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We propose a globalization strategy for nonlinear constrained optimization. The method employs a ‘flex-
ible’ penalty function to promote convergence, where during each iteration the penalty parameter can be
chosen as any number within a prescribed interval, rather than a fixed value. This increased flexibility
in the step acceptance procedure is designed to promote long productive steps for fast convergence. An
analysis of the global convergence properties of the approach in the context of a line search sequential
quadratic programming method and numerical results for the KNITRO software package are presented.
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1. Introduction

In this paper, we consider step acceptance mechanisms for nonlinear constrained optimization. For
simplicity, we frame our discussion in the context of the equality-constrained problem

min
x∈Rn

f (x)

s.t.c(x) = 0,
(1.1)

where f : Rn → R andc: Rn → Rt aresmooth functions, but consider ways in which our methods
can be applied to problems with inequality constraints in Section5. The main purpose of this paper
is to develop a globalization strategy designed to promote long productive steps and fast convergence,
supported by convergence guarantees to first-order optimal points.

Most globally convergent iterative algorithms for problem (1.1) have the following general form. At
a given iteratexk, a step is computed in either the primal or primal–dual space based on local and/or
historical information of the problem functions. The step is then either accepted or rejected based on the
reductions attained in the nonlinear objectivef (x), constraint infeasibility‖c(x)‖ or some combination

†Email: fecurt@gmail.com

c© Theauthor 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 at L
ehigh U

niversity on M
ay 25, 2015

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


750 F. E. CURTIS AND J. NOCEDAL

of both measures. Here,‖ ∙‖ denotes a norm onRt . The manner in which these reductions are quantified
and evaluated may have a significant impact on the types of steps accepted and the speed with which the
algorithm converges to a solution.

We motivate our proposed globalization strategy, i.e. step acceptance method, by outlining two popu-
lar tools used for this purpose: exact penalty functions and filter mechanisms. The exact penalty function
we consider in this paper combines the objective and a constraint infeasibility measure into a function
of the form

φπ(x) , f (x)+ π‖c(x)‖, (1.2)

whereπ > 0 is a penalty parameter. During iterationk, a step is deemed acceptable only if a sufficient
reduction inφπk is attained for a suitable value of the penalty parameter. In contemporary algorithms,
the value forπk is chosen upon completion of the step computation procedure and the sequence{πk} is
typically monotonically increasing throughout the run of the algorithm. Figure1 illustrates the region of
acceptable points frompk = (‖c(xk)‖, f (xk)), corresponding to the current iteratexk, in ‖c‖– f space.
A stepdk is acceptable if the resulting pointx̄ = xk + dk yields a pair(‖c(x̄)‖, f (x̄)) lying sufficiently
below the solid line throughpk, where the slope of the line is defined by the current value of the penalty
parameterπk. The global convergence properties of such an approach were first shown byHan(1977)
andPowell(1978).

A filter mechanism, proposed byFletcher & Leyffer(2002), avoids the definition of a parameter
to balance reductions in the objective with reductions in the constraints. In the spirit of multiobjective
optimization, a filter considers pairs of values(‖c(x)‖, f (x)) obtained by evaluating the functions‖c‖
and f at all or some iterates preceding the current one. A pair(‖c(xi )‖, f (xi )) is said to dominate
another pair(‖c(xj )‖, f (xj )) if and only if both‖c(xi )‖ 6 ‖c(xj )‖ and f (xi ) 6 f (xj ). The filterF
is then defined to be an index set corresponding to a list of pairs such that no pair dominates any other.
A stepdk from xk is considered acceptable if the resulting pointx̄ corresponds to a pair(‖c(x̄)‖, f (x̄))

FIG. 1. Boundary of the region of acceptable points frompk for the penalty functionφπk .
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FLEXIBLE PENALTY FUNCTIONS FOR NONLINEAR CONSTRAINED OPTIMIZATION 751

FIG. 2. Boundary of the region of acceptable points for a filter with three entries.

such that either

‖c(x̄)‖ � ‖c(xi )‖ or f (x̄)� f (xi ) (1.3)

for all i ∈ F , where by ‘�’ we mean that the value is less with respect to some appropriate margin.
Upon the acceptance of such a step, the pair(‖c(x̄)‖, f (x̄)) may be added to the filter, in which case
all points dominated by this pair are removed fromF . Figure2 illustrates the region of acceptable
points for a filter with three entries as that lying sufficiently below and to the left of the piecewise linear
function. The global convergence guarantees of such an approach have been shown when paired with
certain types of step computation methods; e.g. seeFletcheret al. (1998),Gonzagaet al. (2003) and
Wächter & Biegler(2005a,b).

Penalty functions and filter mechanisms both have their own advantages and disadvantages. One
disadvantage of a penalty function relates to the monotonicity required when updating the penalty pa-
rameterπ during the solution process. Nonmonotone updates for the penalty parameter that maintain
global convergence guarantees are available, but such methods often rely onad hocheuristics that even-
tually fall back on the convergence properties of monotone strategies, and so we do not discuss them
here. Depending on the specific update strategy used,π may at some point be set to an excessively large
value, even at a point that is relatively far from a solution. As a result, a large priority will be placed
on computing steps that produce sufficient reductions in constraint infeasibility, effectively ‘blocking’
steps that move away from the feasible region. This can be detrimental as empirical evidence has shown
that accepting steps that temporarily increase infeasibility can often lead to fast convergence. Figure3
illustrates this blocking behaviour of a penalty function, where we highlight the region of points that
would be rejected despite the fact that each corresponding step would have provided a reduction in the
objective f (and so may have been acceptable to a filter).

We note that a second disadvantage of a penalty function is that a low value ofπ may block steps that
improve feasibility but increasef . However, modern step acceptance strategies effectively deal with this
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752 F. E. CURTIS AND J. NOCEDAL

FIG. 3. A region of points blocked byφπk .

problem by defining local models ofφπ (as will be seen in Section3), with which an adequately large
value ofπ can be determined to avoid excessive blocking. Thus, our view is that the main weakness of
penalty-based strategies is the blocking effect illustrated in Fig.3, which can be particularly detrimental
when‖ck‖ is zero, or at least small, whilexk is far from optimal.

One disadvantage of a filter mechanism is that a step can be blocked by a filter entry, i.e. historical
information of the problem functions, when in fact the step is a productive move towards a solution in
a local region of the search space. This is particularly worrisome when steps are blocked that would
amount to a sufficient reduction in constraint infeasibility. Figure4 depicts a filter with the single entry
a where the pointpk = (‖c(xk)‖, f (xk)), corresponding to the current iteratexk, is shown as the
isolated point with an objective value sufficiently less than the filter entry. The shaded portion illustrates
one region of points that are blocked by the filter, despite the fact that a step into this region would
correspond to a reduction in constraint infeasibility from the current iterate (and so may be acceptable
for a penalty function approach with parameterπk).

In an extreme example, consider the case where the filter entrya in Fig.4 is a Pareto optimal solution
to the multiobjective optimization problem of minimizing the pair(‖c(x)‖, f (x)) over all x ∈ Rn. A
point is Pareto optimal if it cannot be dominated by any other point. Thus, if the current iterate again
corresponds to the pointpk in Fig. 4, then all paths frompk to the feasible region must pass through a
region of points dominated bya in ‖c‖– f space. Feasibility can only be attained if a single computed
step were to fall beyond the region dominated by the filter entry or if a backup mechanism, such as a
feasibility restoration phase, were implemented.

In summary, both penalty functions and filters can be shown to block different types of produc-
tive steps. A penalty function may suffer from high priority being placed on improving feasibility and
convergence can be slowed by forcing the algorithm to hug the feasible region. A filter mechanism, on
the other hand, may suffer from handling problem (1.1) too much like a multiobjective optimization
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FLEXIBLE PENALTY FUNCTIONS FOR NONLINEAR CONSTRAINED OPTIMIZATION 753

FIG. 4. A region of points blocked by a filter with entrya.

problem, when in fact a certain priority on converging to the feasible region may be appropriate, espe-
cially as the algorithm progresses.

2. Flexible penalty functions

In this section, we define a new step acceptance mechanism for nonlinear programming algorithms. By
observing the strengths and weaknesses of penalty functions and filters, we hope to emulate some of the
step acceptance behaviours of both methods while attempting to avoid any blocking of productive steps.

During early iterations, the filter mechanism has the benefit that a variety of steps are considered
acceptable. For example, for a one-element filter, i.e. a filter containing only an entry corresponding to
the current iterate, a step will be accepted as long as a sufficient reduction in the objective or constraint
infeasibility is attained. This may be of use to promote long steps during early iterations when an appro-
priate value for the penalty parameter may not yet be known. However, during later iterations, it may be
reasonable to assume that an appropriate value for the penalty parameter may be determinable based on
information computed throughout the run of the algorithm, which can be used to correctly block steps
from increasing constraint infeasibility. The use of a penalty function in later iterations may also avoid
the risk of blocking steps in the manner illustrated in Fig.4.

In an attempt to define a single mechanism that will capture all of these characteristics, and given
that the penalty function approach appears to be more flexible than a filter in that it permits a reweighting
of objective and constraint infeasibility measures, we present an improvement of the penalty strategies.

Our method can be motivated by observing the iterative nature of the penalty parameter update
implemented in some current algorithms; e.g. seeWaltzet al.(2006). At the start of iterationk, a specific
valueπk−1 of the penalty parameter is carried over from the previous iteration. If the algorithm were to
maintain this value, then only a step corresponding to a move into the region sufficiently below the solid
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754 F. E. CURTIS AND J. NOCEDAL

FIG. 5. Illustration of the iterative nature of penalty parameter updates.

line in Fig. 5 would be acceptable. However, upon the calculation ofdk, the algorithm may determine
that an increase of the penalty parameter to some valueπ̄k > πk−1 may be appropriate, in which case
only a step corresponding to a move into the region sufficiently below the dashed line in Fig.5 would
be acceptable. Rather than automatically settingπk ← π̄k, a simple heuristic that maintains the global
convergence properties of the algorithm is to first compute the function values forx̄ = xk + dk, namely,
‖c(x̄)‖ and f (x̄). If (‖c(x̄)‖, f (x̄)) lies sufficiently below the dashed line in Fig.5, then we may accept
the step and indeed setπk ← π̄k. However, if(‖c(x̄)‖, f (x̄)) lies sufficiently below the solid line, then
the step could be considered acceptable for settingπk ← πk−1, effectively avoiding an increase in the
penalty parameter. In summary, such a strategy does not consider a single value ofπ at xk, but rather
may select from a pair of values depending on the actual reductions attained by the step. Thus, we can
view the region of acceptable points as that lying below the solidor dashed line in Fig.5.

An extension of this idea forms the basis of the method we now propose. Consider the collection of
penalty functions

φπ(x) , f (x)+ π‖c(x)‖, π ∈ [π l , πu], (2.1)

for 0 < π l 6 πu. We define a step to be acceptable if a sufficient reduction inφπ has been attained for
at least oneπ ∈ [π l , πu]. Clearly, if π l is always chosen to equalπu, then this approach is equivalent to
using a penalty function with a fixedπ during each iteration. Alternatively, ifπ l ≈ 0 while πu is very
large, then this approach has the form of a one-element filter. In general, the region of acceptable points
is that given by the region down and to the left of the piecewise linear function illustrated in Fig.6,
where the kink in the function always occurs atpk = (‖c(xk)‖, f (xk)), corresponding to the current
iteratexk. As the penalty parameterπ is allowed to fluctuate in the interval [π l , πu], we refer to (2.1)
as a ‘flexible’ penalty function.

Let us expound further on the relationship between our approach and some techniques that employ
a filter by saying that the region of acceptable points in Fig.6 has features similar to the ‘slanting
envelope’ around a filter entry proposed byChin & Fletcher(2003) and considered later in a paper byLi
(2006). However, despite the fact that the shape of the acceptable regions is similar in some areas of the
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FLEXIBLE PENALTY FUNCTIONS FOR NONLINEAR CONSTRAINED OPTIMIZATION 755

FIG. 6. Boundary of the region of acceptable points frompk for a flexible penalty function over [π l
k, πu

k ].

‖c‖– f plane, the important difference between our flexible penalty function and these and other filter
mechanisms is that we do not maintain a collection of previous infeasibility measure/objective value
pairs. The step acceptance criteria we propose for a flexible penalty function depend only onπ l

k, πu
k and

constraint and objective information at the current iteratexk.
The practical behaviour of standard penalty function techniques depends heavily on the update strat-

egy for the single parameterπ . For a flexible penalty function, we need to only consider the update
strategies for two parameters:π l andπu. As different requirements in terms of convergence guarantees
are necessary for each of these boundary values, and as they have significantly different practical effects,
we have the ability to design their updates in a manner suitable for accepting long productive steps.

We present a concrete strategy for updatingπ l andπu in Section3 as certain details are better
described once features of the chosen step computation procedure are outlined.

Notation. In the remainder of our discussion, we drop functional notation once values are clear from
the context and delimit iteration number information for functions as with variables; i.e. we denote
fk , f (xk) and similarly for other quantities. We define‖∙‖ to be any fixed norm.

3. A line search sequential quadratic programming framework

In this section, we describe a precise globalization strategy for problem (1.1) based on the flexible
penalty function (2.1) in the context of a line search sequential quadratic programming (SQP) method.

Let us begin by formalizing a basic SQP method. The Lagrangian function for problem (1.1) is

L(x, λ) , f (x)+ λTc(x) (3.1)
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756 F. E. CURTIS AND J. NOCEDAL

andthe first-order optimality conditions are

∇L(x, λ) =

[
g(x)+ A(x)Tλ

c(x)

]

= 0, (3.2)

whereg(x) , ∇ f (x), A(x) is the Jacobian ofc(x) andλ ∈ Rt areLagrange multipliers. The line
search SQP methodology applied to problem (1.1) defines an appropriate displacementdk in the primal
space from an iteratexk asthe minimizer of a quadratic model of the objective subject to a linearization
of the constraints. The quadratic program has the form

min
d∈Rn

f (xk)+ g(xk)
Td + 1

2dTW(xk, λk)d (3.3a)

s.t.c(xk)+ A(xk)d = 0, (3.3b)

where

W(x, λ) ≈ ∇2
xxL(x, λ) = ∇2

xx f (x)+
t∑

i=1

λi∇2
xxci (x)

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian. Here,ci (x) andλi

denotethe i th constraint function and its corresponding dual variable, respectively. If the constraint
JacobianA(xk) hasfull row rank andW(xk, λk) is positive definite on the null space ofA(xk), then
a solutiondk to (3.3) is well defined and can be obtained via the solution of the linear system (see
Nocedal & Wright,2006):

[
W(xk, λk) A(xk)

T

A(xk) 0

][
dk

δk

]

= −

[
g(xk)+ A(xk)

Tλk

c(xk)

]

. (3.4)

Thenew iterate is then given by

xk+1← xk + αkdk,

wherethe step-length coefficientαk ∈ (0,1] is given by a globalization procedure. Here, we intend to
employ the flexible penalty function (2.1), requiring appropriate update strategies forπ l andπu. In the
following discussion, let us assume that‖ck‖ 6= 0 for eachk. We comment on suitable updates forπ l

k
andπu

k in the special case of‖ck‖ = 0 at the end of this section.
First, consider the parameterπu. A large value ofπu indicatesthat the algorithm considers almost

any step that provides a sufficiently large reduction in constraint infeasibility to be acceptable. Thus,
as approaching the feasible region is a necessity for any algorithm for solving problem (1.1), we may
choose to initializeπu to a large value and increase it only when necessary. This can be done by updating
πu in a manner currently used for settingπ in some contemporary penalty function approaches. The
technique we have in mind makes decisions based on a modelmπ of the penalty functionφπ andin
effect will increaseπ (or, in our case,πu) if and only if the computed step indicates that a large increase
in the objective is likely to result from a reduction in constraint infeasibility.

Let us define a local model ofφπ aroundthe current iteratexk as

mπ (d) = fk + gT
k d +

ω(d)

2
dTWkd + π‖ck + Akd‖,
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FLEXIBLE PENALTY FUNCTIONS FOR NONLINEAR CONSTRAINED OPTIMIZATION 757

where

ω(d) ,

{
1 if dTWkd > 0

0 otherwise
(3.5)

(e.g. seeEl-Hallabi, 1999,Byrd et al., 1999,Omojokun,1989, andWaltz et al., 2006). Notice that
mπ containsa linear or quadratic model of the objectivef and a linear approximation of constraint
infeasibility. With this approximation, we can estimate the reduction inφπ attainedby dk by evaluating

mredπ (dk) , mπ (0)−mπ (dk)

=
[
−gT

k dk −
ωk

2
dT

k Wkdk

]
+ π‖ck‖. (3.6)

As the stepdk satisfiesthe linearized constraints in problem (3.3), it follows that the model predicts no
increase in constraint infeasibility, as evidenced by the non-negative contribution of the last term in (3.6).
Our model of the objective, however, may indicate that an increase or decrease inf (corresponding to
a negative or positive value, respectively, of the term in square brackets in (3.6)) is likely to occur along
dk. Overall, we consider the reduction in the modelmπ attainedby dk to be sufficiently large if

mredπ (dk) > σπ‖ck‖, (3.7)

for some 0< σ < 1, which can be seen to hold if

π >
gT

k dk +
ωk
2 dT

k Wkdk

(1− σ)‖ck‖
, χk. (3.8)

Various algorithms will in fact enforce inequality (3.7) and so will setπ according to (3.8) for allk.
It turns out that our desired properties ofπu canalso be achieved by constructing an update around

the termχk. In particular, we propose a scheme of the form

πu
k ←

{
πu

k−1 if πu
k−1 > χk,

χk + ε otherwise,
(3.9)

whereε > 0 is a small constant. In this manner,πu will be increased during an iteration if and only if
an increase in the model objective, reflected by a positive numerator in (3.8), indicates that an increase
in f is likely to occur in conjunction with a move towards the feasible region, implied by the fact that
the step satisfies the linearized constraints in (3.3).

By using the modelmπ to set a value for the penalty parameter, the resulting sequence of values
can be shown to remain bounded under common assumptions due to certain desirable properties of
the quadratic subproblem (3.3). (This phenomenon, which remains important for our flexible penalty
function approach in the context ofπu, can be observed more precisely in our proof of Lemma3.8 in
Section3.1.) A drawback of this technique, however, is that such a model may not always accurately
reflect changes in the objective and constraint values. For example,mredπ may suggest that a move
alongdk correspondsto a decrease in constraint infeasibility and an increase in the objective, when
in fact the opposite may occur if one were to take the full stepdk. As such, the penalty parameter
may be set to a large value that results in excessive blocking in later iterations. Further, motivation for
incorporating a flexible penalty function, therefore, results from the fact that an excessively large value
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758 F. E. CURTIS AND J. NOCEDAL

FIG. 7. Distinct regions defined by the current state of a flexible penalty function.

for πu
k is less of a concern if the penalty parameter is able to fluctuate over an interval [π l

k, π
u
k ] during the

line search—especially if the mechanism for choosingπ l
k is not based on local models of the functions

at all.
The method we propose for settingπ l is such a technique. In particular, we choose to haveπ l

k set
in a manner that reflects the actual reductions inf and‖c‖ attained during thepreviousiterationk − 1
(whereπ l

0 is provided as a small initial value).
To motivate the details of the scheme we propose, consider the numbered regions illustrated in

Fig. 7, where the position and shape of each portion depend on the parametersπ l
k (set during iteration

k − 1) andπu
k , and the location of the pointpk = (‖c(xk)‖, f (xk)). A step into region I would not

be acceptable to the flexible penalty function (2.1), as opposed to a step into region II, III or IV, which
would be acceptable. Our strategy for settingπ l

k+1 will depend on the region in‖c‖– f space to which
the stepαkdk moved upon the conclusion of the line search. If a sufficient reduction inφπ l

k
was obtained

(i.e. the step was into region III or IV), then we say that the reductions inf and/or‖c‖ are sufficient for
the current state of the flexible penalty function and so we setπ l

k+1 ← π l
k. Otherwise, i.e. if the step

was into region II,π l will be increased. This has the logical interpretation that we only become more
restrictive by blocking steps that increase infeasibility when the algorithm is confronted with steps that
indicate thatactual moves towards the feasible region correspond toactual increases in the objective
(thus freeing ourselves from being bound by parameters set based on models or other local information).
The precise update after a step into region II is given by

π l
k+1← min{πu

k , π l
k +max{0.1(ν− π l

k), ε
l }}, (3.10)
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FLEXIBLE PENALTY FUNCTIONS FOR NONLINEAR CONSTRAINED OPTIMIZATION 759

whereεl > 0 is some small constant and

ν =
f (xk + αkdk)− f (xk)

‖c(xk)‖ − ‖c(xk + αkdk)‖
. (3.11)

Here,the definition ofν ensures that the value forπ l
k+1 dependson the actual reductions in the objective

and constraint infeasibility attained byαkdk, where it can be seen thatν ∈ [π l
k, π

u
k ] after a step into

region II. We introduce the damping factor 0.1 so that the value forπ l will increase only gradually, thus
blocking as few future steps as possible while still ensuring convergence.

Our procedures for updating the state of the flexible penalty function (2.1) are now set. Before
presenting the algorithm in detail, however, let us remark on an important detail of the line search
procedure for computingαk. With Dφπ(dk) denotedas the directional derivative ofφπ alongdk, we
require thatαk satisfythe Armijo condition

φπ(xk + αkdk) 6 φπ(xk)+ ηαk Dφπm
k
(dk), for someπ ∈ [π l

k, π
u
k ], (3.12)

where0 < η < 1 andπm
k ∈ [π l

k, π
u
k ]. Note that we have defined a parameterπm

k for calculating a single
value of the directional derivative, which must be chosen to ensure that this term is sufficiently negative
for eachk. This could be achieved by choosingπm

k = πu
k for all k (see Lemma3.7). However, as seen

in Theorem 18.2 ofNocedal & Wright(2006), the directional derivative is given by

Dφπm
k
(dk) = gT

k dk − πm
k ‖ck‖ (3.13)

andso larger values ofπm
k will make this term more negative. As fewer values ofαk will satisfy (3.12)

for more negative values ofDφπm
k
(dk), we would like to chooseπm

k in the interval [π l
k, π

u
k ] so that this

term is negative enough to ensure sufficient descent, while also being as close to zero as possible so as
to allow the largest number of acceptable step-lengths. We use

πm
k ← max{π l

k, χk}, (3.14)

which,along with (3.9) and the fact thatπ l
k 6 πu

k−1 (see(3.10)), ensuresπm
k > χk andπm

k ∈ [π l
k, π

u
k ].

Overall, we have described the following algorithm.

ALGORITHM 3.1 Line search SQP method with a flexible penalty function

Initialize x0, λ0, 0 < π l
0 6 πu

−1, 0 < ε, εl , and 0< η, σ < 1
for k = 0,1,2, . . . , until a convergence test for problem (1.1) is satisfied

Computefk, gk, ck, Wk, andAk andsetαk ← 1
Compute(dk, δk) via (3.4)
If ck 6= 0, setπu

k accordingto (3.9) andπm
k by (3.14); else, setπu

k ← πu
k−1 andπm

k ← πm
k−1

until theArmijo condition (3.12) holds for someπ ∈ [π l
k, π

u
k ], setαk ← αk/2

If the Armijo condition (3.12) holds forπ = π l
k, setπ l

k+1← π l
k; else, setπ l

k+1 by (3.10)
Set(xk+1, λk+1)← (xk, λk)+ αk(dk, δk)

endfor

A practical implementation of the line search procedure of Algorithm3.1 is attained by the obser-
vation that, during iterationk, the Armijo condition (3.12) is satisfied forπ ∈ [π l

k, π
u
k ] if and only if

it is satisfied for eitherπ = π l
k or π = πu

k . Thus, the line search for a given stepdk canbe performed
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760 F. E. CURTIS AND J. NOCEDAL

simply by evaluating the reductions attained inφπ l
k

andφπu
k
. We also note that in the special case of

‖ck‖ = 0 during iterationk, we maintainπu
k ← πu

k−1 asin this case the directional derivativeDφπ(dk)

is independent ofπ (see (3.13)). We can also trivially setπm
k ← π l

k andmaintainπ l
k+1← π l

k sincein
this setting region II of Fig.7 is empty.

3.1 Global analysis

In this section, we explore the global convergence properties of Algorithm3.1 under the following
assumptions.

ASSUMPTION 3.2 The sequence{xk, λk} generatedby Algorithm 3.1 is contained in a convex setΩ
and the following properties hold:

(a) The functionsf andc and their first and second derivatives are bounded onΩ.

(b) The constraint JacobiansAk have full row rank and their smallest singular values are bounded
below by a positive constant.

(c) The sequence{Wk} is bounded.

(d) There exists a constantμ > 0 such that over allk and for anyu ∈ Rn with u 6= 0 andAku = 0,
wehaveuTWku > μ‖u‖2.

Theseassumptions are fairly standard for a line search method; e.g. seeHan (1977) andPowell
(1983). Assumption3.2(b), however, is strong, but we use it to simplify the analysis in order to focus
on the issues related to the incorporation of a flexible penalty function. Assuming thatWk is positive
definite on the null space of the constraints is natural for line search algorithms, for otherwise there
would be no guarantee of descent.

Our analysis hinges on our ability to show that the algorithm will eventually compute an infinite
sequence of steps that sufficiently reduce the penalty functionφπ l for a fixedπ l > 0, which we achieve
by following the approach taken inByrd et al. (2008) for an inexact SQP method. In particular, we
consider the decomposition

dk = uk + vk, (3.15)

wherethe tangential componentuk lies in the null space of the constraint JacobianAk andthe normal
componentvk lies in the range space ofAT

k . The components are not to be computed explicitly; the
decomposition is only for analytical purposes. We refer touk, which by definition satisfiesAkuk = 0,
asthe tangential component andvk asthe normal component.

We first present a result related to the length of the primal stepdk andthe sequence of Lagrange
multiplier estimates{λk}.

LEMMA 3.3 For all k, the primal stepdk is bounded in norm. Moreover, the sequence of Lagrange
multipliers{λk} is bounded.

Proof. Under Assumption3.2, it can be shown that the primal–dual matrix in (3.4) is nonsingular and
that its inverse is bounded in norm over allk (e.g. seeNocedal & Wright,2006). Thus, the relation

[
dk

λk + δk

]

= −

[
Wk AT

k

Ak 0

]−1[
gk

ck

]

impliesthat‖(dk, λk + δk)‖ 6 γ ‖(gk, ck)‖ holdsover allk for some constantγ > 0. The results then
follow from αk 6 1 and the fact that Assumption3.2(a) implies that‖(gk, ck)‖ is bounded over allk.�
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Thenext result ensures a precise bound on the length of the normal componentvk with respect to
the current value of the infeasibility measure.

LEMMA 3.4 There existsγ1 > 0 such that, for allk,

‖vk‖
2 6 γ1‖ck‖. (3.16)

Proof. From Akvk = Akdk = −ck andthe fact thatvk lies in the range space ofAT
k , it follows that

vk = −AT
k (Ak AT

k )−1ck

andso

‖vk‖ 6 ‖A
T
k (Ak AT

k )−1‖‖ck‖.

The result follows from the facts that Assumption3.2(a) states that‖ck‖ is bounded and Assump-
tions3.2(a) and (b) imply that‖AT

k (Ak AT
k )−1‖ is bounded. �

We now turn to the following result concerning an important property of the tangential steps.

LEMMA 3.5 There exists a constantγ2 > 0 such that, over allk, if ‖uk‖2 > γ2‖vk‖2, then
1
2dT

k Wkdk >
μ
4‖uk‖2.

Proof. Assumption3.2(d) implies that for anyγ2 > 0 such that‖uk‖2 > γ2‖vk‖2, we have

1
2dT

k Wkdk = 1
2uT

k Wkuk + uT
k Wkvk + 1

2vT
k Wkuk

>
μ

2
‖uk‖

2− ‖uk‖‖Wk‖‖vk‖ −
1

2
‖Wk‖‖vk‖

2

>
(

μ

2
−
‖Wk‖
√

γ2
−
‖Wk‖

2γ2

)
‖uk‖

2.

Thus,with Assumption3.2(c) we have that the result holds for some sufficiently largeγ2 > 0. �
With the above results, we can now identify two types of iterations. Letγ2 > 0 be chosen large

enough as described in Lemma3.5and consider the sets of indices

K1 , {k : ‖uk‖
2 > γ2‖vk‖

2} and K2 , {k : ‖uk‖
2 < γ2‖vk‖

2}.

Our remaining analysis will be dependent on these sets and the corresponding quantity

Θk ,

{
‖uk‖2+ ‖ck‖ k ∈ K1,

‖ck‖ k ∈ K2.

ThequantityΘk will help us form a common bound for the length of the primal step and the quantity
Dφπm

k
(dk).

LEMMA 3.6 There existsγ3 > 1 such that, for allk,

‖dk‖
2 6 γ3Θk

andhence

‖dk‖
2+ ‖ck‖ 6 2γ3Θk. (3.17)
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Proof. For k ∈ K1, Lemma3.4 implies

‖dk‖
2 = ‖uk‖

2+ ‖vk‖
2 6 ‖uk‖

2+ γ1‖ck‖.

Similarly, Lemma3.4 implies that fork ∈ K2

‖dk‖
2 = ‖uk‖

2+ ‖vk‖
2 < (γ2+ 1)‖vk‖

2 6 (γ2+ 1)γ1‖ck‖.

To establish (3.17), we note thatΘk + ‖ck‖ 6 2Θk for all k. �
The next result bounds the quantityDφπm

k
(dk), whereπm

k is defined by (3.14).

LEMMA 3.7 There existsγ4 > 0 such that, for allk,

Dφπm
k
(dk) 6 −γ4Θk.

Proof. Recall that by Theorem 18.2 inNocedal & Wright(2006), we have

Dφπm
k
(dk) = gT

k dk − πm
k ‖ck‖. (3.18)

If ‖ck‖ = 0, then (3.4) yields

Dφπm
k
(dk) = gT

k dk = −dT
k Wkdk.

Lemmas3.4and3.5thenimply ‖vk‖ = 0 andk ∈ K1, and so

Dφπm
k
(dk) = −dT

k Wkdk 6 −
μ

2
‖uk‖

2

andthe result holds forγ4 =
μ
2 .

Now suppose‖ck‖ 6= 0. Here, (3.8), (3.18) and the fact that (3.14) impliesπm
k > χk yield

Dφπm
k
(dk) 6 −

ωk

2
dT

k Wkdk − σπm
k ‖ck‖. (3.19)

By Lemma3.5and (3.5), we have thatωk = 1 for k ∈ K1 andthus

Dφπm
k
(dk) 6 −

μ

4
‖uk‖

2− σπm
k ‖ck‖.

Similarly, for k ∈ K2 wehave from (3.5) and (3.19) that

Dφπm
k
(dk) 6 −σπm

k ‖ck‖.

Theresult holds forγ4 = min{μ4 , σπm
k }, which is positive asπm

k > π l
k > π l

0 > 0 for all k. �
An important property of Algorithm3.1 is that under Assumption3.2 the sequence{πu

k } remains
bounded.We prove this result next.

LEMMA 3.8 The sequence{πu
k } is bounded above andπu

k remainsconstant for all sufficiently largek.

Proof. Recall thatπu
k is set during iterationk of Algorithm 3.1 to satisfy (3.8), which is equivalent to

saying that (3.7) will be satisfied, as in

−gT
k dk −

ωk

2
dT

k Wkdk + (1− σ)πu
k ‖ck‖ > 0. (3.20)
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If dT
k Wkdk > 0, thenωk = 1 by (3.5) and so (3.4) and Lemma3.3 imply that there existsγ5 > 0 such

that

−gT
k dk − 1

2dT
k Wkdk = 1

2dT
k Wkdk − cT

k (λk + δk) > −γ5‖ck‖.

Similarly, if dT
k Wkdk < 0, thenωk = 0, k ∈ K2 and‖dk‖2 6 γ3‖ck‖ by Lemma3.6. Then, Assump-

tion 3.2, (3.4) and Lemma3.3 imply that there existsγ6, γ
′
6 > 0 such that

−gT
k dk −

ωk

2
dT

k Wkdk = dT
k Wkdk − cT

k (λk + δk) > −γ6(‖dk‖
2+ ‖ck‖) > −γ ′6‖ck‖.

Theseresults together imply that for allk,

−gT
k dk −

ωk

2
dT

k Wkdk > −max{γ5, γ
′
6}‖ck‖

andso (3.20), and equivalently (3.7), is always satisfied if

πu
k > max{γ5, γ

′
6}/(1− σ).

Therefore, ifπu
k̄
> max{γ5, γ

′
6}/(1− σ) for some iteration number̄k > 0, thenπu

k = πu
k̄

for all k > k̄.
This, together with the fact that whenever Algorithm3.1 increasesπu it does so by at least a positive
finite amount, proves the result. �

A similar result can be shown for the parameterπ l .

COROLLARY 3.9 {π l
k} is bounded above andπ l

k remainsconstant for all sufficiently largek.

Proof. By Lemma3.8,πu
k is constant for all sufficiently largek. Then, we have by (3.10) that ifπ l is

increased,then it is done so by at least a finite constant amount or it is set equal toπu. Thus, the result
follows from (3.10) and the fact that there can only be a finite number of increases ofπ l . �

Theprevious lemmas can be used to bound the sequence of step-length coefficients.

LEMMA 3.10 The sequence{αk} is bounded below by a positive constant.

Proof. Let us rewrite the Armijo condition (3.12) for convenience as

φπ(xk + αkdk)− φπ(xk) 6 ηαk Dφπm
k
(dk) (3.21)

for π ∈ [π l
k, π

u
k ]. Suppose that the line search fails for someᾱ > 0, which means that (3.21) does not

hold for anyπ ∈ [π l
k, π

u
k ]. In particular,

φπm
k
(xk + ᾱdk)− φπm

k
(xk) > ηᾱDφπm

k
(dk),

wherewe recall thatπm
k ∈ [π l

k, π
u
k ]. As seen in Nocedal & Wright(2006, p. 541), it can be shown

under Assumption3.2that for someγ7 > 0, we have

φπm
k
(xk + ᾱdk)− φπm

k
(xk) 6 ᾱDφπm

k
(dk)+ ᾱ2γ7π

m
k ‖dk‖

2,

so

(η − 1)Dφπm
k
(dk) < ᾱγ7π

m
k ‖dk‖

2.
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Lemmas3.6and3.7thenyield

(1− η)γ4Θk < ᾱγ3γ7π
m
k Θk,

so

ᾱ > (1− η)γ4/(γ3γ7π
m
k ) > (1− η)γ4/(γ3γ7π

u
k ).

Thus,αk is never set below(1 − η)γ4/(2γ3γ7π
u
k ), which is bounded below and away from zero by

Lemma3.8, in order to satisfy the Armijo condition (3.12) for someπ ∈ [π l
k, π

u
k ]. �

We are now ready to present the main result of this section.

THEOREM 3.11 Algorithm 3.1yields

lim
k→∞

∥
∥
∥
∥

[
gk + AT

kλk

ck

]∥∥
∥
∥ = 0.

Proof. By Corollary3.9, the algorithm eventually computes, during a certain iterationk∗ > 0, a finite
valueπ∗ beyond which the value of the parameterπ l will never be increased. This means that for all
sufficiently largek, the Armijo condition (3.12) is satisfied forπ l = π∗ or elseπ l would be increased
(see the second-to-last line of Algorithm3.1). From Lemmas3.7 and3.10, we then have that for all
k > k∗

φπ∗(xk)− φπ∗(xk + αkdk) > γ8Θk

for someγ8 > 0. Therefore, (3.17) implies

φπ∗(xk∗)− φπ∗(xk)=
k−1∑

j=k∗
(φπ∗(xj )− φπ∗(xj+1))

> γ8

k−1∑

j=k∗
Θ j

>
γ8

2γ3

k−1∑

j=k∗
(‖dj ‖

2+ ‖cj ‖)

andso

lim
k→∞
‖dk‖ = 0 and lim

k→∞
‖ck‖ = 0 (3.22)

follow from the fact that Assumption3.2(a) impliesφπ∗ is bounded below. Finally, the first block
equation of (3.4), Assumption3.2(c) and Lemma3.3 imply

‖gk+1+ AT
k+1λk+1‖ = ‖gk + AT

kλk+1+ (gk+1− gk)+ (Ak+1− Ak)
Tλk+1‖

= ‖(1− αk)(gk + AT
kλk)− αkWkdk + (gk+1− gk)+ (Ak+1− Ak)

Tλk+1‖

6 (1− αk)‖gk + AT
kλk‖ +O(‖dk‖)
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andso

lim
k→∞
‖gk + AT

kλk‖ = 0

follows from (3.22), the fact thatαk 6 1 and Lemma3.10. �

4. Numerical results

In this section, we present numerical results for a particular implementation of Algorithm3.1 incorpo-
rated into the KNITRO-Direct algorithm in the KNITRO 5.0 software package; seeWaltz & Plantenga
(2006) for details. We tested the code using a set of 85 equality-constrained problems from the CUTEr
(seeBongartzet al.,1995, andGouldet al.,2003) and COPS (seeDolanet al.,2004) collections. From
these sets, we chose problems for which AMPL models were readily available. The default KNITRO-
Direct algorithm may revert to a trust region iteration to handle negative curvature and to ensure global
convergence. In our tests, we enabled internal options to prevent this from occurring. Instead, the algo-
rithm modifiesWk if necessary to ensure that the resulting matrix is positive definite on the null space
of Ak—to ensure that our implementation performs as a pure line search algorithm.

As the globalization strategy described in this paper incurs little computational cost and is designed
to promote long steps for fast convergence, we propose that the numbers of iterations and function
evaluations required to find a solution are appropriate measures for comparison with other methods. We
compare the results of an algorithm using the default penalty function approach in KNITRO-Direct, call
it pi default, with the results using a flexible penalty function. The penalty parameter update strategy in
KNITRO-Direct corresponds to the case when (3.10) is replaced byπ l

k+1← πu
k . Forpi default and the

algorithm with a flexible penalty function, we initializeπ andπ l , respectively, to 10−8. We consider
the four initial values 1, 10, 100 and 1000 forπu, which correspond to the algorithms we refer to as
pi flex 1, pi flex 10, pi flex 100 andpi flex 1000, respectively. Table1 contains a complete listing of
the input parameters for our implementation of Algorithm3.1.

The results for the five algorithms are summarized in Figs8 and9 in terms of logarithmic perfor-
mance profiles, as described inDolan & Moré (2002). Here, the leftmost values indicate the proportion
of times each algorithm solves a given problem using the least value of the given measure; i.e. number of
iterations or of function evaluations. The values fail to add to 1 as ties are present. The rightmost func-
tion values illustrate the robustness of each approach; i.e. the percentage of times that a given problem
is solved.

The results are encouraging. An algorithm with a flexible penalty function approach often not only
requires slightly fewer iterations to find a solution but also a considerable amount of savings is often ex-
perienced in terms of function evaluations. This can be understood as the line search procedure generally

TABLE 1 Input values for Algorithm3.1

Parameter Value

π l
0 10−8

πu
−1 {1,10,100,1000}

ε 10−4

εl 10−4

η 10−8

σ 10−1
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FIG. 8. Performance profile for iterations.

FIG. 9. Performance profile for function evaluations.

has to perform fewer backtracks for a given step, leading to longer steps and a higher percentage of unit
step-lengths (i.e. full Newton steps). We also observe that the plots forpi flex 1, pi flex 10,pi flex 100
andpi flex 1000 are nearly indistinguishable throughout much of Figs8 and9. This suggests that the
initial value forπu is inconsequential compared to the effect that separate updating strategies forπ l and
πu have on the practical performance of the approach.

5. Final remarks

In this paper, we have proposed and analysed a new globalization strategy for equality-constrained op-
timization problems. Our flexible penalty function not only allows for relatively unrestricted movement
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duringearly iterations but also automatically tightens itself to forcefully guide convergence when nec-
essary, thus manipulating the search appropriately throughout a run of the algorithm. An example of a
particular implementation of the mechanism was presented in the context of a line search SQP method,
after which the global behaviour was analysed and successful numerical results were outlined.

We close by describing how the ideas of this paper might be extended to generally constrained
problems of the form

min
x∈Rn

f (x)

s.t.cE(x) = 0,

cI (x) 6 0,

(5.1)

where f : Rn→ R, cE: Rn→ Rt E
andcI : Rn→ Rt I

aresmooth functions. One of the leading classes
of methods for solving problem (5.1) are interior-point approaches. Some algorithms of this type begin
by introducing a log-barrier term with parameterμ > 0 for the inequalities into the objective to form
the perturbed problem

min
x∈Rn

f (x)− μ
∑

i∈I

ln si

s.t.cE(x) = 0,

cI (x)+ s= 0.

(5.2)

A solution for problem (5.1) is then found via the (approximate) solution of a sequence of problems of
the form (5.2) forμ→ 0, where throughout the process the vector of slack variabless= (s1, . . . , st I

) ∈
Rt I

is forced to be positive. Thus, for each givenμ > 0, we can define the flexible penalty function
associated with the barrier subproblem (5.2) as

ϕπ(x) , f (x)− μ
∑

i∈I

ln si + π

∥
∥
∥
∥

[
cE(x)

cI (x)+ s

]∥∥
∥
∥ , π ∈ [π l , πu],

where0 6 π l 6 πu, and a line search algorithm similar to Algorithm3.1can be applied. (The discus-
sion here refers to a generic algorithm; to obtain practical methods with global convergence guarantees,
various safeguards or modifications must be added. One such modification is the penalty function regu-
larization described inChen & Goldfarb(2006).)

A similar approach can be used in a trust region algorithm. Here, a stepdk from xk is typically
accepted if and only if the actual reduction in a penalty functionφπ , defined by

φredπ (dk) , φπ(xk)− φπ(xk + dk),

is large with respect to the reduction obtained in a model such asmπ (seeSection3). This condition can
be written as

φredπ (dk)

mredπ (dk)
> η

for some 0< η < 1, where it should be observed that we may now have‖ck + Akdk‖ > 0. Rather than
restricting the step acceptance criteria to this inequality with a fixedπ > 0 during each iterationk, we
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claimthat an effect similar to that expressed in this paper can be achieved if instead a step is considered
acceptable if

φredπ l
k
(dk)

mredπm
k
(dk)

> η or
φredπu

k
(dk)

mredπm
k
(dk)

> η,

where [π l
k, π

u
k ] is a prescribed interval andπm

k ∈ [π l
k, π

u
k ] is chosen carefully so thatmredπm

k
(dk) is

sufficiently positive. All of the quantitiesπ l
k, πu

k andπm
k canbe defined and updated in a manner similar

to that described in this paper.
The previous discussion outlines ways in which our flexible penalty function can be employed in

the context of constrained optimization. We note, however, that in order to obtain practical algorithms
with global convergence guarantees, various algorithmic components must be added to the methods
described above.
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