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Abstract. An algorithm is proposed for solving stochastic and finite-sum minimization
problems. Based on a trust region methodology, the algorithm employs normalized steps,
at least as long as the norms of the stochastic gradient estimates are within a specified
interval. The complete algorithm—which dynamically chooses whether to employ normal-
ized steps—is proved to have convergence guarantees that are similar to those possessed
by a traditional stochastic gradient approach under various sets of conditions related to
the accuracy of the stochastic gradient estimates and choice of step size sequence. The
results of numerical experiments where the method is employed to minimize convex and
nonconvex machine learning test problems are presented. These results illustrate that the
method can outperform a traditional stochastic gradient approach.
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1. Introduction
The stochastic gradient (SG) method is the signature strategy for solving stochastic and finite-sum mini-
mization problems. In this iterative approach, each step to update the solution estimate is obtained by taking a
negative multiple of an unbiased gradient estimate. With careful choices for the step size sequence, the SG
method possesses convergence guarantees and has been employed to great success for solving various types of
problems, such as those arising in machine learning. For fundamental work on the SG method, see Robbins
and Monro (1951) and Robbins and Siegmund (1971).

One disadvantage of the SG method is that stochastic gradients, like the gradients that they approximate,
possess no natural scaling. By this, we mean that to guarantee convergence, the algorithm needs to choose step
sizes in a problem-dependent manner; for example, common theoretical guarantees require that the step size is
proportional to 1/L, where L is a Lipschitz constant for the gradient of the objective function. This is in contrast
to Newton’s method for minimization, for which one can obtain (local) convergence guarantees with a step
size of 1. Admittedly, Newton’s method is not generally guaranteed to converge from remote starting points
with unit step sizes, but these observations do highlight a shortcoming of first-order methods, namely, that for
convergence guarantees, the step sizes need always be chosen in a problem-dependent manner.

The purpose of this paper is to propose a new algorithm for stochastic and finite-sum minimization. Our
proposed approach can be viewed as a modification of the SG method. The approach does not completely
overcome the issue of requiring problem-dependent step sizes, but we contend that our approach does, for
practical purposes, reduce somewhat this dependence. This is achieved by employing, under certain con-
ditions, normalized steps. We motivate our proposed approach by illustrating how it can be derived from a
trust region methodology. This work can be viewed as a first step toward designing new classes of first- and
second-order trust region methods for solving stochastic and finite-sum minimization problems.

The use of normalized steps was proposed previously in the context of (stochastic) gradient methods for
solving minimization problems. For example, in a method similar to ours, Hazan et al. (2015) proposed an
approach that employs normalized steps in every iteration. They showed that if the objective function is
M bounded and strictly locally quasi-convex, the stochastic gradients are sufficiently accurate with respect to the
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true gradients (specifically, when minibatch sizes are Ω(ε−2)), and a sufficiently large number of iterations are
run (specifically, Ω(ε−2)), then their method will, with high probability, yield a solution estimate that is ε
optimal. By contrast, our approach, by employing a modified update that does not always involve the use of a
normalized step, enjoys convergence guarantees under different assumptions. We argue in this paper that
employing normalized steps in all iterations cannot lead to general convergence guarantees, which perhaps
explains the additional assumptions required for convergence by Hazan et al. (2015).

It is also worthwhile to mention the broader literature. For important work on SG-type methods and their
corresponding theoretical analyses, see, for example, Agarwal and Bottou (2015), Byrd et al. (2012), Chung
(1954), Dang and Lan (2015), Friedlander and Schmidt (2012), Ghadimi and Lan (2013), Gladyshev (1965),
Johnson and Zhang (2013), Nemirovski et al. (2009), Lei and Shanbhag (2018), and Xu and Yin (2015). There
are also numerous variants of SG methods based on gradient aggregation, iterative averaging, second-order
techniques, momentum, acceleration, and beyond; for work on these, see Bottou et al. (2018) and the references
therein. More related to our work are techniques that normalize step lengths based on accumulated gradient
information; see, for example, Duchi et al. (2011) and Ross et al. (2013). In a different direction, one should also
contrast our work with stochastic trust region approaches, such as those in Larson and Billups (2016) and
Chen et al. (2018). The approaches proposed in these papers, which are based on the use of randomized
models of the objective function constructed during each iteration, are quite distinct from our proposed
method. For example, these approaches follow a traditional trust region strategy of accepting or rejecting each
step based on the magnitude of an (approximate) actual-to-predicted reduction ratio. Our method, on the other
hand, is closer to the SG method in that it accepts the computed step in every iteration. Another distinction is
that these other approaches rely on the use of so-called fully linear models of the objective function to obtain
their convergence guarantees. Our convergence guarantees are obtained under straightforward upper bounds
on the second moment of the stochastic gradient estimates and do not require fully linear models.

This paper is organized as follows. Our algorithm and motivation for our specific iterate updating scheme
are the subject of Section 2. In Section 3, we prove convergence guarantees for the algorithm under various
types of assumptions on the stochastic gradient estimates and step size choices. The results of numerical
experiments on test problems—some convex and some nonconvex—are given in Section 4. Concluding re-
marks are given in Section 5. All norms in this paper are Euclidean, that is, ‖ · ‖ :� ‖ · ‖2.

2. Algorithm
Our problem of interest is a stochastic optimization problem in which the goal is to minimize over a vector of
decision variables, indicated by x ∈ Rn, a function f : Rn → R defined by the expectation of another function
F : Rn × Ξ → R that depends on a random variable ξ, that is,

min
x∈Rn

f (x) with f (x) � Eξ[F(x, ξ)], (1)

where Eξ[·] denotes expectation with respect to the distribution of ξ. Our algorithm is also applicable for
finite-sum minimization where the objective takes the form

f (x) � 1
N

∑N
i�1

fi(x). (2)

Such objectives often arise in sample average approximations of (1); see, for example, Shapiro et al. (2009).

2.1. Algorithm Description
Our algorithm, TRish, a trust-region-ish algorithm for stochastic optimization, is stated below. Each iteration
involves taking a step along the negative of a stochastic gradient direction. In the context of problem (1), this
stochastic gradient can be viewed as gk � ∇xF(xk, ξk), where xk is the current iterate and ξk is a realization of the
random variable ξ. In the context of problem (2), it can be viewed as gk � ∇x fik (xk), where ik has been chosen
randomly as an index in {1, . . . ,N}. In addition, in either case, gk could represent an average of such quantities,
that is, over a set of independently generated realizations {ξk,j}j∈6k

or over independently generated indices
{ik,j}j∈6k

. This leads to a so-called minibatch approach with 6k representing the minibatch of samples in the kth
iteration. In the algorithm, we simply write gk ≈ ∇f (xk) to cover all of these situations, because in any case, gk
represents a stochastic gradient estimate for f at xk.
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Algorithm TRish (Trust-Region-ish Algorithm Based on Careful Step Normalization)

1. Choose an initial iterate x1 and positive step sizes {αk}.
2. Choose positive constants {γ1,k} and {γ2,k} such that γ1,k >γ2,k > 0 for all k ∈ N.
3. For all k ∈ N :� {1, 2, . . .} do
4. Generate a stochastic gradient gk ≈ ∇f (xk).
5. Set

xk+1 ← xk −
γ1,kαkgk if ‖gk‖ ∈ [0, 1

γ1,k
),

αkgk/‖gk‖ if ‖gk‖ ∈ [ 1
γ1,k

, 1
γ2,k

],
γ2,kαkgk if ‖gk‖ ∈ ( 1

γ2,k
,∞).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
6. end for

The scaling of the stochastic gradient employed in TRish can be motivated in the following manner. Given a
stochastic gradient gk and a step size αk, consider the trust region subproblem

min
s∈Rn

f (xk) + gTk s s.t. ‖s‖ ≤ αk. (3)

The solution of this subproblem, namely, sk � −αkgk/‖gk‖, represents the step that minimizes the first-order
model f (xk) + gTk s of the objective function f at xk subject to s having a norm less than or equal to αk. This is the
prototypical strategy in a trust region methodology. When the norm of gk falls within the interval [ 1

γ1,k
, 1
γ2,k

],
TRish takes the step sk. However, if this were to be done no matter the norm of gk, then the resulting algorithm
might fail to make progress in expectation. This is illustrated in the following example.

Example 1. Suppose that, at a point xk ∈ R, one has ∇f (xk) � 1 and obtains

gk �
6 with probability 1

3

− 3
2 with probability 2

3 .

{

Then, Ek[gk] � 1 � ∇f (xk), where Ek denotes expectation given that an algorithm has reached xk as the kth
iterate. However, this means that the normalized stochastic gradient satisfies

gk
‖gk‖ �

1 with probability 1
3

−1 with probability 2
3 ,

{

from which it follows that sk � −αkgk/‖gk‖ is twice as likely to be a direction of ascent for f at xk than it is to be a
direction of descent for f at xk.

One can argue from this example that, without potentially restrictive assumptions on the objective function
f and/or the manner in which the stochastic gradient is computed, one cannot expect to be able to prove
convergence guarantees for an algorithm that computes steps solely based on solving the trust region sub-
problem (3). In particular, the existence of any point (let alone more than one) at which the expectation is to
follow an ascent direction foils the typical convergence theory for an SG approach (see, e.g., Bottou et al. 2018).

In TRish, we overcome the issue highlighted in Example 1 by only choosing the trust region step when the
norm of the gradient is within a specified interval; otherwise, we compute a stochastic gradient step with a step size

Figure 1. Relationship Between ‖gk‖ and ‖xk+1 − xk‖ in Algorithm TRish
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that is a multiple of αk. It is for this reason that we refer to the algorithm as a trust-region-ish approach. Overall,
as a function of the norm of the stochastic gradient, the norm of the step taken by the algorithm is illustrated in
Figure 1. Note that care has been taken to make sure that the norm of the step is a continuous function of the
norm of the stochastic gradient estimate. The plot in Figure 1 illustrates the relationship for moderate values of
(γ1,k, γ2,k), but notice that for more extreme values (i.e., γ1,k � 0 and γ2,k ≈ 0), the function would essentially be
flat (except for stochastic gradients that are very small or large in norm), meaning that the step size would
typically be scaled so that the step norm was αk for all k ∈ N.

Our convergence analysis in the next section requires certain restrictions on the choice of step sizes—as is
typical for (stochastic) gradient methods—and requires certain restrictions on {γ1,k} and {γ2,k}. For example,
the issue in Example 1 is avoided as long as the pair (γ1,k, γ2,k) is chosen such that the step is not normalized
with probability 1 at the given xk, which means that—for this particular function, iterate, and variance in the
stochastic gradient estimates—one cannot choose this pair such that |6| ∈ [ 1

γ1,k
, 1
γ2,k

] and | 32 | ∈ [ 1
γ1,k

, 1
γ2,k

] simul-
taneously. (In our convergence theory, this is avoided through upper bounds on the ratio γ1,k

γ2,k
.) Various sit-

uations can illustrate how TRish avoids the issue in Example 1. For example, consider γ1,k � 1 and γ2,k � 1
2,

which leads to Ek[sk] � −1
2αk(6)(13) − αk(−1)(23) � − 1

3αk, meaning that sk is a descent direction in expectation. As
another example, consider γ1,k � 1

4 and γ2,k � 1
6, which leads to Ek[sk] � −αk(1)(13) − 1

6αk(− 3
2)(23) � − 1

6αk, meaning
again that sk is a descent direction in expectation. Our theory reveals generic conditions that {(γ1,k, γ2,k)} must
satisfy to attain different convergence properties for TRish. We also discuss, in Section 4, strategies for choosing
these values in practice.

3. Convergence Analysis
Our goal in this section is to prove convergence guarantees for TRish that are similar to fundamental
guarantees for a straightforward SG method; see, for example, Bottou et al. (2018). As in the notation for
Example 1, our analysis uses Ek[·] (respectively, Pk[·]) to denote conditional expectation (respectively, con-
ditional probability) given that the algorithm has reached xk as the kth iterate.

Throughout our analysis, we make the following assumption about the objective function.

Assumption 1. The objective f : Rn → R is continuously differentiable and bounded below by f∗ � infx∈Rn f (x) ∈ R. In
addition, at any x ∈ Rn, the objective is bounded above by a first-order Taylor series approximation of f at x plus a quadratic
term with constant L ∈ (0,∞), that is,

f (x) ≤ f (x) + ∇f (x)T(x − x) + 1
2 L‖x − x‖2 for all (x, x) ∈ Rn × Rn. (4)

It is known that (4) holds if the gradient function ∇f is Lipschitz continuous with constant L. This is often referred to as
L smoothness of the function f .

We also make the following assumption about the stochastic gradients computed in TRish. This assumption
is standard in analyses of SG methods; it is easily seen to be satisfied when the variance of the stochastic
gradient estimate is uniformly bounded over k ∈ N.

Assumption 2. For all k ∈ N, the stochastic gradient gk is an unbiased estimator of ∇f (xk) in the sense that Ek[gk] � ∇f (xk).
In addition, there exists a pair (M1,M2) ∈ (0,∞) × (0,∞) (independent of k) such that, for all k ∈ N, the squared norm of gk
satisfies

Ek[‖gk‖2] ≤ M1 +M2‖∇f (xk)‖2. (5)

Remark 1. Although the assumed upper bound (5) is common in analyses of SG methods, it can be restrictive in
certain settings. For example, it can be restrictive when the variance of the noise in the stochastic gradient estimates
grows with the norm of x even when ∇f (x) remains relatively small in norm. In the case of minimizing convex f ,
analyses of stochastic methods have been completed in the presence of such noise, for example, when one allows a
bound of the form in (5) with the addition to the right-hand side of a term proportional to ‖x‖2; see, for example,
Jofré and Thompson (2018) and Xie and Shanbhag (2017) (cf. Xie and Shanbhag 2016). Although (5) allows the
variance of the noise to grow only proportionally with the squared norm of the gradient of f , we use it because it is
still quite general and it allows us to prove results in the setting of minimizing nonconvex f as well. Note that in the
case of strongly convex f , the squared norm of the gradient of f grows at least with the squared norm distance to the
minimizer, meaning that (5) captures the case of the variance of the noise growing with the squared norm distance
to the minimizer.
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Under these assumptions, we prove the following lemma providing fundamental inequalities satisfied by
TRish. For ease of reference in this result and throughout the remainder of our analysis, we define the
following cases based on those indicated in Line 5 of TRish:

Case 1. ‖gk‖ ∈ [0, 1
γ1,k

);
Case 2. ‖gk‖ ∈ [ 1

γ1,k
, 1
γ2,k

];
Case 3. ‖gk‖ ∈ ( 1

γ2,k
,∞).

The following lemma reveals an upper bound for the expected decrease in f for all k ∈ N.

Lemma 1. Under Assumptions 1 and 2, the iterates of TRish satisfy, for all k ∈ N,

Ek[f (xk+1)] − f (xk) ≤ − γ1,kαk(1 − 1
2γ1,kLM2αk)‖∇f (xk)‖2

+ (γ1,k − γ2,k)αkPk[Ek]Ek[∇f (xk)Tgk |Ek] + 1
2γ

2
1,kLM1α

2
k ,

(6)

where Ek is the event that ∇f (xk)Tgk ≥ 0 and Pk[Ek] is the probability of this event.

Proof. For all k ∈ N, let sk :� xk+1 − xk represent the step taken by the algorithm. By (4),

f (xk+1) � f (xk + sk) ≤ f (xk) + ∇f (xk)Tsk + 1
2L‖sk‖2.

Thus, with Ci,k for i ∈ {1, 2, 3} respectively representing the events that Case 1, Case 2, and Case 3 occur, and
with Pk[Ci,k] for i ∈ {1, 2, 3} respectively representing the probabilities of these events, one finds from the law of
total probability that

Ek[f (xk+1)] − f (xk) ≤ Ek[∇f (xk)Tsk] + 1
2LEk[‖sk‖2]

� ∑3
i�1

Pk[Ci,k]Ek[∇f (xk)Tsk |Ci,k] + 1
2L

∑3
i�1

Pk[Ci,k]Ek[‖sk‖2|Ci,k].
(7)

In the event C1,k, the algorithm yields sk � −γ1,kαkgk, from which it follows that

Ek[∇f (xk)Tsk |C1,k] � −γ1,kαkEk[∇f (xk)Tgk |C1,k]
� −γ1,kαkPk[Ek |C1,k]Ek[∇f (xk)Tgk |C1,k ∩ Ek] − γ1,kαkPk[Ek |C1,k]Ek[∇f (xk)Tgk |C1,k ∩ Ek]
≤ −γ2,kαkPk[Ek |C1,k]Ek[∇f (xk)Tgk |C1,k ∩ Ek]
− γ1,kαk(Ek[∇f (xk)Tgk |C1,k] − Pk[Ek |C1,k]Ek[∇f (xk)Tgk |C1,k ∩ Ek])

� −γ1,kαkEk[∇f (xk)Tgk |C1,k] + (γ1,k − γ2,k)αkPk[Ek |C1,k]Ek[∇f (xk)Tgk |C1,k ∩ Ek], (8)

along with the fact that

Ek[‖sk‖2|C1,k] � γ2
1,kα

2
kEk[‖gk‖2|C1,k]. (9)

In the event C2,k, in which ‖gk‖−1 ≤ γ1,k and ‖gk‖−1 ≥ γ2,k, one finds that

Ek[∇f (xk)Tsk |C2,k]
� − αkEk

∇f (xk)Tgk
‖gk‖

∣∣∣∣C2,k

[ ]
� − αkPk[Ek |C2,k]Ek

∇f (xk)Tgk
‖gk‖

∣∣∣∣C2,k ∩ Ek

[ ]
− αkPk[Ek |C2,k]Ek

∇f (xk)Tgk
‖gk‖

∣∣∣∣C2,k ∩ Ek

[ ]
≤ − γ2,kαkPk[Ek |C2,k]Ek[∇f (xk)Tgk |C2,k ∩ Ek] − γ1,kαkPk[Ek |C2,k]Ek[∇f (xk)Tgk |C2,k ∩ Ek]
� − γ2,kαkPk[Ek |C2,k]Ek[∇f (xk)Tgk |C2,k ∩ Ek]

− γ1,kαk(Ek[∇f (xk)Tgk |C2,k] − Pk[Ek |C2,k]Ek[∇f (xk)Tgk |C2,k ∩ Ek])
� − γ1,kαkEk[∇f (xk)Tgk |C2,k] + (γ1,k − γ2,k)αkPk[Ek |C2,k]Ek[∇f (xk)Tgk |C2,k ∩ Ek],

(10)
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along with the fact that

Ek[‖sk‖2|C2,k] � α2
k ≤ γ2

1,kα
2
kEk[‖gk‖2|C2,k]. (11)

In the event C3,k, the algorithm yields sk � −γ2,kαkgk, from which it follows that

Ek[∇f (xk)Tsk |C3,k]
� − γ2,kαkEk[∇f (xk)Tgk |C3,k]
≤ − γ2,kαkPk[Ek |C3,k]Ek[∇f (xk)Tgk |C3,k ∩ Ek] − γ1,kαkPk[Ek |C3,k]Ek[∇f (xk)Tgk |C3,k ∩ Ek]
� − γ2,kαkPk[Ek |C3,k]Ek[∇f (xk)Tgk |C3,k ∩ Ek]
− γ1,kαk(Ek[∇f (xk)Tgk |C3,k] − Pk[Ek |C3,k]Ek[∇f (xk)Tgk |C3,k ∩ Ek])

� − γ1,kαkEk[∇f (xk)Tgk |C3,k] + (γ1,k − γ2,k)αkPk[Ek |C3,k]Ek[∇f (xk)Tgk |C3,k ∩ Ek],

(12)

along with the fact that

Ek[‖sk‖2|C3,k] � γ2
2,kα

2
kEk[‖gk‖2|C3,k] ≤ γ2

1,kα
2
kEk[‖gk‖2|C3,k]. (13)

Combining (7)–(13), it follows that

Ek[ f (xk+1)] − f (xk)
≤ − γ1,kαk‖∇f (xk)‖2 + (γ1,k − γ2,k)αkPk[Ek]Ek[∇f (xk)Tgk |Ek] + 1

2γ
2
1,kLα

2
kEk[‖gk‖2].

Applying the upper bound for the last term in (5) and rearranging terms yields the result. □

For some (but not all) of our convergence guarantees, we also make the following assumption.

Assumption 3. At any x ∈ Rn, the Polyak–Łojasiewicz (PL) (Łojasiewicz 1963, Polyak 1963) condition holds with
c ∈ (0,∞), that is,

2c( f (x) − f∗) ≤ ‖∇f (x)‖2 for all x ∈ Rn. (14)

Assumptions 1 and 3 do not ensure that a stationary point for f exists, though, when combined, they do
guarantee that any stationary point for f is a global minimizer of f . Assumption 3 holds when f is c-strongly
convex, but it is also satisfied for other functions that are not convex. We direct the interested reader to Karimi
et al. (2016) for a discussion on the relationship between the Polyak–Łojasiewicz condition and the related error
bounds, essential strong convexity, weak strong convexity, restricted secant inequality, and quadratic growth condi-
tions. In short, when f has a Lipschitz continuous gradient, the Polyak–Łojasiewicz is the weakest of these
except for the quadratic growth condition, though these two are equivalent when f is convex.

We now proceed to prove convergence guarantees for TRish in various cases depending on whether the
Polyak–Łojasiewicz condition holds and based on different sets of properties of the sequence of step sizes and
stochastic gradient estimates. Our analysis covers various types of convex and nonconvex objective functions.

3.1. PL Condition and Constant Parameters
Let us first prove a convergence result for TRish when the PL condition holds and each sequence {αk}, {γ1,k},
and {γ2,k} is constant. This result appears in this section as Theorem 1.

Our first requirement toward proving Theorem 1 is the following lemma.

Lemma 2. Under Assumption 2, it follows that, for all k ∈ N,

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ h1 + h2‖∇f (xk)‖2 (15)

for any (h1, h2) ∈ (0,∞) × (0,∞) such that h1 ≥ 1
2

�����
M1

√
and h2 ≥ 1

2

�����
M1

√ + �����
M2

√
.

Proof. One finds with the law of total probability that

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ Pk[Ek]Ek[‖∇f (xk)‖ ‖gk‖ |Ek]
� ‖∇f (xk)‖(Pk[Ek]Ek[‖gk‖ |Ek])
� ‖∇f (xk)‖(Ek[‖gk‖] − Pk[Ek]Ek[‖gk‖ |Ek])
≤ ‖∇f (xk)‖Ek[‖gk‖].
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Then, by Jensen’s inequality, concavity of the square root, and Assumption 2, one finds that

Ek[‖gk‖] ≤
������������
Ek[‖gk‖2]

√
≤

������������������������
M1 +M2‖∇f (xk)‖2

√
≤ �����

M1
√ + �����

M2
√ ‖∇f (xk)‖.

Therefore, by combining the inequalities above, one finds that

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ ‖∇f (xk)‖(
�����
M1

√ + �����
M2

√ ‖∇f (xk)‖)
� �����

M1
√ ‖∇f (xk)‖ +

�����
M2

√ ‖∇f (xk)‖2

≤ 1
2

�����
M1

√ (1 + ‖∇f (xk)‖2) +
�����
M2

√ ‖∇f (xk)‖2

� 1
2

�����
M1

√ + 1
2

�����
M1

√ + �����
M2

√( )
‖∇f (xk)‖2,

where the second inequality follows by the fact that a ≤ 1
2(1 + a2) for any a ∈ R. □

Whereas the upper bound on Ek[‖gk‖2] stated as (5) in Assumption 2 is standard in the literature, the
quantity on the left-hand side of (16)—which Lemma 2 shows is bounded in a similar manner—is uniquely
important for our analysis. For this reason, we feel that it is useful to provide specific examples illustrating
how this quantity is bounded. We state two related examples next.

Example 2. Suppose f : R → R and xk are given such that ∇f (xk) � μk ∈ R, where, without loss of generality, one
can assume that μk ≥ 0. In addition, suppose that gk follows a normal distribution with mean μk and variance σ2k .
Then,

Pk[Ek]Ek[∇f (xk)Tgk |Ek] � μk

∫ ∞

0
g 1���

2π
√

σk
e
−(g−μk )2

2σ2
k dg

� μk

∫ μk

0
g 1���

2π
√

σk
e
−(g−μk )2

2σ2
k dg + μk

∫ ∞

μk

g 1���
2π

√
σk
e
−(g−μk )2

2σ2
k dg.

Let us separately investigate these two terms on the right-hand side. First, one finds that

μk

∫ μk

0
g 1���

2π
√

σk
e
−(g−μk )2

2σ2
k dg ≤ μ2

k

∫ μk

0

1���
2π

√
σk
e
−(g−μk )2

2σ2
k dg ≤ μ2

k

∫ μk

−∞
1���
2π

√
σk
e
−(g−μk )2

2σ2
k dg � 1

2μ
2
k .

Second, one finds that

μk

∫ ∞

μk

g 1���
2π

√
σk
e
−(g−μk )2

2σ2
k dg � μk

∫ ∞

0
(t + μk) 1���

2π
√

σk
e
−t2
2σ2

k dt

� μk

∫ ∞

0
t 1���

2π
√

σk
e
−t2
2σ2

k dt + μ2
k

∫ ∞

0

1���
2π

√
σk
e
−t2
2σ2

k dt � μk
σk���
2π

√ + 1
2μ

2
k .

Thus, combining the bounds above, one finds that

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ μk
σk����
2π

√ + μ2
k ≤

μ2
k + 1
2

( )
σk����
2π

√ + μ2
k �

σk

2
����
2π

√ + 1 + σk

2
����
2π

√
( )

μ2
k .

Overall, if σk ≤ σ for some positive σ ∈ R for all k ∈ N, then (15) holds with

h1 � σ

2
����
2π

√ and h2 � 1 + σ

2
����
2π

√ . (16)

Example 3. Suppose f : Rn → R and xk are given such that ∇f (xk) � μk ∈ Rn. In addition, suppose that gk follows a
normal distribution with mean μk and covariance matrix Σk. Then, by theorem 3.3.3 in Tong (2012), the inner
product ∇f (xk)Tgk follows a normal distribution with mean ‖μk‖2 and variance μT

kΣkμk. Hence, following the
analysis in Example 2, if

����������
μT
kΣkμk

√
≤ σ for some positive σ ∈ R for all k ∈ N, then (15) holds with h1 and h2 from (16).

We now prove our first theorem on the behavior of TRish.
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Theorem 1. Under Assumptions 1, 2, and 3, and with a pair (h1, h2) satisfying the inequalities in Lemma 2, suppose that
TRish is run with (γ1,k, γ2,k) � (γ1, γ2) for all k ∈ N such that γ1

γ2
< h2

h2−1 (meaning γ1 − h2(γ1 − γ2)> 0) and with αk � α for
all k ∈ N such that

0<α ≤ min
1

2cθ1
,
γ1 − h2(γ1 − γ2)

γ1LM2

{ }
, (17)

where

θ1 � 1
2 (γ1 − h2(γ1 − γ2))> 0. (18)

Then, for all k ∈ N, the expected optimality gap satisfies

E[ f (xk+1)] − f∗ ≤ θ2

2cαθ1
+ (1 − 2cαθ1)k−1 f (x1) − f∗ − θ2

2cαθ1

( )
−→k→∞ θ2

2cαθ1
, (19)

where

θ2 � h1(γ1 − γ2)α + 1
2γ

2
1LM1α

2 > 0. (20)

Proof. Combining the results of Lemmas 1 and 2, it follows that, for all k ∈ N,

Ek[ f (xk+1)] − f (xk) ≤ − γ1α(1 − 1
2γ1LM2α)‖∇f (xk)‖2

+ (γ1 − γ2)α(h1 + h2‖∇f (xk)‖2) + 1
2γ

2
1LM1α

2.
(21)

Therefore, with (θ1, θ2) defined as in (18)–(20), it follows from (14) that, for all k ∈ N,

Ek[ f (xk+1)] − f (xk) ≤ −αθ1‖∇f (xk)‖2 + θ2

≤ −2cαθ1( f (xk) − f∗) + θ2.

Adding and subtracting f∗ on the left-hand side, taking total expectations, and rearranging yields

E[ f (xk+1)] − f∗ ≤ (1 − 2cαθ1)(E[ f (xk)] − f∗) + θ2

� θ2

2cαθ1
+ (1 − 2cαθ1)(E[ f (xk)] − f∗) + θ2 − θ2

2cαθ1

� θ2

2cαθ1
+ (1 − 2cαθ1) E[ f (xk)] − f∗ − θ2

2cαθ1

( )
.

Because 1 − 2cαθ1 ∈ (0, 1), this represents a contraction inequality. Applying the result repeatedly through
iteration k ∈ N, one obtains the desired result. □

It is worthwhile to compare the result of Theorem 1 with a corresponding result known to hold for a
straightforward SG method. For example, from theorem 4.6 of Bottou et al. (2018) with our notation, it is
known that for an SG method with fixed step size α � 1

LM2
, an upper bound for the expected optimality gap

converges to αLM1
2c � M1

2cM2
. On the other hand, the analysis in Theorem 1 shows that TRish with α � γ1−h2(γ1−γ2)

γ1LM2

(which may occur, e.g., if c ≈ 0) yields an upper bound for the expected optimality gap that converges to

h1(γ1 − γ2) + 1
2γ

2
1LM1α

c(γ1 − h2(γ1 − γ2))
� h1(γ1 − γ2)
c(γ1 − h2(γ1 − γ2))

+ γ1M1

2cM2
. (22)

We can now make a couple of observations. On one hand, if h1 ≈ 1
2

�����
M1

√
and h2 ≈ M2 ≈ 1, then the condition

that γ1
γ2

< h2
h2−1 essentially does not restrict (γ1, γ2), in which case (22) is approximately�����

M1
√ (γ1 − γ2)

2cγ2
+ γ1M1

2c
.

This quantity is less than M1
2c , that is, the approximate bound for an SG method, if, for example, the parameters

satisfy γ1 ∈ (0, 1) with γ2 ≥ γ1
1+(1−γ1)

���
M1

√ ∈ (0, γ1). On the other hand, if h1 ≈ 1
2

�����
M1

√
and h2 ≈ 1

2

�����
M1

√ + �����
M2

√
with
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M1 � 0, then the condition that γ1
γ2

< h2
h2−1 essentially requires that γ1 ≈ γ2, in which case the bound (22) is

approximately γ1M1

2cM2
, which is less than the bound for an SG method if γ1 ∈ (0, 1). Overall, although we are not

necessarily recommending that one employs TRish with the parameter settings mentioned in this discussion,
we have at least been able to demonstrate in both of these cases that TRish can possess an asymptotic bound
on the expected optimality gap that is on par with that for an SG method. (For a detailed discussion on how to
choose (γ1, γ2) in practice, see Section 4.1.)

Besides the conclusions of the previous paragraph, the result of Theorem 1 points to fundamental dif-
ferences between TRish and an SG method for certain choices of the input parameters. In particular, the result
in (Bottou et al. 2018, theorem 4.6) points to a well-known trade-off for an SG method with a fixed step size: If
a relatively large step size is employed, then the rate to achieve the asymptotic expected optimality gap
involves a better constant at the sake of the upper bound on the gap being relatively large, that is, αLM1

2c , which
is proportional to the step size α. On the other hand, one can achieve a smaller upper bound on the expected
optimality gap with a smaller α, but at the cost of a worse constant in the rate to achieve that gap. A similar
conclusion can be derived from (19) for TRish: One can control the constant (1 − 2cαθ1) by the choice of α.
However, the effect of α on the expected optimality gap is not exactly the same for TRish as for an SG method.
This can be seen in the fact that the left-hand side of (22) involves one term that decreases with α but another
term that does not. That said, one can compensate for this in TRish if one ties the difference γ1 − γ2 to the step
size α. This idea can be seen in the first of our two theorems in the next subsection.

3.2. PL Condition and Sublinearly Diminishing Step Sizes
Let us now consider the behavior of TRish when the PL condition holds and diminishing step sizes are
employed. Our first theorem in this setting, which makes the same assumptions as Theorem 1 but involves
different parameter choices, is the following. (The parameter choices in the theorem could be generalized even
further. However, we have made certain choices—for example, to have {γ1} be constant—for some amount of
simplicity in the proof while still maintaining generality. One could prove a similar result with {γ2} constant
instead, or with neither {γ1} nor {γ2} constant, as long as the sequence {γ1,k − γ2,k} is proportional to αk, as it is
in the following theorem.)

Theorem 2. Under Assumptions 1, 2, and 3, and with a pair (h1, h2) satisfying the inequalities in Lemma 2, suppose that
TRish is run with γ1,k � γ1 > 0, γ2,k � γ1(1 − 1

2ηαk) for η ∈ (0, 1), and

αk � a
b + k

for some a ∈ 1
cγ1

,
b + 1
cγ1

( )
and b> 0 with α1 ∈ 0,min

1
η
,

1
ηh2 + γ1LM2

{ }( ]
(23)

for all k ∈ N. Then, for all k ∈ N, the expected optimality gap satisfies

E[ f (xk)] − f∗ ≤
φ

b + k
, (24)

where

φ � max
a2δ

acγ1 − 1
, (b + 1)( f (x1) − f∗)

{ }
> 0 (25)

and

δ � 1
2γ1(ηh1 + γ1LM1)> 0. (26)

Proof. First observe that the restrictions on {αk} in (23) ensure that γ2,k > 0, γ1 − γ2,k � 1
2γ1ηαk, and 1 − 1

2(ηh2 +
γ1LM2)αk ≥ 1

2 for all k ∈ N. Thus, similar to the proof of Theorem 1, for all k ∈ N,

Ek[ f (xk+1)] − f (xk) ≤ − γ1αk(1 − 1
2γ1LM2αk)‖∇f (xk)‖2

+ (γ1 − γ2,k)αk(h1 + h2‖∇f (xk)‖2) + 1
2γ

2
1LM1α

2
k

� − γ1αk(1 − 1
2γ1LM2αk)‖∇f (xk)‖2

+ 1
2γ1ηα

2
k(h1 + h2‖∇f (xk)‖2) + 1

2γ
2
1LM1α

2
k

� − γ1αk(1 − 1
2(ηh2 + γ1LM2)αk)‖∇f (xk)‖2 + 1

2γ1(ηh1 + γ1LM1)α2
k

≤ − 1
2γ1αk‖∇f (xk)‖2 + 1

2γ1(ηh1 + γ1LM1)α2
k .
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Therefore, with δ defined as in (26), it follows from (14) that, for all k ∈ N,

Ek[ f (xk+1)] − f (xk) ≤ − 1
2γ1αk‖∇f (xk)‖2 + δα2

k

≤ − cγ1αk( f (xk) − f∗) + δα2
k .

(27)

Adding and subtracting f∗ on the left-hand side, taking total expectations, and rearranging yields

E[f (xk+1)] − f∗ ≤ (1 − cγ1αk)(E[ f (xk)] − f∗) + δα2
k . (28)

Let us now prove (24) by induction. First, for k � 1, the inequality holds by the definition of φ. Now suppose
that (24) holds up to k ∈ N; then, for k + 1, one finds from above that

E[ f (xk+1)] − f∗ ≤ (1 − cγ1αk)(E[ f (xk)] − f∗) + δα2
k

�
(
1 − acγ1

b + k

)
(E[ f (xk)] − f∗) + a2δ

(b + k)2

≤
(
1 − acγ1

b + k

)
φ

b + k
+ a2δ
(b + k)2

� (b + k)φ
(b + k)2 − acγ1φ

(b + k)2 +
a2δ

(b + k)2

� (b + k − 1)φ
(b + k)2 − (acγ1 − 1)φ

(b + k)2 + a2δ
(b + k)2

≤ (b + k − 1)φ
(b + k)2 ≤ φ

b + k + 1
,

where the last two inequalities follow from the definition of φ and because (b + k − 1)(b + k + 1) ≤ (b + k)2,
respectively. The desired conclusion now follows from this inductive argument. □

As one might predict from the discussion at the end of Section 3.1, in Theorem 2 we have been able to prove
sublinear convergence of the expected optimality gap by tying the rate that {γ1,k − γ2,k} vanishes to the rate that
{αk} vanishes; in particular, both the differences and the step sizes diminish sublinearly, as is the case in
similar results for SG methods.

One might also be interested in the behavior of TRish when the sequences {γ1,k} and {γ2,k} are constant while
only the step sizes decrease sublinearly. For example, this might be of interest because otherwise there are
additional parameters to estimate and/or to tune. In the remainder of this subsection, we prove a sublinear
convergence result under this setting. However, achieving sublinear convergence in this setting requires the
following assumption, which can be viewed as a strengthening of (5) from Assumption 2.

Assumption 4. There exists a pair (M3,M4) ∈ (0,∞) × (0,∞) (independent of k) such that, for all k ∈ N, the squared norm
of gk satisfies

Ek[‖gk‖2] ≤ M3α
2
k +M4‖∇f (xk)‖2. (29)

One finds that Assumption 4 can be satisfied under reasonable conditions in practice if one employs minibatch
stochastic gradient estimates with sample sizes that increase with k; see, for example, Friedlander and Schmidt
(2012). For example, in the context of problem (1), suppose that

gk � 1
|6k |

∑
j∈6k

∇xF(xk, ξk,j), (30)

where the values {ξk,j}j∈6k
are drawn independently according to the distribution of ξ. If one assumes that the

variance of each ∇xF(xk, ξk,j) is equal and bounded by M ∈ (0,∞), then for arbitrary j ∈ 6k, it follows (see, e.g.,
Freund 1962) that

Ek[‖gk‖2] − ‖∇f (xk)‖2 ≤ M
|6k | . (31)

Hence, (29) holds with M3 � M and M4 � 1 if one chooses |6k | � α−2
k . (In Theorem 3 below, the result requires

αk � Θ(1k), in which case one can employ |6k | � Θ(k2).)
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An important consequence of Assumption 4 is the following, which strengthens Lemma 2.

Lemma 3. Under Assumption 4, it follows that, for all k ∈ N,

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ h3αk + h4‖∇f (xk)‖2 (32)

for any (h3, h4) ∈ (0,∞) × (0,∞) such that h3 ≥ 1
2

�����
M3

√
and h4 ≥ 1

2

�����
M3

√ (max
k∈N

αk) +
�����
M4

√
.

Proof. By Jensen’s inequality, concavity of the square root, and Assumption 4, one finds that

Ek[‖gk‖] ≤
������������
Ek[‖gk‖2]

√
≤

���������������������������
M3α2

k +M4‖∇f (xk)‖2
√

≤ �����
M3

√
αk +

�����
M4

√ ‖∇f (xk)‖.
The result then follows using the same line of argument used in the proof of Lemma 2. □

The following examples parallel Examples 2 and 3, but illustrate the attainment of (32).

Example 4. Consider the scenario in Example 2. Then, if σk ≤ αk for all k ∈ Nwith αk ≤ α for some α ∈ (0,∞) for all
k ∈ N, it follows that (32) holds with

h3 � 1

2
����
2π

√ and h4 � 1 + α

2
����
2π

√ . (33)

Example 5. Consider the scenario in Example 3. Then, if
����������
μT
kΣkμk

√
≤ αk for all k ∈ Nwith αk ≤ α for some α ∈ (0,∞)

for all k ∈ N, it follows that (32) holds with h3 and h4 from (33).

Our next theorem on the behavior of TRish is now proved as the following. (For the result, we include
Assumptions 2 and 4 for convenience because, in our proof, we employ results that we have proved using
each of these assumptions. Notice, however, that the bound (5) in Assumption 2 holds under Assumption 4 if
one considers M1 ≥ M3(max

k∈N
α2
k) and M2 � M4.)

Theorem 3. Under Assumptions 1, 2, 3, and 4, and with a pair (h3, h4) satisfying the inequalities in Lemma 3, suppose that
TRish is run with γ1 >γ2 > 0 such that γ1

γ2
< h4

h4−1 (meaning γ1 − h4(γ1 − γ2)> 0), and with, for all k ∈ N,

αk � a
b + k

for some a ∈ 1
2cβ1

,
b + 1
2cβ1

( )
and b> 0 such that α1 ∈ 0,

γ1 − h4(γ1 − γ2)
γ1LM2

( ]
,

where

β1 � 1
2(γ1 − h4(γ1 − γ2))> 0. (34)

Then, for all k ∈ N, the expected optimality gap satisfies

E[ f (xk)] − f∗ ≤ ν

b + k
, (35)

where

ν � max
a2β2

2acβ1 − 1
, (b + 1)( f (x1) − f∗)

{ }
> 0 (36)

and

β2 � h3(γ1 − γ2) + 1
2γ

2
1LM1 > 0. (37)

Proof. Similar to the proof of Theorem 1, for all k ∈ N,

Ek[ f (xk+1)] − f (xk) ≤ − γ1αk(1 − 1
2γ1LM2αk)‖∇f (xk)‖2

+ (γ1 − γ2)αk(h3αk + h4‖∇f (xk)‖2) + 1
2γ

2
1LM1α

2
k .
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Therefore, with (β1, β2) defined as in (34)–(37), it follows from (14) that, for all k ∈ N,

Ek[ f (xk+1)] − f (xk) ≤ −β1αk‖∇f (xk)‖2 + β2α
2
k

≤ −2cβ1αk( f (xk) − f∗) + β2α
2
k .

(38)

Adding and subtracting f∗ on the left-hand side, taking total expectations, and rearranging yields

E[ f (xk+1)] − f∗ ≤ (1 − 2cβ1αk)(E[ f (xk)] − f∗) + β2α
2
k .

Using this inequality, which has the same form as (28), one can apply the same inductive argument as in the
remainder of the proof of Theorem 2 to achieve the desired result. □

Overall, we have proved two theorems for TRish when diminishing step sizes are employed. If the sequence
{γk,1 − γk,2} diminishes proportionally with {αk}, then sublinear convergence of the expected optimality gap is
achieved under the same assumptions as needed for such a result for an SG method. We followed this with a
result for the case when {γk,1 − γk,2} is constant, in which case a sublinear convergence result for the expected
optimality gap requires that the stochastic gradient estimates satisfy Assumption 4.

3.3. PL Condition, Constant Parameters, and Linearly Decreasing Variance
Let us now prove a convergence result for TRish when the PL condition holds; each sequence {αk}, {γ1,k}, and{γ2,k} is constant; and the stochastic gradients satisfy the following assumption.

Assumption 5. There exist constants (M5, ζ) ∈ (0,∞) × (0, 1) such that

Ek[‖gk‖2] ≤ M5ζ
k−1 + ‖∇f (xk)‖2. (39)

The achievement of linear convergence of the expected optimality gap for an SG method also requires
increasingly accurate gradient estimates along the lines required in Assumption 5; see, for example, Bottou
et al. (2018). One finds that Assumption 5 can be satisfied under reasonable conditions in practice if one
employs minibatch stochastic gradient estimates with sample sizes that increase with k. For example, using
estimates as in (30) and under the same conditions that led to (31), one finds that (39) holds if the sample sizes
increase geometrically, for example, |6k | � �τk−1� for some τ ∈ (1,∞).

Our main result in this section, namely, Theorem 4, requires the following.

Lemma 4. Under Assumption 5, it follows that, for all k ∈ N,

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ h5λk−1 + h6‖∇f (xk)‖2 (40)

for any (h5, h6) ∈ (0,∞) × (0,∞) × (0, 1) such that h5 ≥ 1
2

�����
M5

√
, 1 + h6 ≥ 1

2

�����
M5

√
, and λ ≥ ��

ζ
√

.

Proof. By Jensen’s inequality, concavity of the square root, and Assumption 5, one finds that

Ek[‖gk‖] ≤
������������
Ek[‖gk‖2]

√
≤

�������������������������
M5ζk−1 + ‖∇f (xk)‖2

√
≤ �����

M5
√ ( ��

ζ
√ )k−1 + ‖∇f (xk)‖. (41)

The result then follows using the same line of argument used in the proof of Lemma 2. □

The following examples parallel Examples 2 and 3, but illustrate the attainment of (40).

Example 6. Consider the scenario in Example 2. Then, because (39) implies that σ2k ≤ M3ζk−1 for all k ∈ N, it follows
along with the fact that ζ ∈ (0, 1) that

Pk[Ek]Ek[∇f (xk)Tgk |Ek] ≤ σk

2
����
2π

√ + 1 + σk

2
����
2π

√
( )

μ2
k

≤
�����
M3

√
2

����
2π

√ ( ��
ζ

√ )k−1 + 1 +
�����
M3

√
2

����
2π

√
( )

μ2
k .

Hence, it follows that (40) holds with

h5 �
�����
M3

√
2

����
2π

√ , h6 � 1 +
�����
M3

√
2

����
2π

√ , and λ � ��
ζ

√
. (42)
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Example 7. Consider the scenario in Example 3. Then, with
����������
μT
kΣkμk

√
≤ M3ζk−1 for all k ∈ N, it follows that (40)

holds with h5, h6, and λ from (42).

Our next theorem on the behavior of TRish is now proved as the following. (For the result, we include
Assumptions 2 and 5 for convenience because, in our proof, we employ results that we have proved using
each of these assumptions. Notice, however, that the bound (5) in Assumption 2 holds under Assumption 5 if
one considers M1 ≥ M5, M2 ≥ 1, and any ζ ∈ (0, 1).)
Theorem 4. Under Assumptions 1, 2, 3, and 5, and with a tuple (h5, h6, λ) satisfying the inequalities in Lemma 4, suppose
that TRish is run with γ1 >γ2 > 0 such that γ1

γ2
< h6

h6−1 (meaning γ1 − h6(γ1 − γ2)> 0), and with αk � α for all k ∈ N such that

0<α ≤ min
γ1 − h6(γ1 − γ2)

γ2
1L

,
1
cκ1

{ }
, (43)

where

κ1 :� 1
2(γ1 − h6(γ1 − γ2))> 0. (44)

Then, for all k ∈ N, the expected optimality gap satisfies

E[ f (xk)] − f∗ ≤ ωρk−1, (45)

where

κ2 :� h5(γ1 − γ2) + 1
2γ

2
1αLM3 > 0,

ω :� max{ f (x1) − f∗, κ2
cκ1
}> 0,

ρ :� max{1 − αcκ1, λ, ζ} ∈ (0, 1).
(46)

Proof. As in the proof of Lemma 1, it follows from (39) and (40) that, for all k ∈ N,

Ek[ f (xk+1)] − f (xk)
≤ − αγ1‖∇f (xk)‖2 + (γ1 − γ2)αPk[Ek]Ek[∇f (xk)Tgk |Ek] + 1

2γ
2
1Lα

2Ek[‖gk‖2]
≤ − αγ1‖∇f (xk)‖2 + (γ1 − γ2)α(h5λk−1 + h6‖∇f (xk)‖2) + 1

2γ
2
1Lα

2(M3ζ
k−1 + ‖∇f (xk)‖2)

� − α(γ1 − h6(γ1 − γ2) − 1
2γ

2
1Lα)‖∇f (xk)‖2 + (γ1 − γ2)αh5λk−1 + 1

2γ
2
1Lα

2M3ζ
k−1

≤ − 1
2α(γ1 − h6(γ1 − γ2))‖∇f (xk)‖2 + (γ1 − γ2)αh5λk−1 + 1

2γ
2
1Lα

2M3ζ
k−1.

Therefore, with (κ1, κ2) defined as in (44)–(46), it follows from (14) that, for all k ∈ N,

Ek[ f (xk+1)] ≤ f (xk) − ακ1‖∇f (xk)‖2 + ακ2 max{λ, ζ}k−1
≤ f (xk) − 2αcκ1( f (xk) − f∗) + ακ2 max{λ, ζ}k−1,

from which it follows that

E[ f (xk+1)] − f∗ ≤ (1 − 2αcκ1)(E[ f (xk)] − f∗) + ακ2 max{λ, ζ}k−1.
Let us now prove (45) by induction. First, for k � 1, the inequality follows by the definition of ω. Then, assuming
the inequality holds true for k ∈ N, one finds that

E[ f (xk+1)] − f∗ ≤ (1 − 2αcκ1)(E[ f (xk)] − f∗) + ακ2 max{λ, ζ}k−1
≤ (1 − 2αcκ1)ωρk−1 + ακ2 max{λ, ζ}k−1

� ωρk−1 1 − 2αcκ1 + ακ2

ω

max{λ, ζ}
ρ

( )
k−1( )

≤ ωρk−1 1 − 2αcκ1 + ακ2

ω

( )
≤ ωρk−1(1 − αcκ1)
≤ ωρk,

which proves that the conclusion holds for k + 1, as desired. □
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3.4. No PL Condition and Constant Parameters
Let us now consider the behavior of TRish when the PL condition does not hold. Our first such result involves
the use of constant {γ1,k}, {γ2,k}, and {αk}.
Theorem5. Under Assumptions 1 and 2 and with a pair (h1, h2) satisfying the inequalities in Lemma 2, suppose that TRish is
run with (γ1,k, γ2,k) � (γ1, γ2) for all k ∈ N such that γ1

γ2
< h2

h2−1 (meaning γ1 − h2(γ1 − γ2)> 0) and with αk � α for all k ∈ N

such that

0<α ≤ γ1 − h2(γ1 − γ2)
γ1LM2

.

Then, with (θ1, θ2) defined as in (18)–(20), it follows that, for all K ∈ N,

E
∑K
k�1

‖∇f (xk)‖2
[ ]

≤ Kθ2

αθ1
+ f (x1) − f∗

αθ1
(47a)

and

E
1
K

∑K
k�1

‖∇f (xk)‖2
[ ]

≤ θ2

αθ1
+ f (x1) − f∗

Kαθ2
−→k→∞ θ2

αθ1
. (47b)

Proof. As in the proof of Theorem 1, combining the results of Lemmas 1 and 2, it follows that the inequality (21)
holds for all k ∈ N. Taking total expectations, it follows that, for all k ∈ N,

E[ f (xk+1)] − E[ f (xk)] ≤ −αθ1E[‖∇f (xk)‖2] + θ2.

Summing both sides for k ∈ {1, . . . ,K} yields

f∗ − f (x1) ≤ E[ f (xK+1)] − f (x1) ≤ −αθ1
∑K
k�1

E[‖∇f (xk)‖2] + Kθ2.

Rearranging yields (47a), then dividing by K yields (47b). □

As in the case of Bottou et al. (2018, theorem 4.8), this result shows that although one cannot bound the
expected optimality gap as when the PL condition holds, one can bound the average norm of the gradients of
the objective that are observed during the optimization process.

3.5. No PL Condition and Sublinearly Diminishing Step Sizes
Finally, let us consider the behavior of TRish when the PL condition does not hold and diminishing step sizes
are employed. For brevity, the following theorem considers when parameters are chosen both as in Theorem 2
and as in Theorem 3, because in either case, the final conclusion is the same.

Theorem 6. Suppose Assumptions 1 and 2 hold and at least one of the following:
(i) With a pair (h1, h2) satisfying the inequalities in Lemma 2, suppose that TRish is run with {γ1,k}, {γ2,k}, and {αk}

chosen as in Theorem 2.
(ii) Suppose Assumption 4 holds and, with a pair (h3, h4) satisfying the inequalities in Lemma 3, suppose that TRish is

run with {γ1,k}, {γ2,k}, and {αk} chosen as in Theorem 3.
Then, with AK :� ∑K

k�1 αk, it follows that

lim
K→∞E

∑K
k�1

αk‖∇f (xk)‖2
[ ]

<∞ (48a)

and

E
1
AK

∑K
k�1

αk‖∇f (xk)‖2
[ ]

−→K→∞
0. (48b)
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Proof. First observe that, under the conditions of the theorem, specifically the conditions placed on the step size
sequence {αk} in Theorem 2 or Theorem 3, it follows that∑∞

k�1
αk � ∞ and

∑∞
k�1

α2
k <∞. (49)

Second, following the proof of Theorem 2 or Theorem 3, it follows that, under condition (i) or (ii), one finds, by
taking total expectations in (27) or (38), that

E[ f (xk+1)] − E[ f (xk)] ≤ −1
2γ1αkE[‖∇f (xk)‖2] + δα2

k or

E[ f (xk+1)] − E[ f (xk)] ≤ −β1αkE[‖∇f (xk)‖2] + β2α
2
k .

Without loss of generality, let us assume that condition (ii) holds and the latter inequality above is satisfied.
(The proof is the same if condition (i) holds and the former inequality above is satisfied.) Summing both sides
for k ∈ {1, . . . ,K} yields

f∗ − f (x1) ≤ E[ f (xK+1)] − f (x1) ≤ −β1
∑K
k�1

αkE[‖∇f (xk)‖2] + β2
∑K
k�1

α2
k ,

which, after rearrangement, gives

∑K
k�1

αkE[‖∇f (xk)‖2] ≤ f (x1) − f∗
β1

+ β2
β1

∑K
k�1

α2
k .

From (49), it follows that the right-hand side converges to a finite limit as K → ∞, giving (48a). Then, the
limit (48b) follows because (49) ensures that {AK} → ∞ as K → ∞. □

A consequence of this theorem is the straightforward fact that

lim inf
k→∞

E[‖∇f (xk)‖2] � 0;

that is, under the conditions of the theorem, the expected squared norms of the gradients at the iterates of the
algorithm cannot stay bounded away from zero.

4. Numerical Experiments
In this section, we provide the results of numerical experiments to demonstrate the performance of TRish
compared with a stochastic gradient approach. Through solving machine learning test problems involving
objective functions of the form (2)—some convex and some nonconvex—we demonstrate that TRish can out-
perform the SG approach with comparable computational effort. Before presenting our results, we first discuss
how the parameters of the algorithm might be chosen.

4.1. Algorithm Parameter Selection
Our analysis in Section 3 provides guidelines on how the step sizes {αk} and pairs {(γ1,k, γ2,k)} should be
chosen to guarantee convergence properties for TRish. That said, as for the SG method, the values required by
the theory are often too conservative in practice, whereas one often finds better performance by a parameter
tuning scheme. Still, it is worthwhile to comment on how the theoretical analysis might inform parameter
selection. For our purposes, because our numerical experiments focus on results obtained with fixed pa-
rameters, we shall discuss how the analysis in Section 3.1 informs parameter selection. Similar conclusions can
be drawn based on our other theoretical results.

For simplicity, let us assume that the bound (5) in Assumption 2 holds with M2 � 1. In this case, the bound
(5) is equivalent to the restriction that the variance of the stochastic gradient estimate is bounded by M1, that is,
that Ek[‖gk‖2] − ‖∇f (xk)‖2 ≤ M1. If one has an estimate M̃1 of M1—which, for example, can be obtained by
sampling gradients and computing a variance estimate—then, following Lemma 2, one can employ the value

h̃2 � 1
2

�����
M̃1

√
+ 1 for parameter selection. In particular, Theorem 1 suggests choosing (γ1, γ2) such that

γ1

γ2
<

h̃2
h̃2 − 1

� 1 + 2�����
M̃1

√ .
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Naturally, this still leads to flexibility in the precise values of (γ1, γ2), but the trade-offs between different
choices become similar to the traditional trade-offs one finds for the selection of α in an SG scheme: (i) one can
choose values such that γ1 − γ2 is large, which leads to fast convergence, but only to a relatively large
neighborhood of the solution, or (ii) one can choose values such that γ1 − γ2 is small, which leads to slow
convergence, but to a relatively small neighborhood of a solution. Overall, one might be discouraged by the
idea that the choice of (γ1, γ2) requires estimation of the upper bound M1. However, this is not dissimilar to the
fact that, theoretically, one needs an estimate of the Lipschitz constant L of the gradient to choose the step size
for an SG approach, and clearly also for TRish, such as through the bound (17). The good news is that
estimating the variance of the stochastic gradient estimates is a reasonable request that could even be done
during an initial phase that simply uses SG iterations.

Despite all of this commentary, in practice one should expect to achieve better performance by simply
tuning parameters for a given problem, as is often done for SG methods. For our experiments described in the
following subsections, we chose (γ1, γ2) by a simple tuning scheme that also selects the step size α. We took
care to make sure that the tuning procedure for TRish did not require more effort than the tuning used for the
SG method that we have for comparison purposes.

4.2. Logistic Regression
As a first test case, we considered the problem of binary classification through logistic regression using a few
data sets available in the well-known LIBSVM repository; see Chang and Lin (2011). In particular, for each
data set, with training feature vector zi ∈ Rn and training label yi ∈ {−1, 1} for all i ∈ {1, . . . ,N}, the objective of
this problem has the form

f (x) � 1
N

∑N
i�1

log(1 + e−yi(x
Tzi)). (50)

Also available in each case is a testing data set {(zi, yi)}Ni�1. [There is a wealth of available methods for min-
imizing the smooth convex function (50). These include (stochastic) gradient methods, such as considered
here, and various others; see, for example, the accelerated variance-reduction methods in Ghadimi et al. (2016),
Jalilzadeh et al. (2018), and Jofré and Thompson (2018).]

We ran implementations of TRish and the SG algorithm and compared performance by comparing training
loss (i.e., the objective function (50) evaluated with the training data) and testing accuracy (i.e., for a given
approximate solution, what fraction of the testing set is classified correctly) for iterates throughout the
optimization process. We ran each algorithm for one epoch (i.e., until N training pairs had been accessed) with
a fixed step size α and, for TRish, a fixed parameter pair (γ1, γ2).

For both algorithms and all data sets, the stochastic gradient estimates were computed using a minibatch
size of 64. For choosing a fair set of parameters for the comparison for each data set, we first ran the SG algorithm
with a step size of 0.1 and computed G as the average norm of stochastic gradient estimates throughout the run.
Then, for TRish, we considered the step sizes α ∈ {10−1, 10−1/2, 100, 101/2, 101} and parameters γ1 ∈ {4G , 8G , 16G , 32G}
and γ2 ∈ { 1

2G ,
1
G ,

2
G}. (The value G gauges the magnitude of the stochastic gradient estimates, which depends on

problem scaling. As seen in our results, these choices of (γ1, γ2) ensure that step normalization—that is, Case 2
of TRish—occurs. In practice, one could compute G during an initial SG phase before starting TRish, but to
cleanly distinguish between TRish and the SG algorithm, we computed this value using an independent run of
the SG algorithm.) This resulted in 60 parameter settings with TRish employing step sizes in the range from
1
2G × 10−1 (i.e., the minimum γ2 times the minimum α) to 32

G × 101 (i.e., the maximum γ1 times the maximum α).
Hence, for the SG algorithm, we considered 60 values for α in the range [ 1

2G × 10−1, 32G × 101] so that neither
algorithm had an advantage in terms of the range of the step sizes. Specifically, we considered the 60 values
such that log10(α) was evenly distributed in [log10( 1

2G × 10−1), log10(32G × 101)].
For each data set, we ran the algorithms with these different parameters settings and selected for each the

settings that led to the best average testing accuracy in the last 10 iterations of the run.

4.2.1. Data Set a1a. The first data set that we considered was a1a, in which the feature vectors have length
n � 123, the number of points in the training set is N � 1,605, and the number of points in the testing set is
N � 30,956. For tuning, the value G ≈ 0.1746 was determined, yielding a step size range of approximately
[0.2863, 1,832]. After tuning, the selected parameter settings for TRish were (α, γ1, γ2) ≈ (0.1, 22.90, 2.863), and
the selected parameter setting for the SG algorithm was α ≈ 0.4471.

The algorithm TRish and the SG algorithm were each run 10 times from the same starting point (the origin).
The training losses and testing accuracies, averaged over these 10 runs, are plotted in Figure 2 after 0.1 epoch
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through the end of the first epoch. (The values during the first 0.1 epoch are not plotted here, nor for the other
data sets, so that it is easier to distinguish the differences at the end of the first epoch.) It is worthwhile to note
that during the runs for TRish, Case 1 did not occur, Case 2 occurred in approximately 99% of the iterations,
and Case 3 occurred in approximately 1% of the iterations; that is, step normalization occurred in a large
majority of the iterations. The figure shows that TRish yielded better training losses throughout the opti-
mization process. However, for this data set, the performance in terms of testing accuracy was roughly the
same for both algorithms.

4.2.2. Data Set w1a. The second data set that we considered was w1a, in which the feature vectors have length
n � 300, the number of points in the training set is N � 2,477, and the number of points in the testing set is
N � 47,272. For tuning, the value G ≈ 0.0887 was determined, yielding a step size range of approximately
[0.5638, 3,608]. After tuning, the selected parameter settings for TRish were (α, γ1, γ2) ≈ (0.1, 360.8, 5.638), and
the selected parameter setting for the SG algorithm was α ≈ 0.6541.

The training losses and testing accuracies, averaged over 10 runs when both algorithms were initialized at
the same starting point (the origin), are plotted in Figure 3. During the runs for TRish, Case 2 occurred in
approximately 99% of the iterations, whereas Case 1 and Case 3 combined occurred in fewer than 1% of the
iterations. For this data set, TRish outperformed the SG algorithm both in terms of training losses and testing
accuracies throughout the first epoch.

4.2.3. Data Set rcv1. The third data set that we considered was rcv1, in which the feature vectors have length
n � 47,236, the number of points in the training set is N � 20,242, and the number of points in the testing set is
N � 677,399. For tuning, the value G ≈ 0.0497 was determined, yielding a step size range of approximately
[1.007, 6,444]. After tuning, the selected parameter settings for TRish were (α, γ1, γ2) ≈ (0.3162, 644.4, 10.07),
and the selected parameter setting for the SG algorithm was α ≈ 10.84.

The training losses and testing accuracies, averaged over 10 runs when both algorithms were initialized at
the same starting point (the origin), are plotted in Figure 4. During the runs for TRish, Case 1 occurred in
approximately 27% of the iterations, Case 2 occurred in approximately 73% of the iterations, and Case 3 did
not occur. For this data set, TRish outperformed the SG algorithm both in terms of training losses and testing
accuracies throughout the first epoch. That said, the testing accuracies appear to near at the end of the first
epoch, leading one to wonder about the performance of the methods if the parameters were retuned and the
algorithms were run for more epochs.

To address this question, Figure 5 plots the training losses and testing accuracies—averaged over 10 runs—for
TRish and the SG algorithm during two epochs. (For this horizon, tuning led to the parameter settings (α, γ1, γ2) �(0.1, 376.2, 47.02) for TRish and the parameter setting α ≈ 5.192 for the SG algorithm. For TRish, Case 2
occurred in approximately 94% of the iterations, Case 3 occurred in approximately 5% of the iterations, and
Case 1 occurred in fewer than 1% of the iterations.) These plots show a trade-off where, for a longer horizon,
the better parameters for TRish do not necessarily offer better results initially, but do offer better results eventually.

Figure 2. Average Training Loss and Testing Accuracy During the First Epoch when TRish and the SGMethod Are Employed
to Minimize the Logistic Regression Function (50) Using the a1a Data Set
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In all of the experiments presented in this section, TRish generally outperforms the SG algorithm. However,
the gains are somewhat limited because, by convexity of the problems, both algorithms are tending to
neighborhoods around the same optimal solution. The results presented in the next subsection, in which we
consider nonconvex optimization problems arising from neural network training, show more substantial
benefits from using TRish compared with the SG algorithm.

4.3. Neural Network Training
As a second test case, we considered the problem to train convolutional neural networks for image classi-
fication. We considered two well-known data sets. The first, the mnist data set of LeCun et al. (1998), is a
collection of images of hand-written digits. The goal for training the network for this data set is to classify
which of the digits (zero through nine) is written in each image. It includes N � 60,000 training samples and
N � 10,000 testing samples. The second, the cifar-10 data set of Krizhevsky (2009), is a collection of color
images in 10 categories (e.g., airplanes, dogs, and ships). The goal for training the network for this data set is
to classify the image with the correct category. It includes N � 50,000 training samples and N � 10,000 testing
samples.

Implemented using TensorFlow, the neural networks that we considered for both data sets are composed of
two convolutional layers (involving 32 and 64 filters, respectively, and each followed by an average pooling
layer) followed by two fully connected layers. Rectified Linear Unit (ReLU) activation is used at each hidden
layer, and the objective is defined using the logistic (cross-entropy) loss function. The networks vary slightly,
for example, because a pixel for each mnist image corresponds to a single feature, whereas a pixel for each
cifar-10 image corresponds to three features (for each RGB value because they are color images). As seen in our
experimental results, training the network led to a very good classifier for mnist, yielding over 95% testing
accuracy. The performance is less impressive for cifar-10 (yielding around 60% accuracy); achieving higher
accuracy would require a more sophisticated network and more computational resources than were available.
That said, both data sets provide interesting settings for comparing the performance of TRish and the SG
algorithm.

As for the results in Section 4.2, we compare performance between TRish and the SG algorithm by comparing
training loss and testing accuracy. We tuned parameters using the same setup as in Section 4.2, except with
slightly different parameter choices. In particular, the minibatch size used when computing stochastic gradients
was 128, and when computing G, we ran the SG algorithm with a step size of 0.01. For TRish, we considered
step sizes α ∈ {10−3, 10−2, 10−1, 100} and parameters γ1 ∈ {4G , 8G , 16G} and γ2 ∈ { 1

8G ,
1
4G ,

1
2G}. This means that the SG

algorithm was tuned with 36 choices of α in the range [ 1
8G × 10−3, 16G × 100].

4.3.1. Data Set mnist. For mnist, we ran the algorithms for two epochs. For parameter tuning, the value G ≈
2.8277 was determined, yielding a step size range of approximately [2.683 × 10−5, 3.435]. After tuning, the
selected parameter settings for TRish were (α, γ1, γ2) ≈ (1, 1.717, 0.0268), and the selected parameter setting for
the SG algorithm was α ≈ 0.0609.

Figure 3. Average Training Loss and Testing Accuracy During the First Epoch when TRish and the SGMethod Are Employed
to Minimize the Logistic Regression Function (50) Using the w1a Data Set
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The training losses and testing accuracies for each of the 10 runs that we performed with the tuned parameters
are plotted in Figure 6, ignoring the first 0.2 epochs so that the later values are more easily distinguished. (For
each run, the network parameters were initialized to the same randomly generated values. The values were
generated from a truncated normal distribution with mean 0 and standard deviation 0.1. We did not average
the loss and accuracy values over the 10 runs because the optimization problem is nonconvex, meaning that
for each run, an algorithm might tend toward a different region of the search space.) During the runs for
TRish, Case 1 occurred in approximately 62% of the iterations, Case 2 occurred in approximately 37% of the
iterations, and Case 3 almost did not occur. Overall, TRish consistently outperformed the SG algorithm in
terms of both training loss and testing accuracy throughout the optimization process.

4.3.2. Data Set cifar-10. For cifar-10, we ran the algorithms for five epochs (because further improvement was
clearly being made even after the first few epochs). The value G ≈ 964.39 was determined, yielding a step size
range of approximately [8.990 × 10−6, 1.151]. After tuning, the parameter settings for TRish were (α, γ1, γ2) ≈(1, 1.051, 0.0089), and the parameter setting for the SG algorithm was α ≈ 0.0104.

The training losses and testing accuracies for each of the 10 runs that we performed with the tuned pa-
rameters are plotted in Figure 7, again ignoring the first 10% of the runs (i.e., in this case, the first 0.5 epochs)
so that the later values are more easily distinguished. (For each run, the network parameters were initialized to
the same randomly generated values. The values were generated from a truncated normal distribution with

Figure 4. Average Training Loss and Testing Accuracy During the First Epoch when TRish and the SGMethod Are Employed
to Minimize the Logistic Regression Function (50) Using the rcv1 Data Set

Figure 5. Average Training Loss and Testing Accuracy During the First Two Epochs when TRish and the SG Method Are
Employed to Minimize the Logistic Regression Function (50) Using the rcv1 Data Set
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mean 0 and standard deviation 0.01.) During the runs for TRish, Case 1 occurred in approximately 1% of the
iterations, Case 2 occurred in approximately 99% of the iterations, and Case 3 did not occur. In these ex-
periments, TRish typically outperformed the SG algorithm in terms of both training loss and testing accuracy
throughout each run.

5. Conclusion
An algorithm inspired by a trust region methodology has been proposed, analyzed, and tested for solving
stochastic and finite-sum minimization problems. Our proved theoretical guarantees show that our method,
called TRish, has convergence properties that are similar to those of a traditional SG method. Our numerical
results, on the other hand, show that TRish can outperform a traditional SG approach. We attribute this better
behavior to the algorithm’s use of normalized steps, which one can argue lessens its dependence on problem-
specific quantities.

Naturally, a more substantial numerical study—that goes well beyond the scope of this paper—would be
necessary to fully explore the trade-offs between TRish and an SG approach in practice. For example, a more
substantial numerical study would take into account different procedures that might be used to decrease the
step size after some number of iterations, as is typically done in practice. Indeed, for the convex problems that
we considered, this was our motivation for presenting results for one only epoch, because, in practice, one
often adjusts the step size after each epoch. For TRish, this adjustment may involve updates to the pair (γ1, γ2)
as well, which one might adjust so that γ1 − γ2 � 2(α), as our theory suggests.

Figure 6. Average Training Loss and Testing Accuracy During the First Two Epochs when TRish and the SG Method Are
Employed to Train a Convolutional Neural Network Using the mnist Data Set

Figure 7. Average Training Loss and Testing Accuracy During the First Five Epochs when TRish and the SG Method Are
Employed to Optimize the Convolutional Neural Network Using the cifar10 Data Set
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Finally, although not considered in this paper, we believe it would be interesting to explore the in-
corporation within TRish of various enhancements, such as the use of second-derivative (i.e., Hessian) ap-
proximations, acceleration, and/or momentum. These might further improve the practical performance of the
framework set forth in this paper.
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