

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2012 Society for Industrial and Applied Mathematics
Vol. 22, No. 2, pp. 474–500

A SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM FOR
NONCONVEX, NONSMOOTH CONSTRAINED OPTIMIZATION∗

FRANK E. CURTIS† AND MICHAEL L. OVERTON‡

Abstract. We consider optimization problems with objective and constraint functions that may
be nonconvex and nonsmooth. Problems of this type arise in important applications, many having so-
lutions at points of nondifferentiability of the problem functions. We present a line search algorithm
for situations when the objective and constraint functions are locally Lipschitz and continuously
differentiable on open dense subsets of Rn. Our method is based on a sequential quadratic program-
ming (SQP) algorithm that uses an �1 penalty to regularize the constraints. A process of gradient
sampling (GS) is employed to make the search direction computation effective in nonsmooth regions.
We prove that our SQP-GS method is globally convergent to stationary points with probability one
and illustrate its performance with a MATLAB implementation.

Key words. nonconvex optimization, nonsmooth optimization, constrained optimization, se-
quential quadratic programming, gradient sampling, exact penalization

AMS subject classifications. 49M37, 65K05, 65K10, 90C26, 90C30, 90C55

DOI. 10.1137/090780201

1. Introduction. In this paper, we consider optimization problems of the form

(1.1)
minimize

x
(min

x
) f(x)

subject to (s.t.) c(x) ≤ 0,

where the objective f : Rn → R and constraint functions c : Rn → Rm are locally
Lipschitz and continuously differentiable on open dense subsets of Rn. Due to an exact
penalization strategy that we apply to problem (1.1), the solution method that we
propose can also be applied to problems with equality constraints if they are relaxed
with slack variables. For ease of exposition, however, we focus on only inequality
constraints in (1.1). Since we make no convexity assumptions about f and/or c, we
are concerned only with finding local solutions to (1.1).

A wealth of research on the solution of smooth constrained optimization prob-
lems has been produced in recent decades. In particular, the methodology known
as sequential quadratic programming (SQP) has had one of the longest and richest
histories [21, 36]. Its many variations are still widely used and studied throughout
the optimization community as new techniques are developed to confront the issues of
nonconvexity, ill-conditioned constraints, and the solution of large-scale applications
[3, 17]. At an iterate xk, the main feature of traditional SQP algorithms is the fol-
lowing quadratic programming (QP) subproblem used to compute a search direction:

(1.2)
min
d

f(xk) +∇f(xk)
Td+ 1

2d
THkd

s.t. cj(xk) +∇cj(xk)
T d ≤ 0, j = 1, . . . ,m.

∗Received by the editors December 15, 2009; accepted for publication (in revised form) February
16, 2012; published electronically May 15, 2012.

http://www.siam.org/journals/siopt/22-2/78020.html
†Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18018

(frank.e.curtis@gmail.com). This author was supported by National Science Foundation grants DMS
0602235 and DMS 1016291.

‡Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
(overton@cs.nyu.edu). This author was supported by National Science Foundation grants DMS
0714321 and DMS 1016325.

474

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 475

This subproblem is constructed by forming local linearizations of the objective and
constraint functions and by providing a symmetric, sufficiently positive definite, and
bounded matrix Hk (preferably approximating the Hessian of the Lagrangian of (1.1))
to ensure that the solution is bounded and one of descent for an appropriate measure
of progress, such as a penalty function or filter. This type of formulation makes the
search direction calculation intuitively appealing as well as computationally effective.

There has also been a great deal of work on nonsmooth unconstrained optimiza-
tion problems, i.e., problem (1.1) with m = 0. For instance, in a collection of recent
papers [7, 8, 30], an algorithm known as gradient sampling (GS) was developed and
analyzed for the minimization of locally Lipschitz f . The GS method is interesting
theoretically in that convergence guarantees hold with probability one, but it is also
widely applicable and robust and has been used to solve a variety of interesting prob-
lems [6, 14, 19, 20, 42]. It is worthwhile to note that GS does not require the user
to compute subgradients as the iterates and sample points remain in the open dense
set Df ⊂ Rn over which f is continuously differentiable. The main computational
expenses at a given iterate xk are O(n) gradient evaluations and the computation of
an approximate steepest descent direction. Letting cl convS denote the closure of the
convex hull of a set S and defining the multifunction

G
f
ε (xk) := cl conv∇f(Bε(xk) ∩Df),

where

Bε(xk) := {x | ‖x− xk‖2 ≤ ε}

is the closed ball with radius ε centered at xk, we have the representation

∂f(xk) =
⋂
ε>0

G
f
ε (xk)

of the Clarke subdifferential of f(x) at xk [11]. Then, with a finite randomly generated

set of points Bf
ε,k ⊂ Bε(xk) ∩ Df (including xk), and Gfε,k ⊂ Gf

ε (xk) defined as the

convex hull of the gradients of f evaluated at points in Bf
ε,k, the approximate steepest

descent direction computed by GS is dk = −gk/‖gk‖2, where gk can be obtained by
solving either of the following subproblems (dual to each other):

(1.3)

⎧⎨⎩min
g

1
2‖g‖22

s.t. g ∈ Gfε,k

⎫⎬⎭ ;

⎧⎨⎩min
g,z

z + 1
2‖g‖22

s.t. ∇f(x)T (−g) ≤ z ∀x ∈ Bf
ε,k

⎫⎬⎭ .

In fact, as shown in [30], the search direction need not be normalized, so a search
direction dk can alternatively be obtained as part of the solution to

(1.4)
min
d,z

z + 1
2d

THkd

s.t. f(xk) +∇f(x)T d ≤ z ∀x ∈ Bf
ε,k.

Here, as in (1.2), Hk is a symmetric, sufficiently positive definite, and bounded matrix
that ensures boundedness of the solution of (1.4) and descent in f from xk. We have
added f(xk) (a constant at xk) to the left-hand side of each constraint in (1.4) for
consistency with (1.2) and other subproblems we define later on, noting that it affects
the value of the optimal zk but has no effect on the computed search direction dk.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

476 FRANK E. CURTIS AND MICHAEL L. OVERTON

The successes of these and other methods for smooth constrained and nonsmooth
unconstrained problems have laid the groundwork for nonsmooth constrained opti-
mization algorithms. Indeed, the purpose of this paper is to present and analyze such
an approach. Our method combines techniques from SQP and GS for the development
of an effective SQP-GS algorithm. At the heart of our discussion is the subproblem

(1.5)

min
d,z

z + 1
2d

THkd

s.t.

{
f(xk) +∇f(x)T d ≤ z ∀x ∈ Bf

ε,k,

cj(xk) +∇cj(x)T d ≤ 0 ∀x ∈ Bcj

ε,k, j = 1, . . . ,m,

which can be seen as a natural extension of subproblem (1.2) when combined with the

GS techniques that led to (1.4). Defining Dcj for each j = 1, . . . ,m as the open dense
subset ofRn over which cj is locally Lipschitz and continuously differentiable, the finite
set Bcj

ε,k ⊂ Bε(xk) ∩ Dcj (including xk) is randomly generated as a set of points over
which gradients of the jth constraint function are sampled in an ε-neighborhood of xk.
As for (1.2) in the case of smooth optimization, enhancements to subproblem (1.5)
and other algorithmic features are necessary to ensure that the method is well defined
and yields convergence guarantees, but we believe the underlying structure of this
subproblem gives our approach both intuitive appeal as well as practical advantages.

We remark that there are two distinct differences between the constraints of
subproblem (1.5) and cutting planes found in algorithms for nonsmooth optimization
(e.g., bundle methods [23, 27]). We describe these differences by noting that in our
notation the latter constraints would take the following form (assuming for comparison
purposes that f and cj , j = 1, . . . ,m, are differentiable at all points of interest):

(1.6)

{
f(x) +∇f(x)T d ≤ z ∀x ∈ Bf

k ,

cj(x) +∇cj(x)T d ≤ 0 ∀x ∈ Bcj

k , j = 1, . . . ,m.

The first main difference is that in (1.5), all the linearized constraints involve function
values at xk, as opposed to those in (1.6), which involve function values at the points at
which the gradients are evaluated. The latter type of linearization has advantages for
convex problems since the cutting planes provide lower bounding models for the true
functions. However, for nonconvex problems, these types of cutting planes lose this
essential property, causing complications in the development of effective algorithms.
In contrast, as can be seen in previous GS methods and in the development of our
approach, the linearized constraints in (1.5) lead to a useful search direction regardless
of any assumption of convexity. The second main difference between the constraints
in (1.5) and those commonly used in algorithms that employ cutting planes is that

in the latter methods the sets Bf
k and Bcj

k for j = 1, . . . ,m would typically include
only subsets of previous iterates. This is in contrast to (1.5), which, in the analysis
in this paper, requires new sets of sampled gradients to be computed during every
iteration. The cost of these additional gradient evaluations may be prohibitive for
some applications. However, we believe that with the foundations provided by the
algorithm developed in this paper, further extensions can readily be made that may
allow a user to significantly reduce both the size of subproblem (1.5) and limit the
number of gradient evaluations required during each iteration. Indeed, we mention
some of these extensions along with our numerical experiments, as they have already
been implemented in our software. It is clear that these gradient evaluations could

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 477

be performed in parallel, thus maintaining a clock time equal to that required for a
single gradient evaluation if enough processors are available.

We emphasize that the GS procedure in our approach is necessary for ensuring
theoretical convergence guarantees since a basic SQP strategy (without GS) will fail in
theory and in practice. To understand that this is true, one need only consult the well-
known examples of the failure of steepest descent algorithms for nonsmooth problems
(e.g., see [23, 31, 41]) and note that in the case of Hk = I with no active constraints
at a solution, SQP is a steepest-descent-like strategy. The critical consequences of the
GS procedure are that at remote points, it ensures that good search directions are
produced, and in small neighborhoods of a solution it ensures that with probability
one the algorithm will eventually recognize that an ε-stationary point is nearby. Thus,
while it is true that a basic SQP method may be able to make some progress from
remote starting points, this latter feature will not be attained if an insufficient number
of gradients are sampled during each iteration. Moreover, even an SQP method that
perturbs the iterates to enforce our requirement that, for all k,

xk ∈ D := Df ∩ Dc1 ∩ · · · ∩ Dcm

will fail unless the perturbation strategy is sophisticated enough to ensure that the
algorithm does not repeatedly approach suboptimal points of nondifferentiability. (We
know of no such perturbation strategy, even for the unconstrained case, and believe
that the development of one would not be as straightforward and efficient as our SQP-
GS approach.) We briefly illustrate our claims about the necessity of the gradient
sampling procedure along with our numerical results in section 5.

Before we close this introduction, we mention previous work on nonsmooth con-
strained optimization algorithms. One popular approach has been to solve constrained
problems through unconstrained optimization techniques, either by using problem-
specific reformulations (e.g., see section 5.9 in [31]) or penalty methods (e.g., see
section 4.2 in [8], section 14.3 in [15], and [26, 35]). Researchers have also considered
special classes of constrained problems for which methods such as the SQP approach
in [16] or the techniques in [25, 32] can be applied. In contrast, our approach is de-
signed for general problems of the form (1.1). Overall, our method is most similar
to the bundle techniques in [24] and [28, 29], though these methods and ours differ
significantly in detail, as revealed by the comments in the discussion above.

The paper is organized as follows. Motivation and a description of our algorithm
are presented in section 2. The main components of the approach are the penalty
parameter update, search direction computation, and line search. Global convergence
guarantees to stationary points are provided in section 3. In section 4 we describe
a MATLAB implementation of our algorithm. Our implementation involves certain
practical enhancements to the basic framework discussed in section 2, including an
update for a variable-metric Hessian approximation and techniques for reducing the
sizes of the subproblems. Numerical results are presented in section 5, and concluding
remarks are provided in section 6.

2. SQP with GS. In this section, we motivate and present our algorithm. We
begin by developing a relaxed, yet still practical version of subproblem (1.5). Our
complete algorithm is specified in detail at the end of this section, though some
practical features that are inconsequential for our convergence analysis in section 3
are left for the discussion in section 4.

2.1. Search direction calculation. The search direction calculation in our
algorithm is inspired by subproblem (1.5). This subproblem lacks safeguards to ensure

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

478 FRANK E. CURTIS AND MICHAEL L. OVERTON

that it is well defined at any given iterate xk, so we begin this subsection by proposing
a particular safeguard: regularization through exact penalization. We also formally
define the set of sample sets

(2.1) Bε,k := {Bf
ε,k,B

c1

ε,k, . . . ,Bcm

ε,k}

and a line search in such a way that the method possesses convergence guarantees.
Consider the �1 penalty function

φρ(x) := ρf(x) + v(x),

where ρ ≥ 0 is a penalty parameter and

v(x) :=

m∑
j=1

max{cj(x), 0}

is a constraint violation measure. If x∗ is a minimizer of φρ for ρ > 0 and v(x∗) = 0,
then x∗ solves (1.1) [23, pp. 299]. In order to ensure that such a ρ exists, however,
one must formally consider situations such as that described in the following theorem.
In the theorem, we define a local stability condition known as calmness [11, 39]. We
then state a result given as Proposition 1 and Theorem 1 in [40], the proofs of which
draw from that of Proposition 6.4.3 in [11].

Theorem 2.1. Suppose f and c are locally Lipschitz on Rn and let x∗ be a local
minimizer of (1.1). Moreover, suppose problem (1.1) is calm at x∗ in the sense that
there exists ε > 0 such that for all sequences (xk, sk)→ (x∗, 0), with each pair (xk, sk)
satisfying c(xk) ≤ sk, we have f(x∗)− f(xk) ≤ ε‖sk‖. Then, there exists ρ∗ > 0 and
ε∗ > 0 such that for all x ∈ Bε∗(x∗),

(2.2) φρ(x) ≥ φρ(x∗) whenever ρ ∈ [0, ρ∗].

If, in addition, x∗ is an isolated local minimizer, then ρ∗ > 0 and ε∗ > 0 can be chosen
so that the inequality in (2.2) is strict for x �= x∗.

Theorem 2.1 leads to the notion of exact penalization that is also commonly
discussed in smooth optimization; e.g., see section 17.2 in [34]. With this concept
in mind, it is appropriate to use the minimization of φρ as an algorithmic tool for
solving (1.1). That is, under the assumption that (1.1) is calm at its minimizers
and ρ is sufficiently small so that the result of Theorem 2.1 applies, the focus of
our discussion and analysis will be on producing a monotonically decreasing sequence
{φρ(xk)}. It is worthwhile to note that calmness is a weak constraint qualification in
our context as other qualifications, such as the Mangasarian–Fromowitz and Slater
conditions, both imply calmness [11, section 6.4]. We also have the following result
from Proposition 6.4.4 in [11], proving the existence of Lagrange multipliers at calm
solutions to (1.1).

Theorem 2.2. Suppose f and c are locally Lipschitz on Rn, let x∗ be a calm
local minimizer of (1.1), and let L(x, λ) := f(x)+λT c(x) be the Lagrangian of (1.1).
Then, there exists λ∗ ≥ 0 such that the primal-dual pair (x∗, λ∗) satisfies

∂xL(x∗, λ∗) � 0,

λj
∗c

j(x∗) = 0, j = 1, . . . ,m,

where ∂xL(x∗, λ∗) is the (partial) Clarke subdifferential [11, p. 48] of L(·, λ∗) at x∗.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 479

Penalty functions in algorithms for constrained optimization problems have been
studied extensively and have been widely implemented since the analyses by Han [21]
and Powell [37]. Indeed, they have also been investigated in the context of nonsmooth
applications [5, 4, 26, 28, 29, 40]. In our context, the two main benefits of the penalty
function are that it provides a mechanism for judging progress in the algorithm and,
when used in the derivation of the search direction computation, the penalty terms
have important regularization effects on the subproblem formulation. For smooth
optimization problems, it can be seen that the minimization of a quadratic model of
the penalty function φρ at a given iterate xk is equivalent to the QP

(2.3)
min
d,r

ρ(f(xk) +∇f(xk)
T d) +

m∑
j=1

rj + 1
2d

THkd

s.t. c(xk) +∇c(xk)
Td ≤ r, r ≥ 0,

where r ∈ Rm is a vector of auxiliary variables [9]. The solution component dk of this
subproblem is guaranteed to provide descent in the penalty function from the current
iterate xk, which means that (2.3) is consistent with the choice of judging progress
by reductions in φρ. Moreover, due to the presence of the auxiliary variables, this
subproblem is always feasible, meaning that dk is always well defined. Comparing this
subproblem with (1.2), the only difference is that the constraints have been relaxed
(with appropriate objective terms for penalizing violations in these constraints), so
one may view (2.3) as a regularized version of subproblem (1.2).

In our algorithm, the search direction calculation is performed by solving a QP of
the form (1.5) after appropriate penalty terms have been introduced. The subproblem
may be viewed as a regularized version of subproblem (1.5) or, alternatively, as an
augmented version of subproblem (2.3). To incorporate ideas from the GS algorithms
described in [8, 30], we define

(2.4)
Bf
ε,k := {xf

k,0, x
f
k,1, . . . , x

f
k,p}, where xf

k,0 := xk,

and Bcj

ε,k := {xcj

k,0, x
cj

k,1, . . . , x
cj

k,p}, where xcj

k,0 := xk, for j = 1, . . . ,m,

as sets of independent and identically distributed random points sampled uniformly
from Bε(xk) for some sample size p ≥ n+ 1. Then, as long as we ensure

(2.5) Bf
ε,k ⊂ Df and Bcj

ε,k ⊂ Dcj for j = 1, . . . ,m,

the quadratic subproblem

(2.6)

min
d,z,r

ρz +

m∑
j=1

rj + 1
2d

THkd

s.t.

{
f(xk) +∇f(x)T d ≤ z ∀x ∈ Bf

ε,k

cj(xk) +∇cj(x)T d ≤ rj ∀x ∈ Bcj

ε,k, rj ≥ 0, j = 1, . . . ,m,

is well defined and provides a direction of descent for the penalty function φρ at xk;
see Lemma 3.7. Indeed, let us define the local model

qρ(d;xk,Bε,k, Hk)

:= ρ max
x∈Bf

ε,k

{f(xk) +∇f(x)T d}+
m∑
j=1

max
x∈Bcj

ε,k

{max{cj(xk) +∇cj(x)T d, 0}}+ 1
2d

THkd

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

480 FRANK E. CURTIS AND MICHAEL L. OVERTON

of the penalty function φρ at xk. If (dk, zk, rk) solves (2.6), then dk also solves

(2.7) min
d

qρ(d;xk,Bε,k, Hk)

(e.g., see [9, 15]), and the two subproblems produce equal optimal objective values.
Because of this equivalence, we refer to (2.6) and (2.7) interchangeably throughout
the rest of our algorithmic development and analysis.

We remark that, as in other methods that have been proposed for nonsmooth
constrained optimization (e.g., see [24]), it may be tempting to aggregate all the in-
equality constraints into the single constraint maxj{cj(x)} ≤ 0 in order to reduce the
(sub)problem size. We believe, however, that significant disadvantages result from this
reformulation. First, this reformulation is not scale invariant, and so an algorithm
may perform differently for different scalings of the constraints and poorly for certain
choices of scalings. Second, such a reformulation disregards gradient information for
constraints that do not currently yield the largest value. This can be detrimental to
the optimization process, especially if numerous constraints are active or near-active
at a solution point. In contrast, subproblem (2.6) maintains information about all
constraints during all iterations and is less sensitive to poor scalings of the constraint
functions. We also remark that it may be tempting to select the same sample sets for
all functions (when allowed under D), i.e., Bf

ε,k = Bc1

ε,k = · · · = Bcm

ε,k , so that only p
random points in Bε(xk) need to be generated during iteration k. Indeed, this choice
may work in practice. However, with such a choice, one cannot guarantee an optimal
solution to (2.6) (which generally has Bf

ε,k �= Bc1

ε,k �= · · · �= Bcm

ε,k) on which all our
convergence results in section 3 (in particular, Lemma 3.8) are based. Thus, such
a selection is not recommended. This should not be viewed as a deficiency of our
algorithm, however, since with even a rudimentary random number generator, the
computational costs of generating distinct sample sets for each function are insignifi-
cant compared to the costs of evaluating gradients and solving (2.6).

2.2. Algorithm description. Our complete algorithm is presented as Algo-
rithm 2.1. Similar to the methods in [8, 30], the algorithm progresses by locating
points that are approximately ε-stationary with respect to the penalty function φρ

(see Definition 3.5) and then subsequently decreasing the sampling radius ε to zero so
that, in the limit, a stationary point is produced (see Definition 3.4). The indicator for
reducing ε is the reduction obtained in the model qρ(·;xk,Bε,k, Hk). For a computed
dk, we define this reduction to be

Δqρ(dk;xk,Bε,k, Hk) := qρ(0;xk,Bε,k, Hk)− qρ(dk;xk,Bε,k, Hk)

= φρ(xk)− qρ(dk;xk,Bε,k, Hk) ≥ 0.

(The reduction is nonnegative because d = 0 yields an objective value of φρ(xk) for
subproblem (2.7).) As shown in Lemma 3.6, Δqρ(dk;xk,Bε,k, Hk) can be zero only if
xk is ε-stationary, so a sufficiently small reduction in qρ(·;xk,Bε,k, Hk) indicates that
a decrease in ε is appropriate.

We also use a small reduction in qρ(·;xk,Bε,k, Hk) as the condition under which
we consider a reduction in the penalty parameter ρ. Let K be the subsequence
of iterations during which Δqρ(dk;xk,Bε,k, Hk) is sufficiently small (see step 4) and
define a dynamic constraint violation tolerance θ > 0. If v(xk) ≤ θ for a given k ∈ K,
then xk is considered sufficiently feasible and θ is reduced to tighten the tolerance.
Otherwise, if v(xk) > θ for k ∈ K, then ρ is decreased to place a higher priority on
reducing constraint violation in subsequent iterations. Note that in this manner, if

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 481

ρ is sufficiently small such that v(xk) ≤ θ for all large k ∈ K and θ → 0, then the
penalty parameter will remain bounded while the algorithm attains {v(xk)}k∈K → 0.
This means that in the limit, we obtain feasibility for (1.1) over the subsequence K.

The line search is performed by backtracking along the search direction in order to
ensure progress in reducing the value of the penalty function φρ during each iteration.
The main condition that we enforce is the sufficient decrease condition

(2.8) φρ(xk+1) ≤ φρ(xk)− ηαkΔqρ(dk;xk,Bε,k, Hk),

where xk+1 ← xk +αkdk for some αk ∈ (0, 1] and η ∈ (0, 1). By virtue of Lemmas 3.6
and 3.7, we find that the directional derivative of φρ at xk along dk, namely,

φ′
ρ(dk;xk) := lim

α→0+

φρ(xk + αdk)− φρ(xk)

α
,

satisfies the relationships

φ′
ρ(dk;xk) ≤ − 1

2d
T
k Hkdk = −Δqρ(dk;xk,Bε,k, Hk),

so (2.8) is weaker than a standard Armijo condition and thus will be satisfied for all
sufficiently small α > 0. If as a result of the line search we have xk+1 ∈ D, then we
continue from xk+1; else, we replace xk+1 with any point in D satisfying (2.8) and

(2.9) ‖xk + αkdk − xk+1‖ ≤ min{αk, ε}‖dk‖.

Since xk+1 /∈ D is an unlikely event in exact arithmetic, it is argued in [8, 30] that we
may always set xk+1 ← xk +αkdk in practice, in which case (2.9) is trivially satisfied.
However, consideration that the iterates remain in D is necessary for our analysis.

Algorithm 2.1. SQP-GS.

1: (Initialization): Choose a sampling radius ε > 0, penalty parameter ρ > 0, con-
straint violation tolerance θ > 0, sample size p ≥ n + 1, line search constant
η ∈ (0, 1), backtracking constant γ ∈ (0, 1), sampling radius reduction factor
βε ∈ (0, 1), penalty parameter reduction factor βρ ∈ (0, 1), constraint violation
tolerance reduction factor βθ ∈ (0, 1), and stationarity tolerance parameter ν > 0.
Choose an initial iterate x0 ∈ D and set k ← 0.

2: (Gradient sampling): Generate Bε,k satisfying (2.1), (2.4), and (2.5).
3: (Search direction calculation): ChooseHk � 0 and compute (dk, zk, rk) from (2.6).
4: (Parameter update): If Δqρ(dk;xk,Bε,k, Hk) > νε2, then go to step 5. Otherwise,

if v(xk) ≤ θ, then set θ ← βθθ, but if v(xk) > θ, then set ρ← βρρ. In either case,
set ε← βεε, xk+1 ← xk, and αk ← 0 and go to step 6.

5: (Line search): Set αk as the largest value in the sequence {1, γ, γ2, . . . } such that
xk+1 ← xk + αkdk satisfies (2.8). If xk+1 /∈ D, then replace xk+1 with any point
in D satisfying (2.8) and (2.9).

6: (Iteration increment): Set k ← k + 1 and go to step 2.

We remark that the sampling in step 2 and the computation of xk+1 ∈ D satisfying
(2.8) and (2.9) in step 5 can be implemented as finite processes. If, for example,

the algorithm generates xf
k,i /∈ Df for some i ∈ {1, . . . , p}, then this point may be

discarded and replaced by another randomly generated point in Bε(xk), which is
then also checked for inclusion in Df . Since the points are sampled independently

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

482 FRANK E. CURTIS AND MICHAEL L. OVERTON

and uniformly from Bε(xk) and Df is dense, this procedure terminates. Similarly, if
xk + αkdk /∈ D, then we may sample xk+1 from a uniform distribution defined on

{x | ‖x− (xk + αkdk)‖ ≤ min{αk, ε}‖dk‖/i},

incrementing i by 1 each time until xk+1 ∈ D and (2.8) holds. As in [30], since αk is
chosen to satisfy (2.8), the continuity of φρ implies that this procedure terminates.

It is worthwhile to note that in the context of smooth constrained optimization,
Algorithm 2.1 with a sample size of p = 0 reduces to an S�1QP method [15], and
in the context of nonsmooth unconstrained optimization with m = 0, the algorithm
reduces to a variation of the GS algorithms in [8, 30]. Thus, Algorithm 2.1 generalizes
each of these methods to nonsmooth constrained problems.

3. Global convergence. We make two assumptions throughout our global con-
vergence analysis. The first relates to the properties of the problem functions them-
selves, though we believe that in practice Algorithm 2.1 may be a viable approach
even when the problem functions are not necessarily locally Lipschitz.

Assumption 3.1. The functions f, c1, . . . , cm are locally Lipschitz and continu-
ously differentiable on open dense subsets Df ,Dc1 , . . . ,Dcm , respectively, of Rn.

The second assumption relates to the iterates generated in the algorithm.
Assumption 3.2. The sequences of iterates and sample points generated by Al-

gorithm 2.1 are contained in a convex set over which the functions f and c and their
first derivatives are bounded. In addition, there exist constants ξ ≥ ξ > 0 such that

ξ‖d‖2 ≤ dTHkd ≤ ξ‖d‖2 for all k and d ∈ Rn.
We remark that restricting Hk to the space of symmetric, positive semidefinite,

and bounded matrices is standard for SQP methods since otherwise one cannot be
sure that a QP solver is able to compute a global solution to subproblem (2.6). Indeed,
we go slightly further and require Hk to be positive definite with eigenvalues bounded
below and above to ensure that the solution to the QP is bounded in norm with respect
to an appropriate quantity (see Lemma 3.9). We also remark that our assumption on
the boundedness of f eliminates consideration of cases where φρ is unbounded below,
though it is clear that in such cases either our convergence analysis will apply or the
algorithm will produce φρ(xk)→ −∞.

The main result that we prove in this section is the following.
Theorem 3.3. Let {xk} be the (infinite) sequence of iterates generated by Algo-

rithm 2.1. Then, with probability one, one of the following holds true:
(a) The penalty parameter satisfies ρ = ρ∗ for some ρ∗ > 0 for all large k and

every cluster point of {xk} is stationary for the penalty function φρ∗ . More-
over, with K defined as the (infinite) subsequence of iterations during which
ε is decreased, we have {v(xk)}k∈K → 0, meaning that all cluster points of
{xk}k∈K are feasible for problem (1.1) in addition to being stationary for φρ∗ .

(b) The penalty parameter satisfies ρ → ρ∗ = 0 and every cluster point of {xk}
is stationary for the constraint violation measure v.

We have from Theorem 3.3 that every cluster point of {xk} generated by Algo-
rithm 2.1 is stationary for the penalty function φρ∗ for some ρ∗ ≥ 0. Specifically,
along with Theorems 2.1 and 2.2, parts (a) and (b) of the theorem, respectively, tie
cluster points of {xk} with first-order solutions and (potentially infeasible) stationary
points of the constrained optimization problem (1.1).

Our notion of stationarity for φρ differs from that used in GS methods for un-
constrained optimization (namely, Clarke stationarity [11]). Rather, our definition
resembles the notion of stationarity common in constrained optimization contexts

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 483

(e.g., see Theorem 3.2 in [9], which draws from the results in [22]) as it relates to the
solution of a constrained subproblem. We begin our analysis by defining the notions
of stationarity and ε-stationary that will be used throughout our analysis.

Consider any x ∈ Rn and let

(3.1) Bε := {B
f

ε ,B
c1

ε , . . . ,Bc
m

ε } := {Bε(x) ∩ Df ,Bε(x) ∩ Dc1 , . . . ,Bε(x) ∩ Dcm}

be the set of sets of points in an ε-ball about x over which the problem functions are
differentiable. A local model of the penalty function φρ about x is given by

qρ(d;x,Bε, Hk)

= ρ sup
x∈Bf

ε

{f(x) +∇f(x)T d}+
m∑
j=1

sup
x∈Bcj

ε

{max{cj(x) +∇cj(x)T d, 0}}+ 1
2d

THkd,

and a corresponding subproblem to minimize this model is given by

(3.2) inf
d

qρ(d;x,Bε, Hk).

Given a solution d to (3.2), we have the reduction

Δqρ(d;x,Bε, Hk) := qρ(0;x,Bε, Hk)− qρ(d;x,Bε, Hk)

= φρ(x)− qρ(d;x,Bε, Hk) ≥ 0.

We define the following notion of stationarity.
Definition 3.4. A point x is stationary for φρ if and only if for all ε > 0 the

solution to (3.2) is d = 0.
Our notion of ε-stationarity is similar but considers a fixed ε > 0.
Definition 3.5. If for a given ε > 0 the solution to (3.2) is d = 0, then x is

ε-stationary for φρ.
This latter definition leads to our first lemma. The result relates Algorithm 2.1

to the methods in [8, 30], both in terms of the first conditional statement in step 4 of
the algorithm and with respect to the line search conditions (2.8) and (2.9). Precisely,
considering nonnormalized search directions as in section 4.1 of [30], the algorithms in
[8, 30] essentially update the sampling radius ε based on norms of the search directions,
whereas in our case the value is updated based on Δqρ(dk;xk,Bε,k, Hk). The lemma
illustrates that these choices are consistent.

Lemma 3.6. The solution dk to (2.7) yields

(3.3) Δqρ(dk;xk,Bε,k, Hk) =
1
2d

T
kHkdk.

Therefore, if Δqρ(dk;xk,Bε,k, Hk) = 0, then xk is ε-stationary for φρ.
Proof. Equation (3.3) follows from the optimality conditions (2.6); e.g., see

[34, eq. (16.37)]. Thus, due to the positive definiteness of Hk under Assumption 3.2,
dk = 0 if and only if Δqρ(dk;xk,Bε,k, Hk) = 0. The second part of the lemma follows
from the fact that if dk = 0 solves (2.7), then it also solves (2.7) with min and Bε,k
replaced by inf and {Bε(xk)∩Df ,Bε(xk)∩Dc1 , . . . ,Bε(xk)∩Dcm}, respectively.

The next parts of our analysis proceed in the following manner. We illustrate that
the line search procedure in step 5 is well defined so that the method will generate
an infinite sequence of iterates {xk}. We then show that if the iterates remain in a

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

484 FRANK E. CURTIS AND MICHAEL L. OVERTON

neighborhood of a point x and ρ = ρ remains constant, then the algorithm eventually
computes a search direction dk that sufficiently approximates the solution d to (3.2).
Similarly, if the iterates remain in a neighborhood of a point x and ρ → 0, then the
algorithm eventually computes a search direction dk that sufficiently approximates
the solution of d to (3.2) with ρ = 0. These results, along with a lemma illustrating
that the computed search directions {dk} are bounded in norm with respect to an
appropriate quantity, will be used to prove our main theorem.

At xk and for a given d ∈ Rn, we respectively define the sets of active and violated
linearized constraints as

A(d;xk) := {j ∈ {1, . . . ,m} | cj(xk) +∇cj(xk)
Td = 0}

and V(d;xk) := {j ∈ {1, . . . ,m} | cj(xk) +∇cj(xk)
Td > 0},

so that for xk ∈ D the directional derivative of φρ at xk is given by

(3.4) φ′
ρ(d;xk) = ρ∇f(xk)

T d+
∑

j∈A(0;xk)
j∈V(d;xk)

∇cj(xk)
Td+

∑
j∈V(0;xk)

∇cj(xk)
Td.

Our next lemma shows that this directional derivative will always be negative when-
ever the line search in step 5 of the algorithm is encountered.

Lemma 3.7. If Algorithm 2.1 executes step 5 during iteration k, then

φ′
ρ(dk;xk) ≤ −dTkHkdk < 0,

and hence there exists αk > 0 such that condition (2.8) is satisfied.

Proof. Since xk ∈ Bf
ε,k ∩ Bc1

ε,k ∩ · · · ∩ Bcm

ε,k by (2.4), we have from (3.4) that

φ′
ρ(dk;xk)

≤ ρ max
x∈Bf

ε,k

∇f(x)T dk +
∑

j∈A(0;xk)
j∈V(dk;xk)

max
x∈Bcj

ε,k

∇cj(x)T dk +
∑

j∈V(0;xk)

max
x∈Bcj

ε,k

∇cj(x)T dk

= ρ(zk − f(xk)) +
∑

j∈A(0;xk)
j∈V(dk;xk)

rjk +
∑

j∈V(0;xk)

(rjk − cj(xk))

≤ − φρ(xk) + ρzk +

m∑
j=1

rjk

= −Δqρ(dk;xk,Bε,k, Hk)− 1
2d

T
kHkdk.

(3.5)

By Assumption 3.2 and Lemma 3.6, we then have

φ′
ρ(dk;xk) ≤ −Δqρ(dk;xk,Bε,k, Hk)− 1

2d
T
k Hkdk = −dTkHkdk < 0.

Thus, dk is a descent direction for φρ at xk, so ∃αk > 0 satisfying (2.8).
We now turn to the algorithm’s ability to approximate the solution to (3.2) when

(ρ, xk) is sufficiently close to (ρ, x). In particular, our goal is to show that if (ρ, xk)
lies in a sufficiently small neighborhood of (ρ, x), then there exists a set of sample
sets that the algorithm may generate that will produce a search direction dk that
approximates the solution to subproblem (3.2) with any desired accuracy (though not

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 485

necessarily perfect accuracy). This result will be used in the proof of Theorem 3.3
since, for a fixed ε, it will lead to a contradiction to the supposition that xk may
converge to a point x that is not ε-stationary for φρ (if ρ = ρ remains constant) or
φ0 = v (if ρ → 0). In addition, it will be used in the proof of that result to show
that if an iterate is obtained that lies in a sufficiently small neighborhood of a point
x that is ε-stationary for φρ, then there is a positive probability that the algorithm
will recognize its proximity to ε-stationarity.

Now to the formal definitions, statement, and proof of this result. According to
Definition 3.4, a measure of the proximity of any point x to ε-stationarity of φρ is
Δqρ(d;x,Bε, Hk), where d solves (3.2). Thus, for a given xk, we define

Sε(xk) :=

{
p∏
0

(Bε(xk) ∩ Df),

p∏
0

(Bε(xk) ∩ Dc1), . . . ,

p∏
0

(Bε(xk) ∩ Dcm)

}

and consider the set

Tρ,ε(ρ, x, ω;xk) := {Bε,k ∈ Sε(xk) | Δqρ(dk;xk,Bε,k, Hk) ≤ Δqρ(d;x,Bε, Hk) + ω}.

In the definition of Sε(xk) the notation
∏p

0 indicates that we are taking the Cartesian
product of p + 1 instances of the given sets, and in the definition of Tρ,ε(ρ, x, ω;xk)
we continue with the notation that dk solves (2.7) and d solves (3.2).

We now show that for xk sufficiently close to x the set Tρ,ε(ρ, x, ω;xk) is nonempty.
Lemma 3.8. For any ω > 0, there exists ζ > 0 and a nonempty set T such that

for all xk ∈ Bζ(x
′) and ρ such that |ρ− ρ| ≤ ζ we have T ⊂ Tρ,ε(ρ, x, ω;xk).

Proof. We present a proof by illustrating that for a given ω > 0, a nonempty
set T ⊂ Tρ,ε(ρ, x, ω;xk) can be constructed. Under Assumption 3.1 and since ω > 0,
there exists a vector d satisfying

Δqρ(d;x,Bε, Hk) < Δqρ(d;x,Bε, Hk) + ω

such that for some

gf ∈ conv∇f(Bε(x
′) ∩ Df)

and gc
j ∈ conv∇cj(Bε(x

′) ∩ Dcj), j = 1, . . . ,m,

we have

qρ(d;x,Bε, Hk) = ρ(f(x) + gf
T
d) +

m∑
j=1

max{cj(x) + gc
jT

d, 0}+ 1
2d

THkd.

Since the sample size p in Algorithm 2.1 satisfies p ≥ n+ 1, Carathéodory’s theorem
[38] implies that there exists {

yfi

}p

i=1
⊂ Bε(x) ∩Df

and a set of nonnegative scalars {λf
i }

p
i=1 such that

p∑
i=1

λf
i = 1 and

p∑
i=1

λf
i∇f(y

f
i) = gf .

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

486 FRANK E. CURTIS AND MICHAEL L. OVERTON

Similarly, for j ∈ {1, . . . ,m}, the same theorem and conditions imply the existence of{
yc

j

i

}p

i=1
⊂ Bε(x) ∩Dcj

and nonnegative scalars {λcj

i }
p
i=1 such that

p∑
i=1

λcj

i = 1 and

p∑
i=1

λcj

i ∇cj(yc
j

i) = gc
j

.

Since f, c1, . . . , cm are continuously differentiable in the open sets Df ,Dc1 , . . . ,Dcm ,
respectively, there exists ζ ∈ (0, ε) such that the ordered set

T :=

{
{xk} ×

p∏
i=1

int Bζ(y
f
i), {xk} ×

p∏
i=1

int Bζ(y
c1

i), . . . , {xk} ×
p∏

i=1

int Bζ(y
cm

i)

}

satisfies the following three properties:
• The first entry of T lies in Bε−ζ(x

′) ∩Df .

• The j + 1 entry of T lies in Bε−ζ(x
′) ∩ Dcj for j = 1, . . . ,m.

• The solution dk to (2.7) with |ρ− ρ| ≤ ζ and Bε,k ∈ T satisfies

Δqρ(dk;xk,Bε,k, Hk) ≤ Δqρ(d;x,Bε, Hk) + ω.

Therefore, since for xk ∈ Bζ(x) we have Bε−ζ(x) ⊂ Bε(xk), it follows that with
|ρ− ρ| ≤ ζ the constructed set T above satisfies T ⊂ Tρ,ε(ρ, x, ω;xk).

The proof of Lemma 3.8 illustrates the need for sampling gradients of each
function independently. Indeed, for d as described satisfying Δqρ(d;x,Bε, Hk) <
Δqρ(d;x,Bε, Hk)+ω, the objective value of subproblem (3.2) is defined by up to m+1
distinct points at which the gradients of the functions (f and cj for j = 1, . . . ,m)
are to be evaluated. In order to guarantee (by Carathéodory’s theorem) that these
points are included in the convex hull of the sampled gradients, the sampling of each
function must be performed independently.

A technical lemma related to the solution of (2.7) follows next.
Lemma 3.9. The solution of (2.7) is contained in Bξ1ρ+ξ2‖d̂k‖(0) for some con-

stants ξ1, ξ2 > 0, where d̂k is the minimum-norm minimizer of

l(d;xk,Bε,k) :=
m∑
j=1

max
x∈Bcj

ε,k

max{cj(xk) +∇cj(x)T d, 0}.

Proof. The function l(·;xk,Bε,k) is piecewise linear, convex, and bounded below,

so it has a minimum-norm minimizer and we call it d̂k. Under Assumption 3.2, the
vector d̂k yields

(3.6) ρ max
x∈Bf

ε,k

{∇f(x)T d̂k}+ 1
2 d̂

T
kHkd̂k ≤ ρ max

x∈Bf
ε,k

‖∇f(x)‖‖d̂k‖+ 1
2ξ‖d̂k‖2.

Similarly, for an arbitrary vector d ∈ Rn with

(3.7)

1
4ξ‖d‖ > ρ max

x∈Bf
ε,k

‖∇f(x)‖

and 1
4ξ‖d‖

2 > ρ max
x∈Bf

ε,k

‖∇f(x)‖‖d̂k‖+ 1
2ξ‖d̂k‖2,

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 487

we have

ρ max
x∈Bf

ε,k

{∇f(x)T d}+ 1
2d

THkd ≥ −ρ max
x∈Bf

ε,k

‖∇f(x)‖‖d‖+ 1
2ξ‖d‖2

> 1
4ξ‖d‖

2

> ρ max
x∈Bf

ε,k

‖∇f(x)‖‖d̂k‖+ 1
2ξ‖d̂k‖2

≥ ρ max
x∈Bf

ε,k

{∇f(x)T d̂k}+ 1
2 d̂

T
kHkd̂k,

where the last inequality follows from (3.6). Thus, for d satisfying (3.7), we have

qρ(d;xk,Bε,k, Hk) > qρ(d̂k;xk,Bε,k, Hk), which means that d cannot be a minimizer
of qρ(·;xk,Bε,k, Hk). By Assumption 3.1, this means that we can define constants
ξ1, ξ2 > 0 related to the quantities in (3.7) such that no solution of subproblem (2.7)
lies outside Bξ1ρ+ξ2‖d̂k‖(0).

We are now ready to prove Theorem 3.3. Our proof follows [30, Theorem 3.3],
except that we also need to consider cases when ρ→ 0.

Proof of Theorem 3.3. We begin with a proof of part (a), where it is supposed
that ρ ≥ ρ∗ for some ρ∗ > 0 for all k. Since ρ is scaled by a fixed factor βρ if it
is decreased during step 4, we have that ρ = ρ∗ for all k ≥ k∗ for some k∗ ≥ 0.
Moreover, by the conditions of step 4, it follows that {v(xk)}k∈K ≤ θ → 0, where K
is the subsequence of iterations during which ε is decreased.

The update condition (2.9) ensures

(3.8) ‖xk+1 − xk‖ ≤ min{αk, ε}‖dk‖+ αk‖dk‖ ≤ 2αk‖dk‖.

This inequality holds trivially if the algorithm skips from step 4 to step 6 and holds
by the triangle inequality if step 5 yields xk+1 = xk + αkdk. By condition (2.8),
Lemma 3.6, Assumption 3.2, and (3.8), we have for k ≥ k∗ that

φρ∗(xk)− φρ∗(xk+1) ≥ ηαkΔqρ∗(dk;xk,Bε,k, Hk)

≥ 1
2ηαkξ‖dk‖2

≥ 1
4ηξ‖xk+1 − xk‖‖dk‖.(3.9)

Thus, since (2.8) and (3.9) hold for all k, we have by Assumption 3.2 that

∞∑
k=k∗

αkΔqρ∗(dk;xk,Bε,k, Hk) <∞ and(3.10a)

∞∑
k=k∗

‖xk+1 − xk‖‖dk‖ <∞.(3.10b)

We continue by considering two cases, the first of which has two subcases.
Case 1. Suppose there exists k ≥ 0 such that ε = ε for some ε > 0 for all k ≥ k.

According to step 4 of Algorithm 2.1, this can occur only if

(3.11) Δqρ∗(dk;xk,Bε,k, Hk) > ν(ε)2 ∀k ≥ max{k, k∗}.

The inequality (3.11) in conjunction with (3.10a) means that αk → 0. Similarly, by
Lemma 3.6, inequality (3.11) implies that ‖dk‖ is bounded away from zero, which in
conjunction with (3.10b) means that xk → x for some x.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

488 FRANK E. CURTIS AND MICHAEL L. OVERTON

Case 1a. If x is ε-stationary for φρ∗ , then we have Δqρ∗(d;x,Bε, Hk) = 0 for any
Hk � 0. Thus, with ω = ν(ε)2/2 and (ζ, T) chosen as in Lemma 3.8, there exists
k′ ≥ k such that xk ∈ Bζ(x) and ρ = ρ∗ = ρ for all k ≥ max{k′, k∗} and

(3.12) Δqρ∗(dk;xk,Bε,k, Hk) ≤ ν(ε)2/2 whenever Bε,k ∈ T .

Together, (3.11) and (3.12) imply that Bε,k /∈ T for all k ≥ max{k′, k∗}. However,
this is a probability zero event since for all such k the points in Bε,k are sampled
uniformly from Sε(xk), which includes the nonempty set T .

Case 1b. If x is not ε-stationary for φρ∗ , then for all k ≥ max{k, k∗}, any α not
satisfying the line search condition (2.8) yields

φρ∗(xk + αdk)− φρ∗(xk) > −ηαΔqρ∗(dk;xk,Bε,k, Hk),

while (3.5) implies

φρ∗(xk + αdk)− φρ∗(xk) ≤ −αΔqρ∗(dk;xk,Bε,k, Hk) + α2Lk‖dk‖2.

Here, Lk is an upper bound for (φ′
ρ∗(dk;xk + αdk) − φ′

ρ∗(dk;xk))/(α‖dk‖) on the
interval [xk, xk + αkdk] whose existence follows from Assumption 3.1. Combining
these inequalities yields a lower bound on any α not satisfying (2.8), which, since the
line search in Algorithm 2.1 has a backtracking factor of γ, yields the bound

αk > γ(1− η)Δqρ∗(dk;xk,Bε,k, Hk)/(Lk‖dk‖2) whenever k ≥ max{k, k∗}.

However, with the tolerance ω = Δqρ∗(d;x,Bε, Hk) (which is strictly positive for any
Hk � 0 since x is not ε-stationary for φρ∗) and (ζ, T) again chosen as in Lemma 3.8,
there exists k′ ≥ k such that xk ∈ Bζ(x) and ρ = ρ∗ = ρ for all k ≥ max{k′, k∗} and

(3.13) Δqρ∗(dk;xk,Bε,k, Hk) ≤ 2Δqρ∗(d;x,Bε, Hk) whenever Bε,k ∈ T .

Under Assumptions 3.1 and 3.2, the fact that xk → x, Lemma 3.9, and (3.13) imply
that for all sufficiently large k, Lk‖dk‖2 ≤ L for some constant L > 0, meaning that
for all k ≥ max{k′, k∗} such that Bε,k ∈ T , αk is bounded away from zero. This
and the fact that αk → 0 imply that Bε,k /∈ T for all k ≥ max{k′, k∗}, which is a
probability zero event.

Overall, we have shown in Case 1 that ε = ε for some ε > 0 for all k is a probability
zero event. Thus, since every time the algorithm decreases ε it does so by multiplying
it by a fraction βε ∈ (0, 1), the sampling radius ε converges to 0 with probability one.

Case 2. Suppose that ε→ 0 and {xk} has a cluster point x. First, we show that

(3.14) lim inf
k→∞

max{‖xk − x‖, ‖dk‖} = 0.

If xk → x, then by construction in the algorithm and Lemma 3.6, ε → 0 if and only
if there is an infinite subsequence K of iterations where ρ = ρ∗ and

1
2ξ‖dk‖2 ≤

1
2d

T
kHkdk = Δqρ∗(dk;xk,Bε,k, Hk) ≤ νε2.

Thus, since ε→ 0,

lim
k∈K
‖dk‖ = 0

and (3.14) follows. On the other hand, if xk �→ x, then we proceed by contradiction
and suppose that (3.14) does not hold. Since x is a cluster point of {xk}, there is an
ε > 0 and an index k ≥ 0 such that the set K := {k | k ≥ k, ‖xk − x‖ ≤ ε, ‖dk‖ > ε}

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 489

is infinite. By (3.10b), this means

(3.15)
∑
k∈K

‖xk+1 − xk‖ <∞.

Since xk �→ x, there exists an ε > 0 such that for all k1 ∈ K with ‖xk1 − x‖ ≤ ε/2
there is k2 > k1 satisfying ‖xk1−xk2‖ > ε and ‖xk−x‖ ≤ ε for all k1 ≤ k < k2. Thus,

by the triangle inequality, we have ε < ‖xk1 − xk2‖ ≤
∑k2−1

k=k1
‖xk+1 − xk‖. However,

for k1 ∈ K sufficiently large, (3.15) implies that the right-hand side of this inequality
must be strictly less than ε (a contradiction).

We have shown in Case 2 that (3.14) holds. Then, since for all k we have

Bε,k ⊂ {Bε(xk) ∩ Df ,Bε(xk) ∩ Dc1 , . . . ,Bε(xk) ∩ Dcm},
(3.14) and ε→ 0 imply that the cluster point x is stationary for φρ∗ . Moreover, by the
construction of the parameter update step 4 in Algorithm 2.1 and the discussion in
the second paragraph of section 2.2, we have the existence of an infinite subsequence
of iterations K yielding the remainder of the result for part (a) of the theorem.

The proof of part (b) of the theorem follows similarly to the proof of part (a).
Let ρk be the value of the penalty parameter ρ during the line search of iteration k.
Similar to (3.9), we find

φρk
(xk)− φρk

(xk+1) ≥ ηαkΔqρk
(dk;xk,Bε,k, Hk)

≥ 1
2ηαkξ‖dk‖2

≥ 1
4ηξ‖xk+1 − xk‖‖dk‖.(3.16)

Thus, similar to (3.10), we have the inequalities

∞∑
k=0

αkΔqρk
(dk;xk,Bε,k, Hk) <∞ and(3.17a)

∞∑
k=0

‖xk+1 − xk‖‖dk‖ <∞.(3.17b)

Equation (3.17a) can also be written as

∞∑
k=0

αk(Δq0(dk;xk,Bε,k, Hk) + ρk max
x∈Bf

ε,k

{f(xk) +∇f(x)T dk}) <∞,

from which it follows by Lemma 3.9 that under Assumption 3.2 we have
∞∑
k=0

αkΔq0(dk;xk,Bε,k, Hk) <∞.

With this inequality and (3.17b) in hand, the remainder of the proof follows similarly
to Cases 1 and 2 in the proof of part (a). However, instead of invoking Lemma 3.8
with ρ = ρ∗, one invokes it with ρ = 0 and k sufficiently large such that for some
ζ > 0 and with xk ∈ Bζ(x) and ρ ≤ ζ, the set T is nonempty and implies inequalities
similar to (3.12) and (3.13), where qρ∗ is replaced with q0. Consequently, we have
that whenever ρ→ 0, any cluster point x of {xk} is stationary for φ0 = v.

4. An implementation. We have implemented Algorithm 2.11 in MATLAB.
We tested a few QP solvers for subproblem (2.6) and overall found that MOSEK2

1Publicly available at http://coral.ie.lehigh.edu/̃ frankecurtis/software.
2Available at http://www.mosek.com.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

490 FRANK E. CURTIS AND MICHAEL L. OVERTON

produced the best results in terms of reliability and efficiency. In this section we
describe some of the remaining details of our implementation. In particular, we discuss
our technique for obtaining Lagrange multipliers λk to approximate an element of
the (partial) Clarke ε-subdifferential of Lρ(·, λk) := ρf(x) + λT

k c(x) at xk, outline a
strategy for computing Hk and for reducing the number of sampled gradients required
during each iteration, and comment on our choices for the input parameters.

Consistent with the GS strategy, we approximate the minimum-norm element of
the (partial) Clarke ε-subdifferential of Lρ(·, λk) at xk with the gradients sampled for
the problem functions. With

(λf
k,0, . . . , λ

f
k,p), (λ

c1

k,0, . . . , λ
c1

k,p), . . . , (λ
cm

k,0, . . . , λ
cm

k,p)

defined as the optimal multipliers for the linearized constraints obtained by solving
(2.6), we define

gk :=

p∑
i=1

λf
k,i∇f(x

f
k,i) +

m∑
j=1

p∑
i=1

λcj

k,i∇c(xcj

k,i).

The optimality conditions of (2.6) guarantee that
∑p

i=1 λ
f
k,i = ρ, so gk approx-

imates the minimum-norm element of ∂xLρ(xk, λk), where ∂xf(xk), ∂xc
j(xk) for

j = 1, . . . ,m, and the components of λk are defined implicitly through the computed
sample gradients and optimal multipliers for subproblem (2.6).

The vector gk is used for two purposes in our implementation. First, it is used as
part of the following optimality error estimate:

Ek := max

{
‖gk‖∞,max

j
{cj(xk)},max

j,i
|λcj

k,ic(x
cj

k,i)|
}
.

Observing Theorem 2.2, this quantity provides a reasonable optimality measure for
problem (1.1) when ρ > 0. Specifically, for a given value of the sampling radius ε,
our implementation keeps track of the smallest value of Ek obtained. Note that this
may be a better measure of optimality error than each individual Ek value as each is
highly dependent on the set of sample points; a poor sampling set for a given iteration
may yield a large value of Ek despite the fact that xk is nearly εk-stationary.

Our second use for gk relates to the choice of Hk made during each iteration. In
an attempt to achieve fast convergence, we set this matrix for each iteration k as an
L-BFGS [33] approximation of the Hessian of Lρ at (xk, λk) with λk defined as above.
At the end of iteration k, we initialize H ← I and then perform the kH updates

(4.1) H ← H − Hsls
T
l H

T

sTl Hsl
+

yly
T
l

sTl yl
for l = k, k − 1, . . . , k − kH + 1,

setting Hk+1 ← H as the final matrix obtained from this process. Here, sl := xl−xl−1

and yl := gl − gl−1 are the displacements in x and in the approximations of the
minimum-norm elements of ∂xLρ obtained in the most recent kH iterations. (Note
that these updates lag one iteration behind a traditional L-BFGS update as gk+1

is not obtained until (2.6) is solved during iteration k + 1.) An update in (4.1) is
performed if and only if

‖sl‖ ≤ χsε, ‖yl‖ ≤ χyε, and sTl yl ≥ χsyε
2

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 491

Table 4.1

Input values for the static parameters for Algorithm 2.1.

Parameter Value Parameter Value Parameter Value
p 2n βρ 5e-1 χs 1e+3

η 1e-8 βθ 8e-1 χy 1e+3

γ 5e-1 ν 1e+1 χsy 1e-6

βε 5e-1 kH 1e+1

Table 4.2

Initial values for the dynamic parameters for Algorithm 2.1.

Parameter Initial Value
ε 1e-1

ρ 1e-1

θ 1e-1

for given constants (χs, χy, χsy) > 0. As shown in [12], these restrictions guarantee
that there exist constants ξ ≥ ξ > 0 such that ξ‖d‖2 ≤ dTHkd ≤ ξ‖d‖2 for all
k and d ∈ Rn. This makes {Hk} comply with Assumption 3.2, required for our
convergence analysis. (We remark, however, that in [31] the authors argue that BFGS
updates can be effective for unconstrained nonsmooth optimization when the Hessian
approximations are allowed to become ill-conditioned.)

A remark is necessary here with this choice of Hk. That is, it should be noted
that changes in the penalty parameter value will have an effect on (4.1) in a manner
that is difficult to quantify. Specifically, if ρ at the start of iteration k− 1 differs from
ρ at the start of iteration k, then gk−1 and gk in the computation of yk will have been
computed with different values of ρ. The update (4.1), however, makes no distinction
between this case and that case when ρ remains constant between iterations k − 1
and k. In our implementation, we simply disregard this occurrence and update the
Hessian according to (4.1) no matter if ρ has changed.

Another important feature that has been implemented in our code is a special
handling of functions that are known to be smooth or that depend on a number of
variables less than n. In the former case, if a function is known to be continuously
differentiable everywhere in Rn, then we conjecture that it is not necessary to sample
its gradient at nearby points. Specifically, if the objective (jth constraint) is known

to be smooth, then we set Bf
ε,k = {xk} (Bcj

ε,k = {xk}) for all k. This choice can have
a significant impact on the practical performance of the algorithm as this effectively
eliminates pns linear inequality constraints from the quadratic program (2.6), where
ns is the number of smooth functions; otherwise, the subproblems will always have
p(m+ 1) such constraints in addition to the m bounds on the auxiliary variables. As
for functions that depend on fewer than n, say, ñ, variables, for such functions we
sample only 2ñ points with the idea that the gradients essentially live in a space of
dimension ñ. Again, this choice reduces the sizes of the subproblems.

We use values for the static input parameters as indicated in Table 4.1, as we
found them to yield the best results for the experiments in section 5. Initial values for
the dynamic parameters are provided in Table 4.2. A sample size of p = n+ 1 is all
that is required in our analysis, but as in [8], we found that the choice p = 2n yielded
faster convergence in terms of the number of nonlinear iterations required to yield a
good result. The chosen values for η and γ are standard for line search methods. The
remaining values were decided upon during the course of our experiments.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

492 FRANK E. CURTIS AND MICHAEL L. OVERTON

5. Numerical experiments. In this section we discuss the results of our
MATLAB implementation of Algorithm 2.1 applied to a set of test problems. The
first problem is somewhat contrived but is still an interesting illustrative example in
that it involves the minimization of a classically difficult type of objective function.
All the remaining problems are derived from real applications. We remark that in a
few cases, special-purpose solvers designed for the individual applications will most
likely provide better results than are presented here, but it should be noted that ours
is only a preliminary implementation and, in fact, there may be ways in which our
approach can be tailored to each problem individually; see section 6. Thus, for our
purposes here, we simply apply our general-purpose implementation of Algorithm 2.1
and illustrate that it is effective on a wide range of problems.

For each problem we ran our implementation with 10 different starting points,
each sampled from a standard multivariate normal distribution. Because of the
stochastic nature of the algorithm itself, we could have run the algorithm from the
same starting point multiple times, expecting to find variations in the performance
over each run. However, since we found that the algorithm behaved consistently even
for different starting points, we provide the results for these runs with the idea that
they more clearly indicate the robustness of the approach. In all cases we imposed
a maximum iteration limit of 500. Our code includes an optimality check that ter-
minates the solver when a sufficiently feasible ε-stationary point has been found (for
any user-defined ε > 0), but in our tests we turned this feature off and simply let the
code run until the iteration limit was reached, allowing ε to decrease indefinitely.

Example 5.1. Find the minimizer of a nonsmooth Rosenbrock function subject
to an inequality constraint on a weighted maximum value of the variables:

(5.1) min
x1,x2

w|x2
1 − x2|+ (1− x1)

2 s.t. max{c1x1, c2x2} ≤ 1.

The Rosenbrock function is a standard smooth, nonconvex optimization test prob-
lem, and so the nonsmooth variation in problem (5.1) is an interesting one to consider
for our method. Defining the objective weight to be w = 8 and the coefficients to be
(c1, c2) = (

√
2, 2), we illustrate this problem in Figure 5.1. The curved contours of

the objective illustrate that the unconstrained minimizer lies at (1, 1). The feasible
region, however, is the rectangle including the lower left-hand corner of the graph,

so the solution of the constrained problem is x∗ = (
√
2
2 , 1

2), a point at which both
the objective and the constraint function are nondifferentiable. If the initial iterate
is located in the upper left-hand corner of the graph, then the algorithm essentially
needs to trace the classical curved valley to the solution with the added restriction
that it must find the optimal solution located in a corner of the nonsmooth constraint.

In all our runs, Algorithm 2.1 converged rapidly to x∗. On the left-hand side of
Figure 5.2, we plot ‖xk−x∗‖ with respect to k and note that in all cases this distance
rapidly decreased to 1e-10. The final penalty parameter value (ρ) was 1e-01 and the
final sampling radius (ε) was approximately 6e-09 in all runs. Finally, we remark that
over all runs the median optimality error estimate (E500) was approximately 2e-12.

As a brief numerical illustration of the difficulty of our instance of Example 5.1,
we also plotted in Figure 5.2 (on the right-hand side) the results of a second set of
experiments for the same set of starting points, this time obtained without sampling
any gradients. That is, in these runs we ran Algorithm 2.1 with p = 0, violating
the restriction imposed in our analysis that the number of sample points must be at
least n + 1. It is clear in the plots of Figure 5.2 that the sampling of a sufficient
number of gradients is necessary for our algorithm to be robust. (In these runs,

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 493

Fig. 5.1. Illustration of objective contours and the feasible region for an instance of Example 5.1.

Fig. 5.2. Plots of ‖xk − x∗‖ with respect to k for two sets of 10 runs of Algorithm 2.1 applied
to the instance of Example 5.1 illustrated in Figure 5.1. The plots on the left-hand side are the
results obtained with our implementation of Algorithm 2.1 and the plots on the right-hand side are
the results obtained with the same implementation, but with p = 0 so that GS is turned off. The
lack of sampling in the latter set of experiments causes the algorithm to perform poorly.

the final penalty parameter (ρ) was always 1e-01, the final sampling radius (ε) was
always around 2e-03, and the median optimality error estimate (E500) was 8e-01.)
In fact, similarly poor results were obtained for all our remaining test problems when
no sampling was performed (i.e., when p = 0), providing strong evidence that the GS
procedure is critical for the effectiveness of our approach.

Example 5.2. Find an N × N matrix X with normalized columns so that the
product of the K largest eigenvalues of the matrix A ◦XTX is minimized:

(5.2) min
X

ln

⎛⎝ K∏
j=1

λj(A ◦XTX)

⎞⎠ s.t. ‖Xj‖2 = 1, j = 1, . . . , N,

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

494 FRANK E. CURTIS AND MICHAEL L. OVERTON

Table 5.1

Results for Example 5.2 for various values of N .

N K n f500 v(x500) ε E500

2 1 4 1.0000e+00 3.1752e-14 5.9605e-09 7.6722e-12

4 2 16 7.4630e-01 2.8441e-07 4.8828e-05 1.1938e-04

6 3 36 6.3359e-01 2.1149e-06 9.7656e-05 8.7263e-02

8 4 64 5.5832e-01 2.0492e-05 9.7656e-05 2.7521e-03

10 5 100 2.1841e-01 9.8364e-06 7.8125e-04 9.6041e-03

12 6 144 1.2265e-01 1.8341e-04 7.8125e-04 6.0492e-03

14 7 196 8.4650e-02 1.6692e-04 7.8125e-04 7.1461e-03

16 8 256 6.5051e-02 6.4628e-04 1.5625e-03 3.1596e-03

where λj(M) is the jth largest eigenvalue of M , A is a real symmetric N ×N matrix,
◦ denotes the Hadamard matrix product, and Xj is the jth column of X .

Example 5.2 is a nonconvex relaxation of an entropy minimization problem arising
in an environmental application [1]. We remark that this problem is one of the
examples in [8], where the variables were defined as the off-diagonal entries in M =
XTX and M was forced to be positive semidefinite through a penalty term in the
objective, and in [31], where the constraint is enforced through a redefinition of the
objective function. In our case, such reformulations are unnecessary as we can simply
impose constraints requiring that the columns of X are normalized.

Table 5.1 shows the results of Algorithm 2.1 applied to problem (5.2) for various
values of N , where in each case we choose K = N/2. We set A to be the N × N
leading submatrix of a 63× 63 covariance data matrix.3 The data we provide are the
number of optimization variables (n) and the final values obtained in the run yielding
the best optimality error estimate for the smallest final sampling radius. Specifically,
for that run we provide the final objective value (f500), infeasibility measure value
(v(x500)), sampling radius (ε), and optimality error estimate (E500) corresponding to
the final sampling radius. The values are comparable to those obtained in [8].

Example 5.3. Find the minimum �q-norm vector that approximates the solution
of a linear system insofar as the residual is within a given tolerance:

(5.3) min
x
‖x‖q s.t. ‖Rx− y‖ ≤ δ,

where q > 0, R ∈ Rm×n, y ∈ Rm, and δ ≥ 0 is an error tolerance.
Example 5.3 is a problem of interest in compressed sensing, where the goal is to

reconstruct a sparse vector x∗ of length n from m < n observations. In our test,
we choose m = 32 and n = 256 and generate R by taking the first m rows of the
n×n discrete cosine transform matrix. The vector we aim to recover, x∗, is chosen to
take entries equal to 0 with probability 0.90 and entries that have a standard normal
distribution with probability 0.1. The vector x∗ that we generated has 19 nonzero
entries; see the left-hand side of Figure 5.3.

We consider four instances of problem (5.3), each with the same R and x∗. In
the first two instances, y = Rx∗ and δ = 0, but two different values of q are cho-
sen. First, for q = 1, we have the common l1-norm minimization problem; e.g., see
[10, 13]. On the right-hand side of Figure 5.3 we plot the best solution obtained by
Algorithm 2.1. (Note that for this and all other instances of problem (5.3), we define
the best solution as that yielding the lowest objective value.) The final feasibility
violation (v(x500)), sampling radius (ε), and optimality error estimate (E500) corre-

3Publicly available at http://www.cs.nyu.edu/faculty/overton/papers/gradsamp/probs.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 495

Fig. 5.3. x∗ (left) and x500 (right) for Example 5.3 with q = 1 and exact data.

Fig. 5.4. x∗ (left) and x500 (right) for Example 5.3 with q = 0.5 and exact data.

sponding to this solution were 2e-12, 4e-04, and 1e-03, respectively. It can be seen
in Figure 5.3 that the solution vector x∗ is not recovered exactly with this choice
of q. Indeed, defining a nonzero entry as any having an absolute value greater than
1e-4, the illustrated solution has 66 nonzero entries. Thus, in an attempt to steer
the algorithm toward sparser solutions, our second set of runs was performed with
q = 0.5; again, see [10, 13]. In this case, the best solution obtained by Algorithm 2.1
is plotted along with x∗ in Figure 5.4. The final feasibility violation, sampling radius,
and optimality error estimate corresponding to this solution were 3e-05, 5e-05, and
8e-01, respectively. Note that with q < 1, the objective is nonconvex, with multiple
local minimizers, and non-Lipschitz. However, we do consistently find that a solution
with few nonzero entries is found; e.g., the solution in Figure 5.4 has only 32.

In our other two instances of problem (5.3), y = Rx∗+e, where e is a noise vector
with entry ej distributed uniformly in [Rjx∗ − 0.005|Rjx∗|, Rjx∗ + 0.005|Rjx∗|]; i.e.,
there is up to a 0.5% difference (componentwise) between y and Rx∗. We assume
that this error level is overestimated and so choose δ = 2‖Rx∗ − y‖. For q = 1 and

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

496 FRANK E. CURTIS AND MICHAEL L. OVERTON

Fig. 5.5. x500 when q = 1.0 (left) and x500 when q = 0.5 (right) for Example 5.3 with noisy data.

q = 0.5, respectively, the best solutions obtained are plotted in Figure 5.5. For q = 1,
the illustrated solution has 134 nonzero entries with v(x500), ε, and E500 equal to
approximately 0e-00, 2e-03, and 2e-03, respectively. For q = 0.5, the illustrated
solution has only 29 nonzero entries with v(x500), ε, and E500 equal to approximately
0e-00, 6e-06, and 2e-01, respectively. Again, note that with q < 1, the objective is
nonconvex, with multiple local minimizers, and non-Lipschitz.

Example 5.4. Find the robust minimizer of a linear objective function subject to
an uncertain convex quadratic constraint:

(5.4) min
x

fTx s.t. xTAx+ bTx+ c ≤ 0 ∀(A, b, c) ∈ U ,

where f ∈ Rn and for each (A, b, c) in the uncertainty set U , A is an n × n positive
semidefinite matrix, b is a vector in Rn, and c is a real scalar value.

Example 5.4 is a problem of interest in robust optimization. In this modeling
framework, the primary concern is that the parameters defining an optimization prob-
lem are in practice estimated and are therefore subject to measurement and statistical
errors. Since the solution is typically sensitive to perturbations in these parameters,
it is important to take data uncertainty into account in the optimization process. For
instance, in problem (5.4), we require that any solution vector x∗ satisfy the convex
quadratic constraint no matter which instance in the uncertainty set U is realized.
Problems of this type have applications in, for example, robust mean-variance port-
folio selection [18], least-squares problems [2], and data-fitting [43].

We generated random data for an instance of problem (5.4) with n = 100 un-
knowns. The uncertainty set was defined to be

U :=

{
(A, b, c) : (A, b, c) = (A(0), b(0), c(0)) +

10∑
i=1

ui(A(i), b(i), c(i)), uTu ≤ 1

}
,

where A(i), i = 0, . . . , 10, were generated randomly using MATLAB’s built-in
sprandsym function. In particular, A(0) was a symmetric 100 × 100 matrix with
approximately 0.1n2 nonzero entries, generated by a shifted sum of outer products so
that the condition number was approximately 10 (i.e., A(0) was set by

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 497

Fig. 5.6. Plots of f(xk) (left, linear scale) and v(xk) (right, log scale) with respect to k for 10
runs of Algorithm 2.1 on an instance of Example 5.4.

sprandsym(100,0.1,0.1,2)), and A(i) for i = 1, . . . , 10 was generated in the same
way but multiplied by the scalar factor 0.01. The entries of all the b(i) vectors had
a standard normal distribution. Finally, c(0) = −10, while c(i) for i = 1, . . . , 10 were
uniformly distributed on [−1, 1]. The feasible region was verified to be nonempty
as it included the origin. At a given xk, the corresponding uk in U was computed
by minimizing a linear function over the closed unit ball, with which the constraint
value and gradient was obtained. We remark that as described in [2], this instance
can be reformulated and solved as an equivalent semidefinite program. However, it is
worth noting that our algorithm can also be applied to more general robust nonlinear
programs that do not necessarily have convenient reformulations.

Algorithm 2.1 converges rapidly from all starting points on this instance of prob-
lem (5.4). In Figure 5.6, on the left-hand side we plot the objective function value
f(xk) with respect to k (on a linear scale), and on the right-hand side we plot the
feasibility violation measure v(xk) with respect to k (on a log scale). In all instances,
the function values converge to the optimal value and the violation measures converge
to zero (or around at most 1e-5) comfortably in under 100 iterations. (Note that in
the plot of violation measures, gaps are found when the violation dropped to exactly
zero.) The median final penalty parameter value (ρ) was 1e-01, the median final
sampling radius (ε) was 6e-07, and the median final optimality error estimate (E500)
was 2e-08. These results indicate that Algorithm 2.1 can successfully solve robust
optimization problems along the lines of Example 5.4.

6. Conclusion. We have proposed and analyzed an algorithm for nonconvex,
nonsmooth constrained optimization. The method is based on an SQP framework
where a GS technique is used to create augmented linear models of the objective and
constraint functions around the current iterate. We have shown that if the problem
functions are locally Lipschitz and continuously differentiable almost everywhere in
R

n, then the algorithm successfully locates stationary points of a penalty function.
Preliminary numerical experiments illustrate that the algorithm is effective and ap-
plicable to numerous types of problems.

We believe that our approach can be fine-tuned for individual applications. For
example, for Example 5.3 with δ = 0, it would be ideal if at any feasible iterate the

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

498 FRANK E. CURTIS AND MICHAEL L. OVERTON

search direction is computed in the null space of R. Moreover, in such cases, one may
consider sampling gradients only at points in this space, and one may find that fewer
points are needed overall; e.g., n − m + 1 as opposed to n + 1. More generally, if
f, c1, . . . , cm are convex, then subproblem (2.6) may be replaced by

(6.1)

min
d,z

z + 1
2d

THkd

s.t.

{
f(xk) +∇f(x)T d ≤ z ∀x ∈ Bf

ε,k,

cj(xk) +∇cj(x)T d ≤ 0 ∀x ∈ Bcj

ε,k, j = 1, . . . ,m

(i.e., the auxiliary variables r may be fixed to zero), after which the penalty parameter
can be decreased, if necessary, to ensure that the computed search direction is one of
descent for the penalty function. The main idea here is to reduce the size of the QP
subproblem, as its solution is the main computational expense of the approach.

Finally, we remark that the SQP-GS algorithm discussed in this paper can easily
be altered into a sequential linear programming algorithm with GS (SLP-GS). In
particular, the quadratic term in (2.6) can be replaced by a trust region constraint on
the search direction, yielding the linear programming subproblem

(6.2)

min
d,z,r

ρz +
m∑
j=1

rj

s.t.

⎧⎪⎪⎨⎪⎪⎩
f(xk) +∇f(x)T d ≤ z ∀x ∈ Bf

ε,k,

cj(xk) +∇cj(x)T d ≤ rj ∀x ∈ Bcj

ε,k, rj ≥ 0, j = 1, . . . ,m,

‖d‖∞ ≤ Δk,

where Δk > 0 is a trust region radius. Our MATLAB implementation contains an
option for running SLP-GS instead of SQP-GS. However, although the computation
time per iteration will generally be less for SLP-GS, the rate of convergence is typically
much slower when compared to SQP-GS. There are also a variety of details that must
be worked out to prove the convergence of such an algorithm, in particular with
respect to the value and updates for the trust region radius.

Acknowledgments. The authors would like to thank Adrian S. Lewis and the
anonymous referees for many useful comments and suggestions that significantly im-
proved the paper. They are also indebted to Krzysztof C. Kiwiel, whose careful,
generous, and insightful comments helped to improve the convergence analysis.

REFERENCES

[1] K. M. Anstreicher and J. Lee, A masked spectral bound for maximum-entropy sampling, in
MODA 7: Advances in Model-Oriented Design and Analysis, A. di Bucchianico, H. Läuter,
and H. P. Wynn, eds., Springer-Verlag, Berlin, 2004, pp. 1–10.

[2] A. Ben-Tal and A. Nemirovski, Robust optimization: Methodology and applications, Math.
Program. Ser. B, 92 (2002), pp. 453–480.

[3] P. T. Boggs and J. W. Tolle, Sequential quadratic programming, Acta Numer., 4 (1995),
pp. 1–51.

[4] J. V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control
Optim., 29 (1991), pp. 968–998.

[5] J. V. Burke, Calmness and exact penalization, SIAM J. Control Optim., 29 (1991), pp. 493–
497.

[6] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, HIFOO: A MATLAB package
for fixed-order controller design and H-infinity optimization, in Proceedings of the IFAC
Symposium on Robust Control Design, Haifa, Israel, 2006.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SQP FOR NONSMOOTH CONSTRAINED OPTIMIZATION 499

[7] J. V. Burke, A. S. Lewis, and M. L. Overton, Approximating subdifferentials by random
sampling of gradients, Math. Oper. Res., 27 (2002), pp. 567–584.

[8] J. V. Burke, A. S. Lewis, and M. L. Overton, A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization, SIAM J. Optim., 15 (2005), pp. 751–779.

[9] R. H. Byrd, G. Lopez-Calva, and J. Nocedal, A line search exact penalty method using
steering rules, Math. Program., DOI: 10.1007/s10107-010-0408-0.

[10] E. J. Candès and T. Tao, Near optimal signal recovery from random projections: Universal
encoding strategies, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[11] F. H. Clarke, Optimization and Nonsmooth Analysis, CMS Ser. Monogr. Adv. Texts, John
Wiley, New York, 1983.

[12] F. E. Curtis and X. Que, An adaptive gradient sampling algorithm for nonsmooth optimiza-
tion, Lehigh ISE/COR@L Technical Report 11T-008, Optim. Methods Softw., in review.

[13] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[14] D. Dotta, A. S. De Silva, and I. C. Decker, Design of power system controllers by non-

smooth, nonconvex optimization, in Proceedings of the IEEE Power and Energy Society
General Meeting, Calgary, Alberta, Calgary, 2009.

[15] R. Fletcher, Practical Methods of Optimization, John Wiley, New York, 1987.
[16] M. Fukushima, A successive quadratic programming method for a class of constrained nons-

mooth optimization problems, Math. Program., 49 (1990), pp. 231–251.
[17] P. E. Gill and E. Wong, Sequential quadratic programming methods, in Mixed Integer Nonlin-

ear Programming, J. Lee and S. Leyffer, eds., IMA Vol. Math. Appl. 154, Springer-Verlag,
New York, 2012, pp. 147–224.

[18] D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res., 28
(2003), pp. 1–38.

[19] S. Guenter, M. Sempf, P. Merkel, E. Strumberger, and C. Tichmann, Robust control of
resistive wall modes using pseudospectra, New J. Phys., 11 (2009), pp. 1–40.

[20] S. Gumussoy, D. Henrion, M. Millstone, and M. L. Overton, Multiobjective robust control
with HIFOO 2.0, in Proceedings of the IFAC Symposium on Robust Control Design, Haifa,
Israel, 2009.

[21] S. P. Han, A globally convergent method for nonlinear programming, J. Optim. Theory Appl.,
22 (1977), pp. 297–309.

[22] S. P. Han and O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math.
Program., 17 (1979), pp. 251–269.

[23] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms
II, Grundlehren Math. Wiss., Springer-Verlag, New York, 1993.

[24] E. W. Karas, A. Ribeiro, C. A. Sagastizábal, and M. V. Solodov, A bundle-filter method
for nonsmooth convex constrained optimization, Math. Program., 116 (2007), pp. 297–320.

[25] N. Karmitsa and M. M. Makela, Limited memory bundle method for large bound con-
strained nonsmooth optimization: Convergence analysis, Optim. Methods Softw., 25
(2010), pp. 895–916.

[26] K. C. Kiwiel, An exact penalty function algorithm for non-smooth convex constrained mini-
mization problems, IMA J. Numer. Anal., 5 (1985), pp. 111–119.

[27] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math.
1133, Springer-Verlag, New York, 1985.

[28] K. C. Kiwiel, A constraint linearization method for nondifferentiable convex minimization,
Numer Math., 51 (1987), pp. 395–414.

[29] K. C. Kiwiel, Exact penalty functions in proximal bundle methods for constrained convex
nondifferentiable minimization, Math. Program., 52 (1991), pp. 285–302.

[30] K. C. Kiwiel, Convergence of the gradient sampling algorithm for nonsmooth nonconvex op-
timization, SIAM J. Optim., 18 (2007), pp. 379–388.

[31] A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods, Math.
Program., DOI 10.1007/s10107-012-0514-2.

[32] R. Mifflin,An algorithm for constrained optimization with semismooth functions, Math. Oper.
Res., 2 (1977), pp. 191–207.

[33] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput., 35 (1980),
pp. 773–782.

[34] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Ser. Oper. Res.,
New York, 2006.

[35] E. Polak, D. Q. Mayne, and Y. Wardi, On the extension of constrained optimization al-
gorithms from differentiable to nondifferentiable problems, SIAM J. Control Optim., 21
(1983), pp. 179–203.

[36] M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

500 FRANK E. CURTIS AND MICHAEL L. OVERTON

Numerical Analysis, Lecture Notes in Math. 630, Springer, New York, 1978, pp. 144–157.
[37] M. J. D. Powell, Variable metric methods for constrained optimization, in Mathematical Pro-

gramming: The State of the Art, A. Bachem, M. Grötschel, and B. Korte, eds., Springer-
Verlag, New York, 1983, pp. 288–311.

[38] R. T. Rockafellar, Convex Analysis, Princeton Landmarks Math. Phys., Princeton Univer-
sity Press, Princeton, NJ, 1970.

[39] R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in
nonlinear programming, in Math. Program. Study 17, 1982, pp. 28–66.

[40] E. Rosenberg, Exact penalty functions and stability in locally Lipschitz programming, Math.
Program., 30 (1984), pp. 340–356.

[41] A. Ruszczynski, Nonlinear Optimization, Princeton University Press, Princeton, NJ, 2006.
[42] J. Vanbiervliet, K. Verheyden, W. Michiels, and S. Vandewalle, A nonsmooth optimi-

sation approach for the stabilisation of time-delay systems, ESAIM Control Optim. Calc.
Var., 14 (2008), pp. 478–493.

[43] G. A. Watson, Data fitting problems with bounded uncertainties in the data, SIAM J. Matrix
Anal. Appl., 22 (2001), pp. 1274–1293.

D
ow

nl
oa

de
d

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

