
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2D schematic: Noise reduction methods

stochastic batch
gradient gradient
@ >
=3 >

noise reduction
e dynamic sampling
e gradient aggregation

e iterate averaging

I
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2D schematic: Second-order methods
stochastic
gradient

e diagonal scaling

e natural gradient

e Gauss-Newton

e quasi-Newton

. © Hessian-free Newton
stochastic

Newton

I
Optimization Methods for Large-Scale Machine Learning 30 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Even more. ..

momentum

acceleration

(dual) coordinate descent

trust region / step normalization

exploring negative curvature

Yy vV vV VY VYV

Optimization Methods for Large-Scale Machine Learning 31 of 59
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Outline

Noise Reduction Methods
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Idea #1: Dynamic sampling

We have seen
> fast initial improvement by SG
» long-term linear rate achieved by batch gradient

= accumulate increasingly accurate gradient information during optimization.
But at what rate?

> too slow: won’t achieve linear convergence

> too fast: loss of optimal work complexity

Optimization Methods for Large-Scale Machine Learning 33 of 59
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Geometric decrease

Correct balance achieved by decreasing noise at a geometric rate.

Theorem 3

Suppose f is c-strongly conver and L-smooth and that
Vilgr] < M¢*=Y for some M >0 and ¢ € (0,1).
Then, the SG method with a fized stepsize oo = 1/ L yields
E[f(wk) — f] S wp®~,

where

= maX{%,f(wo)—f*}

and p:= max{l— %,C} <1

Effectively ties rate of noise reduction with convergence rate of optimization.

I I
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Geometric decrease

Proof.

The now-familiar inequality

Exlf(wi1)] — f(wi) < —al|Vf(wi)l13 + 20 LEg[l|gx]I3],

strong convexity, and the stepsize choice lead to

Elf (i) = £ < (1= £) Elfun) = ] + 5 ¢* .

> Exactly as for batch gradient (in expectation) except for the last term.

» An inductive argument completes the proof.

I I
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Practical geometric decrease (unlimited samples)

How can geometric decrease of the variance be achieved in practice?

1
gk = —— Z Vfi(wg) with [Si|=[7F"1] for 7> 1,
ISkl E5,
since, for all i € Sy,
ViV fi(w _
vilan] < PE] < e,

But is it too fast? What about work complexity?

c \—1
same as SG as long as 7 € (1, (1 - i) ] .

I I
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Ilustration

Figure: SG run with a fixed stepsize (left) vs. dynamic SG with fixed stepsize (right)
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Additional considerations

In practice, choosing 7 is a challenge.
» What about an adaptive technique?
» Guarantee descent in expectation

» Methods exist, but need geometric sample size increase as backup

Optimization Methods for Large-Scale Machine Learning 38 of 59
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Idea #2: Gradient aggregation

“I’'m minimizing a finite sum and am willing to store previous gradient(s).”
1 n
Fw) =~ > filw).
i=1

Idea: reuse and/or revise previous gradient information in storage.
» SVRG: store full gradient, correct sequence of steps based on perceived bias
> SAGA: store elements of full gradient, revise as optimization proceeds

» SARAH: stochastic recursive gradient method

Optimization Methods for Large-Scale Machine Learning 39 of 59
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Stochastic variance reduced gradient (SVRG) method

At wy, =: wy,1, compute a batch gradient:

V f1(wy)

V f2(wy,)

V f3(wy)

V fa(wy)

V f5(wi;)

then step

gk,1 < VEF(wy)

Wk,2 < Wk,1 — QGk,1

Optimization Methods for Large-Scale Machine Learning
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

V f1(wy)

V fa(wy)

V f3(wg)

V fa(wg,2)

V f5(wr)

then step

9k,2 < VF(wy) = V fa(wy) + V fa(wg,2)

Wk,3 < Wk,2 — AJk,2

Optimization Methods for Large-Scale Machine Learning
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Stochastic variance reduced gradient (SVRG) method

Now, iteratively, choose an index randomly and correct bias:

V f1(wy)

V fa(wy,3)

V f3(wg)

V fa(wy)

V f5(wr)

then step

9k,3 < VF(wy) — V fa(wy) + V fa(wg,3)

Wk, 4 < Wk,3 — AJk,3

Optimization Methods for Large-Scale Machine Learning
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Stochastic variance reduced gradient (SVRG) method

Each gi ; is an unbiased estimate of VF(wy, ;)!

Algorithm SVRG
1: Choose an initial iterate wy € R, stepsize a > 0, and positive integer m.
2: for k=1,2,... do
3: Compute the batch gradient VF(wy).

4: Initialize wy 1 < wy.

5: forj=1,...,mdo

6: Chose ¢ uniformly from {1,...,n}.

7 Set gi,j < Vfi(wk,;) — (Vfi(we) = VF(wg)).

8: Set Wk, j4+1 ¢ Wk,j — QGk j-

9: end for

10: Option (a): Set wr+1 = Wm+1

11: Option (b) Set Wgy1 = % Z;n:1 ’lZIj+1

12: Option (¢): Choose j uniformly from {1,...,m} and set wy41 = Wj41.

13: end for

If f is c-strongly convex and L-smooth, then options (b) and (c) are linearly
convergent for certain (o, m)

I I
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Stochastic average gradient (SAGA) method

At wi, compute a batch gradient:

V fi(w1)

V fa(w1)

V f3(w1)

V fa(w1)

V f5(w1)

then step

g1 < VF(wl)

w2 < w1 — agi

Optimization Methods for Large-Scale Machine Learning
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

V fi(w1)

V fa(w1)

V f3(w1)

V fa(w2)

V f5(w1)

g2 < new entry — old entry + average of entries (before replacement)

then step

w3 < w2 — Qg2

Optimization Methods for Large-Scale Machine Learning
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Stochastic average gradient (SAGA) method

Now, iteratively, choose an index randomly and revise table entry:

V fi(w1)

V f2(w3)

V f3(w1)

V fa(w2)

V f5(w1)

g3 < new entry — old entry + average of entries (before replacement)

then step

Wy £ W3 — Qg3

Optimization Methods for Large-Scale Machine Learning
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Stochastic average gradient (SAGA) method

Each g is an unbiased estimate of VF (wg)!

Algorithm SAGA

. Choose an initial iterate wi € R4 and stepsize a > 0.
:fori=1,...,ndo
Compute V f;(w1).
Store V f; (w[l]) «~— Vfi (wl)
end for
: fork=1,2,... do
Choose j uniformly in {1,...,n}.
Compute V f; (wg).
Set g« Vfj(wi) — Vf5(wp)) + 2 0V fi(wpy)).
10: Store ij (w[]]) — ij (wk)
11: Set w1 ¢ Wi — agk.
12: end for

© ® N> TR wh

If f is c-strongly convex and L-smooth, then linearly convergent for certain o
> storage of gradient vectors reasonable in some applications
» with access to feature vectors, need only store n scalars

I I
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Idea #3: Iterative averaging

Averages of SG iterates are less noisy:

Wi41 < Wi — Qg
k+1
E w; (in practice: running average)
=1

W41 < Pl
Unfortunately, no better theoretically when oy = O(1/k), but

> long steps (say, ap, = O(1/Vk)) and averaging

> lead to a better sublinear rate (like a second-order method?)
See also

> mirror descent

» primal-dual averaging

I I
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Idea #3: Iterative averaging
Averages of SG iterates are less noisy:
Wk+1 $~ Wk — Ok Gk

k+1
Z wj (in practice: running average)

0.5

Figure: SG run with O(1/Vk) stepsizes (left) vs. sequence of averages (right)

Optimization Methods for Large-Scale Machine Learning
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Outline

Second-Order Methods
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Two-dimensional schematic of methods

stochastic batch
gradient gradient
- — = > /)
noise reduction ,/
stochastic batch
Newton Newton

I
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2D schematic: Second-order methods
stochastic
gradient

e diagonal scaling

e natural gradient

e Gauss-Newton

e quasi-Newton

. © Hessian-free Newton
stochastic

Newton

I
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Ideal: Scale invariance

Neither SG nor batch gradient are invariant to linear transformations!

néi]éld f(w) = Wit — wi — o,V f(wyg)
mind f(Bw) =  Wg41 Wy — ap BV f(Bwyg) (for given B > 0)
wER

Scaling latter by B and defining {wy} = {Bwy} yields
Why1 = wy, — ap B2V f(wy,)

> Algorithm is clearly affected by choice of B

> Surely, some choices may be better than others (in general?)

I I
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Newton scaling

Consider the function below and suppose that wi = (0, 3):

8 8

7 i

6 8

5 5

4 4

3 3

2 2

1 1

0 0
-1 -1 \/,/
25 0 2 4 6 8 25 0 2 4 [ 8

W41 < Wk + S, where sz(wk)sk = -V f(wk)
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Newton scaling

Batch gradient step —ay, V f(wy) ignores curvature of the function:

= 0 @

oW

. e

-2 0 2 4 6 8

W41 < Wk + S, where sz(wk)sk = -V f(wk)
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Newton scaling

Newton scaling (B = (Vf(wg))~'/2): gradient step moves to the minimizer:

= 0 @

oW

. e

-2 0 2 4 6 8

W41 < Wk + S, where sz(wk)sk = -V f(wk)
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Newton scaling

...corresponds to minimizing a quadratic model of f in the original space:

8 8
7 7
6 6
5 5
4 4
3 % 3
2 2
1 1
0 0
- \ -1 x//
23 [i 2 4 6 8 * 0 2 4 6 8
Why1 < Wi + apsy where V2 f(wy)sy = —Vf(wy)

Optimization Methods for Large-Scale Machine Learning
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Deterministic case to stochastic case

What is known about Newton’s method for deterministic optimization?

> local rescaling based on inverse Hessian information

> locally quadratically convergent near a strong minimizer

> global convergence rate better than gradient method (when regularized)
However, it is way too expensive in our case.

> But all is not lost: scaling is viable.

» Wide variety of scaling techniques improve performance.

» Our convergence theory for SG still holds with B-scaling.

v

...could hope to remove condition number (L/c) from convergence rate!

v

Added costs can be minimal when coupled with noise reduction.
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Conclusion

Idea #1: Inexact Hessian-free Newton

Compute Newton-like step

V2f5£1 (wi)sk = =V fsa (wi)

mini-batch size for Hessian =: |SH| < |S{| := mini-batch size for gradient
cost for mini-batch gradient: geost
use CG and terminate early: max g4 iterations

in CG, cost for each Hessian-vector product: factor X gcost

Yy vV VvV VYV

choose mawcy x factor ~ small constant so total per-iteration cost:
mazcg X factor X geost = O(geost)

> convergence guarantees for |SH | = |S{| = n are well-known
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Idea #2: (Generalized) Gauss-Newton

Classical approach for nonlinear least squares, linearize inside of loss/cost:

Fw; &) = 3llh(ze; w) — yell3
~ Lh(ze; wi) + Jn(wi; €)(w — wi) — yell3

Leads to Gauss-Newton approximation for second-order terms:
1
Gsp (wy; &f1) = @Jh(wak,i)T‘]h(wk?fk,i)
k

Can be generalized for other (convex) losses:

~ 1
GsH (wi; &) = WJh(wk;fk,i)T Hy(wg; ki) In(wi; ki)
3 —_—
RZ
"~ On?

> costs similar as for inexact Newton
> ...but scaling matrices are always positive (semi)definite

> see also matural gradient, invariant to more than just linear transformations
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Optimization Methods for Large-Scale Machine Learning 52 of 59




GD and SG GD vs. SG Beyond SG Noise Reduction Methods Second-Order Methods Conclusion

Idea #3: (Limited memory) quasi-Newton

Only approzimate second-order information with gradient displacements:

A

Tp+41 Ti /

Secant equation Hpvy = si to match gradient of f at wy, where

Sk = W41 — wg and vy = V f(wig1) — Vf(wg)
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Deterministic case to stochastic case

Standard update for inverse Hessian (wy41 < wi — o Hygy) is BEGS:

T
T T T
VS VS S8
P e i T e
53, Vk Sp, Vk Sp, Vk

What is known about quasi-Newton methods for deterministic optimization?

> local rescaling based on iterate/gradient displacements

> strongly convex function = positive definite (p.d.) matrices

> only first-order derivatives, no linear system solves

> locally superlinearly convergent near a strong minimizer
Extended to stochastic case? How?

> Noisy gradient estimates = challenge to maintain p.d.

» Correlation between gradient and Hessian estimates

> Overwriting updates = poor scaling that plagues!
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Proposed methods

v

gradient displacements using same sample:

vg := Vfs, (wrt1) — Vs, (wk)

(requires two stochastic gradients per iteration)

> gradient displacement replaced by action on subsampled Hessian:

v 1= V2f$£1 (wi)(Wr+1 — wg)

v

decouple iteration and Hessian update to amortize added cost

v

limited memory approximations (e.g., L-BFGS) with per-iteration cost 4md
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Idea #4: Diagonal scaling

Restrict added costs through only diagonal scaling:
W41 ¢ wi — g Dpgp

Ideas:
> ch_l ~ diag(Hessian (approximation))
> D, Tx diag(Gauss-Newton approximation)
> Dk_l ~ running average/sum of gradient components
Last approach can be motivated by minimizing regret.
» RMSProp
ADAGRAD
ADAM
Batch normalization

>
>
>
» TRish
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Outline

Conclusion
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Why should we care?

Mathematical optimization is one of the foundations of machine learning.
» Understanding machine learning requires understanding optimization!

> ...after all, the effectiveness of that model that you trained depends greatly
on the optimization algorithm that produced it.

Why is optimization for machine learning difficult?
» We’re using randomized algorithms to “solve” an unknown problem

> ...and somehow it can be argued that’s the best thing to do!

I I
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