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We propose a globalization strategy for nonlinear constrained optimization. The method employs a ‘flex-
ible’ penalty function to promote convergence, where during each iteration the penalty parameter can be
chosen as any number within a prescribed interval, rather than a fixed value. This increased flexibility
in the step acceptance procedure is designed to promote long productive steps for fast convergence. An
analysis of the global convergence properties of the approach in the context of a line search sequential
quadratic programming method and numerical results for the KNITRO software package are presented.
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1. Introduction

In this paper, we consider step acceptance mechanisms for nonlinear constrained optimization. Fo
simplicity, we frame our discussion in the context of the equality-constrained problem

min f(x)
xeRN (11)
s.t.c(x) =0,
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where f: R" — R andc: R" — R' aresmooth functions, but consider ways in which our methods
can be applied to problems with inequality constraints in Sediiohhe main purpose of this paper
is to develop a globalization strategy designed to promote long productive steps and fast convergence,
supported by convergence guarantees to first-order optimal points.

Most globally convergent iterative algorithms for problehil() have the following general form. At
a given iteratexy, a step is computed in either the primal or primal—-dual space based on local and/or
historical information of the problem functions. The step is then either accepted or rejected based on the
reductions attained in the nonlinear objectivg), constraint infeasibilityjc(x)|| or some combination
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of both measures. Herg; || denotes a norm oR'. The manner in which these reductions are quantified
and evaluated may have a significant impact on the types of steps accepted and the speed with which the
algorithm converges to a solution.

We motivate our proposed globalization strategy, i.e. step acceptance method, by outlining two popu-
lar tools used for this purpose: exact penalty functions and filter mechanisms. The exact penalty function
we consider in this paper combines the objective and a constraint infeasibility measure into a function
of the form

¢z (x) £ F(X) + 7 llcX)|l, (1.2)

wherez > 0is a penalty parameter. During iteratikbna step is deemed acceptable only if a sufficient
reduction in¢g,, is attained for a suitable value of the penalty parameter. In contemporary algorithms,
the value forzy is chosen upon completion of the step computation procedure and the segugrise
typically monotonically increasing throughout the run of the algorithm. Fidultastrates the region of
acceptable points fromk = (Jlc(xk)|l, f (X)), corresponding to the current iteratg in ||c||-f space.
A stepd is acceptable if the resulting poiRt= xx + dk yields a pair([lc(X)||, f (X)) lying sufficiently
below the solid line througlpy, where the slope of the line is defined by the current value of the penalty
parametetrr,. The global convergence properties of such an approach were first shaeni{§977)
andPowell (1978).

A filter mechanism, proposed Wyletcher & Leyffer(2002), avoids the definition of a parameter
to balance reductions in the objective with reductions in the constraints. In the spirit of multiobjective
optimization, a filter considers pairs of valug@e(x)||, f (X)) obtained by evaluating the functiolis||
and f at all or some iterates preceding the current one. A @ricx;)|l, f(x)) is said to dominate
another pair(jic(xj)ll, f(x;j)) if and only if both|jc(xi)|| < [[c(xj)[l and f(x;) < f(x;). The filter F
is then defined to be an index set corresponding to a list of pairs such that no pair dominates any other.
A stepdk from Xk is considered acceptable if the resulting poirtorresponds to a paftic(xX) ||, f (X))

Pk

e

licll

FiG. 1. Boundary of the region of acceptable points frpgifor the penalty functiompz, .
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licll

FiG. 2. Boundary of the region of acceptable points for a filter with three entries.

such that either
e < llexi)ll or f(X) <« f(x) (1.3)

for alli € F, where by <’ we mean that the value is less with respect to some appropriate margin.
Upon the acceptance of such a step, the @gifx)||, f (X)) may be added to the filter, in which case

all points dominated by this pair are removed frdfn Figure 2 illustrates the region of acceptable
points for a filter with three entries as that lying sufficiently below and to the left of the piecewise linear
function. The global convergence guarantees of such an approach have been shown when paired wit
certain types of step computation methods; e.g.Fetcheret al. (1998), Gonzageet al. (2003) and
Wachter & Biegler(2005a,b).

Penalty functions and filter mechanisms both have their own advantages and disadvantages. On
disadvantage of a penalty function relates to the monotonicity required when updating the penalty pa- N
rameterz during the solution process. Nonmonotone updates for the penalty parameter that maintain N
global convergence guarantees are available, but such methods oftenadlocheuristics that even-
tually fall back on the convergence properties of monotone strategies, and so we do not discuss them
here. Depending on the specific update strategy usety at some point be set to an excessively large
value, even at a point that is relatively far from a solution. As a result, a large priority will be placed
on computing steps that produce sufficient reductions in constraint infeasibility, effectively ‘blocking’
steps that move away from the feasible region. This can be detrimental as empirical evidence has shown
that accepting steps that temporarily increase infeasibility can often lead to fast convergence3 Figure
illustrates this blocking behaviour of a penalty function, where we highlight the region of points that
would be rejected despite the fact that each corresponding step would have provided a reduction in the
objective f (and so may have been acceptable to a filter).

We note that a second disadvantage of a penalty function is that a low vatua&y block steps that
improve feasibility but increasé. However, modern step acceptance strategies effectively deal with this
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FiG. 3. A region of points blocked byz, .

problem by defining local models @f; (as will be seen in Sectiod), with which an adequately large
value ofz can be determined to avoid excessive blocking. Thus, our view is that the main weakness of
penalty-based strategies is the blocking effect illustrated inF;igyhich can be particularly detrimental
when||ck| is zero, or at least small, whibeg is far from optimal.

One disadvantage of a filter mechanism is that a step can be blocked by a filter entry, i.e. historical
information of the problem functions, when in fact the step is a productive move towards a solution in
a local region of the search space. This is particularly worrisome when steps are blocked that would
amount to a sufficient reduction in constraint infeasibility. Fighigepicts a filter with the single entry
a where the pointpx = (Jlc(Xk)|l, f (X)), corresponding to the current iteratg, is shown as the
isolated point with an objective value sufficiently less than the filter entry. The shaded portion illustrates
one region of points that are blocked by the filter, despite the fact that a step into this region would
correspond to a reduction in constraint infeasibility from the current iterate (and so may be acceptable
for a penalty function approach with parametg}.

In an extreme example, consider the case where the filter @imirlyig. 4 is a Pareto optimal solution
to the multiobjective optimization problem of minimizing the péjc(x)||, f (x)) over allx € R". A
point is Pareto optimal if it cannot be dominated by any other point. Thus, if the current iterate again
corresponds to the poirdy in Fig. 4, then all paths fronpg to the feasible region must pass through a
region of points dominated by in |c||-f space. Feasibility can only be attained if a single computed
step were to fall beyond the region dominated by the filter entry or if a backup mechanism, such as a
feasibility restoration phase, were implemented.

In summary, both penalty functions and filters can be shown to block different types of produc-
tive steps. A penalty function may suffer from high priority being placed on improving feasibility and
convergence can be slowed by forcing the algorithm to hug the feasible region. A filter mechanism, on
the other hand, may suffer from handling probletlj too much like a multiobjective optimization
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FIG. 4. A region of points blocked by a filter with entay

problem, when in fact a certain priority on converging to the feasible region may be appropriate, espe-
cially as the algorithm progresses.

2. Flexible penalty functions

ybiye e /Blo'sfeuinolpioxoeufew//:dny woly papeojumoq

In this section, we define a new step acceptance mechanism for nonlinear programming algorithms. Byg
observing the strengths and weaknesses of penalty functions and filters, we hope to emulate some of thé'
step acceptance behaviours of both methods while attempting to avoid any blocking of productive steps.2

During early iterations, the filter mechanism has the benefit that a variety of steps are considered g
acceptable. For example, for a one-element filter, i.e. a filter containing only an entry corresponding to =
the current iterate, a step will be accepted as long as a sufficient reduction in the objective or constraintg
infeasibility is attained. This may be of use to promote long steps during early iterations when an appro- N
priate value for the penalty parameter may not yet be known. However, during later iterations, it may be &
reasonable to assume that an appropriate value for the penalty parameter may be determinable based on
information computed throughout the run of the algorithm, which can be used to correctly block steps
from increasing constraint infeasibility. The use of a penalty function in later iterations may also avoid
the risk of blocking steps in the manner illustrated in Hig.

In an attempt to define a single mechanism that will capture all of these characteristics, and given
that the penalty function approach appears to be more flexible than a filter in that it permits a reweighting
of objective and constraint infeasibility measures, we present an improvement of the penalty strategies.

Our method can be motivated by observing the iterative nature of the penalty parameter update
implemented in some current algorithms; e.g.\8&dtz et al. (2006). At the start of iteratiok, a specific
valuery_1 of the penalty parameter is carried over from the previous iteration. If the algorithm were to
maintain this value, then only a step corresponding to a move into the region sufficiently below the solid
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FiG. 5. lllustration of the iterative nature of penalty parameter updates.

line in Fig. 5 would be acceptable. However, upon the calculatiodkpthe algorithm may determine
that an increase of the penalty parameter to some value nx_1 may be appropriate, in which case
only a step corresponding to a move into the region sufficiently below the dashed line Bwrogld
be acceptable. Rather than automatically setting— 7, a simple heuristic that maintains the global
convergence properties of the algorithm is to first compute the function valugsfot + dy, namely,
lc(X) || and f (X). If (lc(X)||, f (X)) lies sufficiently below the dashed line in Fig.then we may accept
the step and indeed set < 7x. However, if(Jlc(X)||, f (X)) lies sufficiently below the solid line, then
the step could be considered acceptable for setting— zx—1, effectively avoiding an increase in the
penalty parameter. In summary, such a strategy does not consider a single valagxaf but rather
may select from a pair of values depending on the actual reductions attained by the step. Thus, we can
view the region of acceptable points as that lying below the swlidhshed line in Figb.

An extension of this idea forms the basis of the method we now propose. Consider the collection of
penalty functions

¢z () 2 F() +zlc)ll, = elz',z"], (2.1)

for 0 < #' < Y. We define a step to be acceptable if a sufficient reductigi ihas been attained for
atleastoner € [z, zY]. Clearly, if z' is always chosen to equal, then this approach is equivalent to
using a penalty function with a fixed during each iteration. Alternatively, if' ~ 0 while 7" is very
large, then this approach has the form of a one-element filter. In general, the region of acceptable points
is that given by the region down and to the left of the piecewise linear function illustrated i®,Fig.
where the kink in the function always occurs@t = (Jlc(xk)|l, f (xk)), corresponding to the current
iteratexy. As the penalty parameter is allowed to fluctuate in the intervat [, 7], we refer to 2.1)
as a ‘flexible’ penalty function.

Let us expound further on the relationship between our approach and some technigues that employ
a filter by saying that the region of acceptable points in Bidnas features similar to the ‘slanting
envelope’ around a filter entry proposed®kin & Fletcher(2003) and considered later in a papeiLby
(2006). However, despite the fact that the shape of the acceptable regions is similar in some areas of the
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FIG. 6. Boundary of the region of acceptable points frpgfor a flexible penalty function ovewf(, nlf].

llcl—f plane, the important difference between our flexible penalty function and these and other filter
mechanisms is that we do not maintain a collection of previous infeasibility measure/objective value
pairs. The step acceptance criteria we propose for a flexible penalty function depend mb]yc{jrand

B10°sfeulnolpiojxoeufew//:dny wouy papeojumoq

constraint and objective information at the current itexate o

The practical behaviour of standard penalty function techniques depends heavily on the update strat-—
egy for the single parameter. For a flexible penalty function, we need to only consider the update %
strategies for two parameters- andz Y. As different requirements in terms of convergence guarantees <

are necessary for each of these boundary values, and as they have significantly different practical effects
we have the ability to design their updates in a manner suitable for accepting long productive steps.

We present a concrete strategy for updatiigand 7Y in Section3 as certain details are better
described once features of the chosen step computation procedure are outlined.

JON U

G102 ‘e fe N uo f1s

Notation. In the remainder of our discussion, we drop functional notation once values are clear from
the context and delimit iteration number information for functions as with variables; i.e. we denote
fx £ f (xc) and similarly for other quantities. We defifig| to be any fixed norm.

3. Aline search sequential quadratic programming framework

In this section, we describe a precise globalization strategy for prokleh) lpased on the flexible
penalty function (2.1) in the context of a line search sequential quadratic programming (SQP) method.
Let us begin by formalizing a basic SQP method. The Lagrangian function for problé&jrig

L, )2 f(x)+ 2Tc(x) (3.1)
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andthe first-order optimality conditions are

(3.2)

.
VL0 — |:g(x) + A(X) ,1:| o

c(x)

whereg(x) £ V f(x), A(x) is the Jacobian o€(x) and1 € R! areLagrange multipliers. The line
search SQP methodology applied to probldni) defines an appropriate displacenmanin the primal
space from an iteratg, asthe minimizer of a quadratic model of the objective subject to a linearization
of the constraints. The quadratic program has the form

mn f () + g(x) "d + 3dTW(xi, Ai)d (3.3a)
€ n
s.t.c(xx) + A(xx)d =0, (3.3b)

where

t
W(x, 1) & VAL, 1) = V5 T () + D ATVAC ()
i=1

is equal to, or is a symmetric approximation for, the Hessian of the Lagrangian. ¢iexg,and Al
denotethe ith constraint function and its corresponding dual variable, respectively. If the constraint
JacobianA(xk) hasfull row rank andW(xk, Ak) is positive definite on the null space @f(xx), then

a solutiondy to (3.3) is well defined and can be obtained via the solution of the linear system (see
Nocedal & Wright,2006):

{vv(xk, ) A(xkf} |:dk:| _ _[g(xm + A(xk)Tzk}

(3.4)
A(Xk) 0 Ok c(Xk)

Thenew iterate is then given by

Xk+1 < Xk + ak,

wherethe step-length coefficientc € (0, 1] is given by a globalization procedure. Here, we intend to
employ the flexible penalty functior2(1), requiring appropriate update strategieszfoandz Y. In the
following discussion, let us assume thiak| # O for eachk. We comment on suitable updates fx;Lr
andz in the special case dfick|| = 0 at the end of this section.

First, consider the parametet. A large value ofr" indicatesthat the algorithm considers almost
any step that provides a sufficiently large reduction in constraint infeasibility to be acceptable. Thus,
as approaching the feasible region is a necessity for any algorithm for solving prahtBmwe may
choose toinitializer " to a large value and increase it only when necessary. This can be done by updating
' in a manner currently used for settirgin some contemporary penalty function approaches. The
technigue we have in mind makes decisions based on a modelf the penalty functiorp, andin
effect will increaser (or, in our casez ) if and only if the computed step indicates that a large increase
in the objective is likely to result from a reduction in constraint infeasibility.

Let us define a local model gf, aroundthe current iteratey as

w(d)

m,(d) = fx +gid + Tolkaol + 7 llck + Add],
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where

1 ifd™Wd >0
w(d) £ (3.5)

0 otherwise

(e.g. seeEl-Hallabi, 1999, Byrd et al., 1999, Omojokun, 1989, andWaltz et al., 2006). Notice that
m, containsa linear or quadratic model of the objectifeand a linear approximation of constraint
infeasibility. With this approximation, we can estimate the reductiapyirattainedoy dx by evaluating

mred, (dk) = m; (0) — m, (dy)

[l — X aTWhdk ] + el (3.6)

As the stepdy satisfieghe linearized constraints in problem (3.3), it follows that the model predicts no
increase in constraint infeasibility, as evidenced by the non-negative contribution of the last t&m.in (
Our model of the objective, however, may indicate that an increase or decrefhgearresponding to

a negative or positive value, respectively, of the term in square brack&$ 6 likely to occur along

dg. Overall, we consider the reduction in the modegl attainedby d to be sufficiently large if

mred; (dk) > o ||ckll, (3.7)
for some O< o < 1, which can be seen to hold if

T ok AT
gy Ak + 5 dj Whcdk N
A—o)llall (38)

Various algorithms will in fact enforce inequality (3.7) and so will sedccording to (3.8) for alk.
It turns out that our desired propertiesmof canalso be achieved by constructing an update around
the termyy. In particular, we propose a scheme of the form

=

! if 7, > xk
k— k-1 = Xk
7l [ ! ! (3.9)

xk +¢& otherwise,

wheree > 0 is a small constant. In this mannet will be increased during an iteration if and only if
an increase in the model objective, reflected by a positive numeratdr8)) (ndicates that an increase
in f is likely to occur in conjunction with a move towards the feasible region, implied by the fact that
the step satisfies the linearized constraints in (3.3).
By using the modein, to set a value for the penalty parameter, the resulting sequence of values

GT0Z ‘Sg Ae N uo Aiseaiun ybiya e /Hio'seulnolploxoeufewi//:dny woly papeojumoq

can be shown to remain bounded under common assumptions due to certain desirable properties of

the quadratic subproblem (3.3). (This phenomenon, which remains important for our flexible penalty

function approach in the context e, can be observed more precisely in our proof of Len8r&in

Section3.1.) A drawback of this technique, however, is that such a model may not always accurately

reflect changes in the objective and constraint values. For exampel, may suggest that a move
alongdy corresponddo a decrease in constraint infeasibility and an increase in the objective, when
in fact the opposite may occur if one were to take the full stgpAs such, the penalty parameter

may be set to a large value that results in excessive blocking in later iterations. Further, motivation for
incorporating a flexible penalty function, therefore, results from the fact that an excessively large value


http://imajna.oxfordjournals.org/

758 F. E. CURTIS AND J. NOCEDAL

II

I

—_—

licll

FiG. 7. Distinct regions defined by the current state of a flexible penalty function.

for =/ is less of a concern if the penalty parameter is able to fluctuate over an imq'(,vaﬂ] during the
line search—especially if the mechanism for choos&fggs not based on local models of the functions
at all.

The method we propose for setting is such a technique. In particular, we choose to hq&eet
in a manner that reflects the actual reductions$ iand||c|| attained during th@reviousiterationk — 1
(whereng is provided as a small initial value).

To motivate the details of the scheme we propose, consider the numbered regions illustrated in
Fig. 7, where the position and shape of each portion depend on the paran’l(e(e&d; during iteration
k — 1) andz, and the location of the pointk = (/lc(xk)|l, f (x)). A step into region | would not
be acceptable to the flexible penalty function (2.1), as opposed to a step into region Il, Il or IV, which
would be acceptable. Our strategy for setﬁd(gl will depend on the region ific||-f space to which
the stepkdk moved upon the conclusion of the line search. If a sufficient reducti¢9|ki|was obtained
(i.e. the step was into region Ill or IV), then we say that the reductiorfsand/or||c| are sufficient for
the current state of the flexible penalty function and so wmég «— 7r||(. Otherwise, i.e. if the step
was into region Ilz! will be increased. This has the logical interpretation that we only become more
restrictive by blocking steps that increase infeasibility when the algorithm is confronted with steps that
indicate thatactual moves towards the feasible region corresponddiwalincreases in the objective

(thus freeing ourselves from being bound by parameters set based on models or other local information).

The precise update after a step into region Il is given by

Th,q < minfzy, 7 +max0.1(v — 7y, £}, (3.10)
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wheres! > 0is some small constant and

b= f (X + akd) — f(X)
le(i) Il — lle(xk + axdi)ll

(3.11)

Here,the definition ofv ensures that the value f®t+l depend®sn the actual reductions in the objective
and constraint infeasibility attained laydyx, where it can be seen thate [nL, =] after a step into
region Il. We introduce the damping factadGo that the value fat! will increase only gradually, thus
blocking as few future steps as possible while still ensuring convergence.

Our procedures for updating the state of the flexible penalty funcfial) @re now set. Before
presenting the algorithm in detail, however, let us remark on an important detail of the line search
procedure for computingy. With D¢, (dk) denotedas the directional derivative a@f, alongdg, we
require thai satisfythe Armijo condition

¢r Ok + akdk) < Bz (%) + naxDerm(dk),  for somer € [zy, 7], (3.12)

where0 < 5 < 1andz" € [z}, z]. Note that we have defined a parameigfor calculating a single

value of the directional derivative, which must be chosen to ensure that this term is sufficiently negative
for eachk. This could be achieved by choosing' = z) for all k (see Lemm&.7). However, as seen

in Theorem 18.2 oNocedal & Wright(2006), the directional derivative is given by

Depzm(dk) = g dk — " l1ck] (3.13)

andso larger values ot will make this term more negative. As fewer valuesipfvill satisfy 3.12)

for more negative values ®¢”F (dk), we would like to choose” in the interval [ril(, m] so that this

term is negative enough to ensure sufficient descent, while also being as close to zero as possible so
to allow the largest number of acceptable step-lengths. We use

7r|2n “— maX{nL, Xk}, (3.14)

which, along with (3.9) and the fact tha, < =\ , (see(3.10)), ensures > yx andz" € [z}, z\].
Overall, we have described the following algorithm.

ALGORITHM 3.1 Line search SQP method with a flexible penalty function

Initialize Xo, 40,0 < 7, < 7Y;,0 < &, ¢',and 0< p,0 < 1

for k=0,1,2, ..., until a convergence test for problem 1) is satisfied
Computefy, gk, ¢k, Wk, and A andsetay < 1
Compute(dk, dy) via (3.4)
If ck # 0, setz! accordingio (3.9) andz)" by (3.14); else, set)! < 7! ; andz « =" ;
until the Armijo condition (3.12) holds for some € [nll(, m], setax « ax/2
If the Armijo condition 8.12) holds forr = 7y, setz,, , « =; else, setr,_, by (3.10)
Set(Xk+1, Ak+1) < (Xk» Ak) + ak(dk, dk)

endfor

GT0Z ‘Gg AN uo AiseAlun qﬁgqaj% /Bio'sfeulnolpioxoeufew//:dny wouy pepeojumoq

A practical implementation of the line search procedure of Algorithinis attained by the obser-
vation that, during iteratiok, the Armijo condition (3.12) is satisfied far [nL, =] if and only if
it is satisfied for eitherr = nil( orz = z. Thus, the line search for a given stépcanbe performed
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simply by evaluating the reductions attained¢’o;;1||K and¢,u. We also note that in the special case of

llck|l = O during iteratiork, we maintainz,! < 7/ ; asin this case the directional derivatii@yp, (dk)

is independent of (see (3.13)). We can also trivially sef’ « =) andmaintainz, ,; « = sincein

this setting region Il of Fig7 is empty.

3.1 Global analysis

In this section, we explore the global convergence properties of AlgorgHnunder the following
assumptions.

ASSUMPTION 3.2 The sequencéxk, 1k} generatedy Algorithm 3.1 is contained in a convex s&
and the following properties hold:

(a) The functionsf andc and their first and second derivatives are boundegon

(b) The constraint Jacobiam have full row rank and their smallest singular values are bounded
below by a positive constant.

(c) The sequenc\k} is bounded.

(d) There exists a constant> 0 such that over ak and for anyu € R" with u # 0 and Axu = 0,
we haveu ™ Wiu > u|lull?.

Theseassumptions are fairly standard for a line search method; e.d-1@e¢1977) andPowell
(1983). Assumptior8.2(b), however, is strong, but we use it to simplify the analysis in order to focus
on the issues related to the incorporation of a flexible penalty function. Assumingvghiatpositive
definite on the null space of the constraints is natural for line search algorithms, for otherwise there
would be no guarantee of descent.

Our analysis hinges on our ability to show that the algorithm will eventually compute an infinite
sequence of steps that sufficiently reduce the penalty fungtjiofor a fixedz' > 0, which we achieve
by following the approach taken iByrd et al. (2008) for an inexact SQP method. In particular, we
consider the decomposition

dx = uk + vk, (3.15)

wherethe tangential componeni lies in the null space of the constraint Jacobiypandthe normal
componenby lies in the range space o&l. The components are not to be computed explicitly; the
decomposition is only for analytical purposes. We refemgpwhich by definition satisfieg\cux = O,
asthe tangential component and asthe normal component.

We first present a result related to the length of the primal diepndthe sequence of Lagrange
multiplier estimategAy}.

LEMMA 3.3 For all k, the primal step is bounded in norm. Moreover, the sequence of Lagrange
multipliers {1k} is bounded.

Proof. Under AssumptiorB.2, it can be shown that the primal—-dual matrix 3¥4() is nonsingular and
that its inverse is bounded in norm overlalle.g. seeNocedal & Wright,2006). Thus, the relation

de | | Wk AL - Ok
k+oal | A o0 Ck

impliesthat || (dk, Ak + d) Il < 7 |1(gk, ¢k) |l holdsover allk for some constant > 0. The results then
follow from ax < 1 and the fact that Assumptidh2(a) implies that (g, ck)|| is bounded over ak. [
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The next result ensures a precise bound on the length of the normal compgneitlh respect to
the current value of the infeasibility measure.
LEMMA 3.4 There existy; > 0 such that, for alk,
okl < yallckll. (3.16)
Proof. From Aok = Axdk = —ck andthe fact thaby liesin the range space @¥/, it follows that
ok = —AL(AKAD) Lo
andso
lowll < IALCAAD ™M lell

The result follows from the facts that Assumpticéh2(a) states thatck|| is bounded and Assump-
tions3.2(a) and (b) imply that AT (AxAL) 71| is bounded. O
We now turn to the following result concerning an important property of the tangential steps.

LEMMA 3.5 There exists a constant > O such that, over alk, if [Jug|Z > y2llokl then
SdTWidk > & flug )12

Proof. Assumption3.2(d) implies that for any, > 0 such thatjuk||2 > y2|lvkl|%, we have

1 1 1
QdJWkdk = iuIWkuk + uIWkuk + Ql)l-(eruk

U 1
> §||Uk||2 — Ul Wil okl — §||Wk||||0k||2

Wl (k)
> (ﬁ - 20 ) 2
2 \/ﬁ 2V2

Thus,with Assumption3.2(c) we have that the result holds for some sufficiently lagge 0. O
With the above results, we can now identify two types of iterations.yket 0 be chosen large
enough as described in Lemr8& and consider the sets of indices

Ki# (ko ucl® = y2llocll®) and Kz 2 (k: fludl® < p2lloxl?).
Ourremaining analysis will be dependent on these sets and the corresponding quantity

A {”Uk”z‘i‘ lell ke K,

lICkll ke Ka.

The quantity @ will help us form a common bound for the length of the primal step and the quantity

Db (d).
LEMMA 3.6 There existg3 > 1 such that, for alk,
lcklI? < 736k
andhence
kel + llekll < 2y36x. (3.17)
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Proof. Fork € K1, Lemma3.4implies
ok l1® = flukll® + llowll® < llukll® + yalickll.
Similarly, Lemma3.4implies that fork € Ky
ldkll? = flukll® + llokl? < (2 + Dokl < (2 + Dyalickll.

To establish3.17), we note tha®y + ||ck|| < 26k for all k. O
The next result bounds the quantl])j;ﬁ,r&n (d), wherer" is defined by 8.14).

LEMMA 3.7 There existy4 > 0such that, for alk,
Dérm(dk) < —746k.
Proof. Recall that by Theorem 18.2 Mocedal & Wright(2006), we have
Deprm (k) = gk — Ik . (3.18)

If |lek]l = 0, then B.4) yields
Deprm(ch) = gy dk = —cly Wickk.

Lemmas3.4and3.5thenimply |lok|| = 0 andk € K1, and so
Do (ch) =~ Whche < =5 1ui

andthe result holds fops = 5.
Now suppose|ck| # 0. Here, (3.8),8.18) and the fact thaB(14) impliesz)" > x yield

D (G < =G Wik — o (3.19)
By Lemma3.5and (3.5), we have thai, = 1 for k € K; andthus
Depr(ch) < = Ul = ol ekl
Similarly, for k € K> we have from 8.5) and 8.19) that
D (d) < —omy'lICkll-

Theresult holds forys = min{4, oz}, which is positive ag" > x| > |, > Ofor all k. O

An important property of Algorithn8.1is that under AssumptioB.2 the sequencér,'} remains
boundedWe prove this result next.

LEMMA 3.8 The sequencér,'} is bounded above and remainsconstant for all sufficiently largk.
Proof. Recall thatr) is set during iteratiork of Algorithm 3.1to satisfy 8.8), which is equivalent to
saying that (3.7) will be satisfied, as in

(0]
—gldy — Ekdlfwkdk + (@1 —o)rllickll > 0. (3.20)
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If dkTWkdk > 0,thenwy = 1 by (3.5) and s03.4) and Lemma&.3imply that there existss > 0 such
that

—0g ok — 37 Wicdk = 307 Wiedk — G (i + dk) > —yslill.

Similarly, if d] Widk < 0, thenay = 0,k € K and||dk||? < yslickll by Lemma3.6. Then, Assump-
tion 3.2, (3.4) and Lemma.3imply that there existgs, y5 > 0 such that

—gxk — %a; Wiedk = dg Wik — ¢ (i + d) = —76(lldkll® + llecl) > —gliecll.
Theseresults together imply that for dftl,
— gtk — 0] Wi > —maxps, ygl
andso 3.20), and equivalenthy3(7), is always satisfied if

T = max{ys, y¢/(1— o).

Therefore, ifni’ > maxys, y{}/(1 — o) for some iteration numbee > 0, thenz! = nlg forall k > k.
This, together with the fact that whenever Algoritf@ri increasescV it does so by at least a positive
finite amount, proves the result. O

A similar result can be shown for the parametér

COROLLARY 3.9 {nL} is bounded above am:;['( remainsconstant for all sufficiently largk.

Proof. By Lemma3.8,z){ is constant for all sufficiently largk. Then, we have by (3.10) thatf' is

increasedthen it is done so by at least a finite constant amount or it is set equdl. fbhus, the result

follows from (3.10) and the fact that there can only be a finite number of increages of d
Theprevious lemmas can be used to bound the sequence of step-length coefficients.

LEMMA 3.10 The sequencéuk} is bounded below by a positive constant.

Proof. Let us rewrite the Armijo condition (3.12) for convenience as
Pz (X + akd) — ¢z (X) < nak Dezm(d) (3.21)

forz e [nL, m]. Suppose that the line search fails for saine 0, which means thaB(21) does not
hold for anyr € [nl'(, m¢]. In particular,

Pz (Xk + aGk) — Prm(Xk) > 1 Deprm (c),

wherewe recall thatr)" [nl'(, 7. As seen in Nocedal & Wright(2006, p. 541), it can be shown
under Assumptio.2that for somey7 > 0, we have

b (X + 60) — G (X) < @D () + @y7m1dk1?,

SO

(7 — DDgm(dk) < a7y lidkll®.
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Lemmas3.6and3.7 thenyield
(1= 1n)yabx < aysyrmy O,
S0
a > (1= mnya/(yayreg’) > L= nya/(3yrmy).

Thus, ax is never set belowl — #»)y4/(2ysy7zy), which is bounded below and away from zero by
Lemma3.8, in order to satisfy the Armijo condition (3.12) for some= [nL, il O
We are now ready to present the main result of this section.

THEOREM3.11 Algorithm 3.1yields

jim | [ 9+ Ak
Ck

k— oo

o

Proof. By Corollary 3.9, the algorithm eventually computes, during a certain iterafor 0, a finite

valuez* beyond which the value of the parameter will never be increased. This means that for all

sufficiently largek, the Armijo condition (3.12) is satisfied far' = z* or elsex' would be increased
(see the second-to-last line of Algorithgal). From Lemmas.7 and 3.10, we then have that for all
k > k*

P+ (%) — ¢+ (X + akdi) > 780k
for someyg > 0. Therefore, (3.17) implies

k-1

br () = B () = D (B (X)) = Bre (Xj11))

j=%

k-1

k—1
78 2
> — djll“+ licill
24 _Z*( j i
j=k
andso
lim |dkl=0 and lim|ck]| =0 (3.22)
k— 00 k— oo

follow from the fact that AssumptioB.2(a) implies¢,+ is bounded below. Finally, the first block
equation of 8.4), Assumptior8.2(c) and Lemma&.3imply

IGk+1 + Afprdkeal = 19k + Akt + (G — 9 + (Ars — A Akl
= [1(1 — @) (G + AfAk) — ak Wk + (Gks1 — ) + Az — A Akl

< (X —an)llgk + ALkl + O(ldk])
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andso

lim gk + Akl =0
k— o0
follows from (3.22), the fact thaty < 1 and Lemm&3.10. a

4. Numerical results

In this section, we present numerical results for a particular implementation of Algagithimcorpo-

rated into the KNITRO-Direct algorithm in the KNITRO 5.0 software package\V¥akz & Plantenga

(2006) for details. We tested the code using a set of 85 equality-constrained problems from the CUTEr
(seeBongartzet al., 1995, andGouldet al.,2003) and COPS (sd2olanet al.,2004) collections. From

these sets, we chose problems for which AMPL models were readily available. The default KNITRO-
Direct algorithm may revert to a trust region iteration to handle negative curvature and to ensure global
convergence. In our tests, we enabled internal options to prevent this from occurring. Instead, the algo-
rithm modifiesW if necessary to ensure that the resulting matrix is positive definite on the null space
of Ax—to ensure that our implementation performs as a pure line search algorithm.

As the globalization strategy described in this paper incurs little computational cost and is designed
to promote long steps for fast convergence, we propose that the numbers of iterations and function3
evaluations required to find a solution are appropriate measures for comparison with other methods. Wez
compare the results of an algorithm using the default penalty function approach in KNITRO-Direct, call
it pi_default, with the results using a flexible penalty function. The penalty parameter update strategy in
KNITRO-Direct corresponds to the case wha&rilQ) is replaced b;tl'(+1 « m. Forpi_default and the

algorithm with a flexible penalty function, we initialize andz', respectively, to 108. We consider
the four initial values 1, 10, 100 and 1000 fel, which correspond to the algorithms we refer to as
pi_flex_1, pi_flex_10, pi_flex_100 andpi_flex_1000, respectively. Tablé contains a complete listing of
the input parameters for our implementation of AlgoritBri.

The results for the five algorithms are summarized in Bigsd9 in terms of logarithmic perfor-
mance profiles, as describedDolan & Moré (2002). Here, the leftmost values indicate the proportion
of times each algorithm solves a given problem using the least value of the given measure; i.e. number of@
iterations or of function evaluations. The values fail to add to 1 as ties are present. The rightmost func- f
tion values illustrate the robustness of each approach; i.e. the percentage of times that a given problen'g
is solved. 2

The results are encouraging. An algorithm with a flexible penalty function approach often not only &
requires slightly fewer iterations to find a solution but also a considerable amount of savings is often ex-
perienced in terms of function evaluations. This can be understood as the line search procedure generally”
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TABLE 1 Inputvalues for AlgorithnB.1

Parameter Value

né 1078

n2, {1,10,100,1000}
€ 104

¢l 1074

n 1078
o 101
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1 | : |
yiiam=—=--—pIssmsogm—sso———ooe—oooo—ooo—mooo
0.6 - |
0.4 |
pi_default
0.2 - pi_flex_1 _
pi_flex_10
pi_flex_100 .
pi_flex_1000 =-=-=-=-
0 ! | | |
1 2 4 8 16 32

0.4 1
pi_default

0.2 | pi_flex_1 ======- —
pi_flex_10 =====---
pi_flex_100 =ewmeerneeees
pi_flex_1000 —:=:=-—-

0 | | | |
1 2 4 8 16 32

FiG. 9. Performance profile for function evaluations.

has to perform fewer backtracks for a given step, leading to longer steps and a higher percentage of unit
step-lengths (i.e. full Newton steps). We also observe that the plops ftax_1, pi_flex_10, pi_flex_100
andpi_flex_.1000 are nearly indistinguishable throughout much of Bigsnd9. This suggests that the

initial value forz Y is inconsequential compared to the effect that separate updating strategiearor

7Y have on the practical performance of the approach.

5. Final remarks

In this paper, we have proposed and analysed a new globalization strategy for equality-constrained op-
timization problems. Our flexible penalty function not only allows for relatively unrestricted movement
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during early iterations but also automatically tightens itself to forcefully guide convergence when nec-
essary, thus manipulating the search appropriately throughout a run of the algorithm. An example of a
particular implementation of the mechanism was presented in the context of a line search SQP method,
after which the global behaviour was analysed and successful numerical results were outlined.

We close by describing how the ideas of this paper might be extended to generally constrained
problems of the form

in f
i 100

s.t.cE(x) =0, (5.1)
c'(x) <0,

wheref: R" — R, cE: R" — Rt® andc': R" — R!' aresmooth functions. One of the leading classes
of methods for solving problenb(1) are interior-point approaches. Some algorithms of this type begin
by introducing a log-barrier term with parameger> 0 for the inequalities into the objective to form
the perturbed problem

min f(x) — Ins'

min () — Z.

s.t.cE(x) =0, (5-2)

c'(x)+s=0.

A solution for problem§.1) is then found via the (approximate) solution of a sequence of problems of
the form (5.2) foru — 0, where throughout the process the vector of slack variabtesgs?, . . ., st') €

Rt is forced to be positive. Thus, for each given> 0, we can define the flexible penalty function
associated with the barrier subproblem (5.2) as
cE(x)
c'(x)+s

where0 < 7' < zY, and a line search algorithm similar to Algorithrl can be applied. (The discus-
sion here refers to a generic algorithm; to obtain practical methods with global convergence guarantees
various safeguards or modifications must be added. One such modification is the penalty function regu-
larization described iChen & Goldfark(2006).)

A similar approach can be used in a trust region algorithm. Here, adgtépm xi is typically
accepted if and only if the actual reduction in a penalty funcfipndefined by

pred; (de) = ¢z (X)) — ¢z (X + o),

is large with respect to the reduction obtained in a model such,aseeSection3). This condition can
be written as

, we [z 74,

oz (X) = f(X)—uZ:Insi +r

iel

¢ fe |\ uo Aislealun ybiys T e /Biosfeulnolploixoeulewl//:dny wouy pepeojumoq
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11074

¢red; (dy) S
PEEN Sy
mred; (dk)

for some O< 5 < 1, where it should be observed that we may now Heetr Axdk|l > 0. Rather than
restricting the step acceptance criteria to this inequality with a fixed O during each iteratiok, we
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claimthat an effect similar to that expressed in this paper can be achieved if instead a step is considered
acceptable if

gred,) (d) predu (d)
— Kk >y or —K& " >y,
mred, m(dk) mred,m (dk)

where EZ'L, =] is a prescribed interval ang" € [7r=(, m¢] is chosen carefully so thanred,,lin(dk) is
sufficiently positive. All of the quantitiesl'(, = andzy" canbe defined and updated in a manner similar
to that described in this paper.

The previous discussion outlines ways in which our flexible penalty function can be employed in
the context of constrained optimization. We note, however, that in order to obtain practical algorithms
with global convergence guarantees, various algorithmic components must be added to the methods
described above.
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