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We propose an algorithm for solving nonsmooth, nonconvex, constrained optimization problems as well as
a new set of visualization tools for comparing the performance of optimization algorithms. Our algorithm
is a sequential quadratic optimization method that employs Broyden-Fletcher-Goldfarb-Shanno (BFGS)
quasi-Newton Hessian approximations and an exact penalty function whose parameter is controlled using
a steering strategy. While our method has no convergence guarantees, we have found it to perform very
well in practice on challenging test problems in controller design involving both locally Lipschitz and
non-locally-Lipschitz objective and constraint functions with constraints that are typically active at local
minimizers. In order to empirically validate and compare our method with available alternatives—on a
new test set of 200 problems of varying sizes—we employ new visualization tools which we call relative
minimization profiles. Such profiles are designed to simultaneously assess the relative performance of
several algorithms with respect to objective quality, feasibility, and speed of progress, highlighting the
trade-offs between these measures when comparing algorithm performance.

Keywords: nonconvex optimization; nonsmooth optimization; constrained optimization; sequential
quadratic optimization; exact penalty methods; benchmarking; performance profiles; computational
budget

1. Introduction

Consider inequality constrained optimization problems of the form

min
x∈Rn

f (x) s.t. ci(x) ≤ 0, i ∈ {1, . . . , p}. (1)

We propose an algorithm for solving problems of this type in which the objective function f :
R

n → R and constraint function c : R
n → R

p may be nonsmooth and nonconvex. We merely
presume that the functions are continuously differentiable almost everywhere, i.e. that f (·) and
ci(·) are only nonsmooth on sets of measure zero. Our method is also applicable to solve problems
that have equality constraints, but for a clearer and more concise exposition, we consider only
the inequality constrained problem (1).
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2 F. E. Curtis et al.

Unconstrained nonsmooth optimization is a well-studied subject (see [[27, 31], [45, Chap-
ter 7]]), particularly in the convex case; for more references see, for example, the literature
discussions in [13,35]. The latter paper includes discussion of some methods for constrained
nonsmooth optimization. However, not many direct methods have been proposed for general
problems of the form (1); indeed, most resort to penalty functions or other reformulations so that
unconstrained techniques can be employed. There are exceptions, such as the subgradient-based
proximal bundle method for nonconvex, nonsmooth and generally constrained multiobjective
minimization implemented in the code mpbngc [36]; see [21] for corresponding theoretical
results for a closely related method for unconstrained minimization. Alternatively, there is also
the sequential quadratic programming (SQP) method in [13], discussed further below, which only
relies upon gradient information being available, drawing inspiration from the gradient sampling
(GS) technique of Burke et al. [9] for unconstrained nonsmooth optimization.

The unconstrained GS algorithm has convergence guarantees that hold with probability one,
assuming that f (·) is locally Lipschitz and its level sets are bounded. In [32], it was further shown
that the convergence results of GS could be strengthened by slightly modifying the algorithm,
eliminating the requirement that the level sets be bounded. In practice, GS has shown to be a reli-
able method on many challenging nonsmooth problems and, surprisingly, this has been evident
even in cases where the objective function is not locally Lipschitz, although the convergence
results do not extend to such problems. However, the GS technique requires that O(n) gradients
be evaluated per iteration, which can be a quite costly endeavour for functions and gradients that
are expensive to compute, so, as a result, GS is not a viable algorithm in many applications.

Indeed, it has been strongly advocated in [35] that for unconstrained minimization of non-
smooth, nonconvex, locally Lipschitz functions, a simple Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method using inexact line searches is much more efficient in practice than gradient sam-
pling, although the BFGS Hessian approximation typically becomes very ill-conditioned and no
general convergence guarantees have been established. Note that the Hessian of a nonsmooth
function typically is not defined at a local minimizer; however, any locally Lipschitz nonsmooth
function can be viewed as a limit of increasingly ill-conditioned smooth functions. Hence, the
authors argue that the ill-conditioning of the Hessian approximation is actually beneficial. They
show an example indicating that, when the objective function is partly smooth in the sense of
Lewis [34], BFGS seems to be able to automatically identify the U and V spaces associated with
the objective function f near the minimizer, along which f varies smoothly and nonsmoothly,
respectively.

For general constrained nonsmooth, nonconvex optimization problems—i.e. where p ≥ 1
in (1)—the aforementioned sequential quadratic optimization approach employing gradient sam-
pling (SQP-GS) was presented in [13], with guaranteed convergence to stationary points holding
with probability one. This algorithm uses a BFGS approximation to define a Hessian matrix that
appears in the quadratic subproblems, but in contrast to the argument of Lewis and Overton [35]
regarding the benefit of ill-conditioning for the unconstrained problem, the convergence result
requires enforcing upper and lower bounds on the eigenvalues of the BFGS approximations. To
the best of our knowledge, this is the only method in the literature with convergence guaran-
tees for the broad problem class represented by (1). However, its reliance on gradient sampling,
both in theory and in the implementation of the algorithm, makes SQP-GS a computationally
intensive method.

As a consequence, our aim in proposing a new method for solving (1) is to eschew a costly
gradient sampling approach entirely and to instead find an efficient and effective extension of
the BFGS approach for nonsmooth, nonconvex unconstrained optimization to the case with
nonsmooth, nonconvex constraints.

One motivation for our work is the success that BFGS has had in the domain of con-
troller design for linear dynamical systems. In particular, the BFGS algorithm is the primary
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Optimization Methods & Software 3

optimization method in the open-source Matlab toolbox hifoo (H-infinity fixed-order opti-
mization) [10]. The toolbox designs fixed-order controllers by optimizing stability measures that
generally exhibit a high degree of nonsmoothness at minimizers (a property that we discuss and
illustrate in Section 4). The hifoo toolbox has been used successfully in a wide variety of appli-
cations, including synchronization of heterogeneous multi-agent systems and networks [29,30],
design of motorized gimbals that stabilize an angular motion of an optical payload around an axis
[43], flight control via static-output-feedback control [50], robust observer-based fault detection
and isolation [47], influence of tire damping on control of quarter-car suspensions [1], flexible
aircraft lateral flight dynamic control [22–24], optimal control of aircraft with a blended wing
body [25], vibration control of a fluid/plate system [44], controller design of a nose landing gear
steering system [42], bilateral teleoperation for minimally invasive surgery [14], design of an air-
craft controller for improved gust alleviation and passenger comfort [49], robust controller design
for a proton exchange membrane fuel cell system [48], design of power systems controllers [16],
and design of winding systems for elastic web materials [33].

Most of the applications of hifoo have involved unconstrained nonsmooth optimization, but,
in 2009, hifoo was extended [19] to handle simultaneous plant optimization, where one con-
troller is designed to control multiple systems, some of which appear in optimization objective
functions and some in constraint functions, all typically nonsmooth. Such problems can be
expressed as constrained nonsmooth optimization problems of the form (1) given above. Because
of the prohibitive cost of using gradient sampling, the current approach taken in hifoo to solve
these problems is to apply BFGS to a nonsmooth penalty function using a sequential fixed penalty
parameter (SFPP) strategy (see Section 2 for further discussion of this method). This provides
one of the main motivations for the present work; we are hoping to replace the SFPP method
currently implemented in hifoo by the new method investigated in this paper. We note that
methods to compute stability measures are typically iterative with a cubic cost per iteration (with
the respect to the dimension of the dynamical system, not the number of optimization variables),
which motivates a strong preference for optimization methods which do not require too many
function and gradient evaluations.

Our contributions in this paper are threefold. The first is naturally our new algorithm, BFGS-
SQP, which employs BFGS Hessian approximations within a sequential quadratic optimization
algorithm and does not assume any special structure in the objective or constraints. The second
is the creation of a new heterogenous test set consisting of 200 nonsmooth, nonconvex, con-
strained optimization problems derived from an important application in controller design. These
test problems, half of which involve locally Lipschitz functions, and half non-locally-Lipschitz
functions, were specifically chosen for their challenging properties; the highly nonlinear objec-
tive and constraint functions are not only expensive to compute but they also typically display
a high degree of nonsmoothness at local minimizers as well, with the constraints often being
active. Our third contribution is the introduction of relative minimization profiles (RMPs), which
are new visualization tools that we employ to empirically validate our method against available
competing methods (to be described later). Given that we rely upon our new benchmarking tool
to justify our algorithm’s performance and utility in the absence of convergence results, this latter
contribution deserves further motivation.

While performance profiles of Dolan and Moré [15] are popular benchmarking tools, they
require that a binary success/failure criterion be applied to each problem in a test set. However,
even in convex settings, performance profiles (and thus any conclusions made from them) can be
sensitive to how exactly they are created, which is of particular concern since the success/failure
criteria employed must typically be chosen arbitrarily and is often sensitive to the choice of each
method’s stopping parameters, difficulties which are discussed in detail in [2–4]. The additional
considerations of nonconvex, nonsmooth constrained problems only intensify the difficulties of
implementing a fair and informative benchmark. Quality of objective minimization, attaining
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4 F. E. Curtis et al.

feasibility, and rate of progress with respect to computation are all important performance
metrics, but they are often at odds with one another. Furthermore, their respective importance
may vary for different problem classes and from user to user. Though not specifically intended
for constrained and/or nonconvex optimization benchmarking, the data profiles of Moré and
Wild [39] address some of the aforementioned issues, in part as they can be used as comple-
mentary tools in conjunction with performance profiles. Data profiles highlight the relative rates
of progress of algorithms in attaining pre-specified levels of accuracy, but such success/failure
criteria are again subject to the same pitfalls discussed above. In addition, accuracy in attaining
some target success value is an ambiguous concept for nonconvex problems.

RMPs attempt to address these benchmark challenges arising in heterogenous sets of non-
convex and/or constrained problems, smooth or nonsmooth, in two key and related ways. First,
RMPs permit a new unified visualization tool that can allow one to simultaneously assess the rel-
ative performance differences of competing methods with respect to objective quality, feasibility,
and speed of progress, while only requiring one or a few RMP plots. Second, RMPs highlight
the relative performance differences and trade-offs of methods as functions of the parameters of
the RMPs themselves, decoupled from the stopping parameters of each method. This is done by
observing the transient behaviours of each algorithm through the properties of their computed
iterates.

The paper is organized as follows. In the next section, we establish a prerequisite penalty
parameter approach for constrained optimization. In Section 3, we review a steering strategy
for updating the penalty parameter to promote progress towards feasibility at every iteration,
which is a major component for our new method. In Section 4, we present two challenging prob-
lem classes arising in controller design: one involving non-locally-Lipschitz and one involving
locally Lipschitz functions. In Section 5, we introduce and further motivate our new visualization
technique to compare algorithms using RMPs, and in Section 6 we use these profiles to compare
our new method with competing methods on our test set comprising 200 problems of the forms
introduced in Section 4. Concluding remarks are provided in Section 7 and additional illustrative
examples are provided in the appendix.

2. An exact penalty function approach

We use the following notation: R
+ denotes the set of nonnegative real numbers, R

++ denotes the
set of strictly positive real numbers, Z

+ denotes the set of nonnegative integers, and e denotes a
vector of ones whose length is determined by the context in which it appears.

Consider the exact nonsmooth penalty function

φ(x; μ) = μf (x) + v(x), (2)

where μ ∈ R
++ is a penalty parameter and the function v : R

n → R, measuring total violation
cost over the constraints, is defined by

v(x) = ‖ max{c(x), 0}‖1 =
∑
i∈Px

ci(x) where Px = {i ∈ {1, . . . , p} : ci(x) > 0}. (3)

At any x such that ci(x) �= 0 for all i ∈ {1, . . . , p}, the gradient of φ(·; μ) is

∇φ(x; μ) = μ∇f (x) +
∑
i∈Px

∇ci(x); (4)

however, the penalty function is in general nonsmooth, even if the objective and constraint func-
tions are smooth. Thus, if we aim to solve constrained optimization problems by optimizing an
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Optimization Methods & Software 5

exact penalty function, we must consider optimization methods that are effective for nonsmooth
functions. If we happen to know, a priori, an acceptable value for the penalty parameter μ such
that minimizers of (2) correspond to feasible minimizers of (1) [6,7], then a straightforward
BFGS method can be a practical approach. In such a method, given an iterate xk at which the
penalty function is differentiable, the search direction dk is calculated by solving

min
d∈Rn

q(d; xk , μ), (5)

where

q(d; xk , μ) := φ(xk; μ) + ∇φ(xk; μ)Td + 1

2
dTHkd

= μf (xk) +
∑
i∈Pxk

ci(xk) +
⎡
⎣μ∇f (xk) +

∑
i∈Pxk

∇ci(xk)

⎤
⎦

T

d + 1

2
dTHkd (6)

and Hk is a BFGS approximation to the Hessian of (2) at xk .1 Unfortunately, however, we often
do not know what value the penalty parameter should take and, as such, it is typical that BFGS
will converge to a stationary point (assuming it converges at all) that is actually infeasible for the
original problem of (1) if the penalty parameter weighting the objective is set too high.

One might consider a simple strategy of using an SFPP restarting scheme with BFGS; i.e.
one may consider iteratively lowering μ and restarting BFGS repeatedly until a feasible solution
has been found. An immediate pertinent issue with such an approach is how accurately BFGS
should attempt to minimize (2) for a given value of μ before deciding whether it is necessary to
lower the penalty parameter. There is a delicate balance here between only lowering the penalty
parameter when it has been demonstrated to be too high versus lowering the penalty parameter
too aggressively and/or frequently. On one hand, confirming that the penalty parameter is set too
high often entails the potentially costly process of allowing the algorithm to first converge to an
infeasible point. On the other hand, lowering the penalty parameter unnecessarily comes with
the risk of increasing the difficulty of optimizing the penalty function itself and thus perhaps
lowering the rate of progress of the method. Furthermore, if f (·) is unbounded below, then (2)
may also be unbounded below, even if f (·) is bounded below on the feasible set. One goal of our
proposed algorithm is to address the case when f (·) is unbounded below off the feasible set.

3. A steering strategy

As a potential solution to the issues of when to adjust the penalty parameter and handling the
case of f (·) being potentially unbounded below, we consider adapting the steering strategy of
Byrd et al. [11,12]. Although originally intended for the case where the objective and constraints
are both smooth, we propose using such a steering strategy to permit a modified BFGS search
direction calculation in our present setting where both the objective and constraint functions
may be nonsmooth. Specifically, we replace the standard BFGS search direction given in (5)
with an alternative search direction computed by a penalty-SQP method [17], which is obtained
via solving the quadratic problem (QP)

min
d∈Rn, s∈Rp

μ(f (xk) + ∇f (xk)
Td) + eTs + 1

2
dTHkd

s.t. c(xk) + ∇c(xk)
Td ≤ s, s ≥ 0, (7)
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6 F. E. Curtis et al.

where the corresponding dual is given by

max
λ∈Rp

μf (xk) + c(xk)
Tλ − 1

2
(μ∇f (xk) + ∇c(xk)λ)TH−1

k (μ∇f (xk) + ∇c(xk)λ)

s.t. 0 ≤ λ ≤ e, (8)

s ∈ R
p is a vector of slack variables and λ ∈ R

p is a vector of dual variables. The primal solution
component dk can be recovered from the dual solution λk via the relationship

dk = −H−1
k (μ∇f (xk) + ∇c(xk)λk). (9)

Note that when μ = 1 and there are no constraints (i.e. when p= 0) Equation (9) yields the stan-
dard BFGS search direction. In the presence of constraints, the resulting dk computed from (7)
(or by solving (8) and employing (9)) provides a descent direction for (2) at xk with the current
penalty parameter μ.

The search direction computed in this manner can be viewed as balancing the two (sometimes
opposing) goals of minimizing the objective and pushing towards a feasible solution, the latter
of which can be measured by the magnitude of the linear model of constraint violation, i.e.

l(d; xk) := ‖ max{c(xk) + ∇c(xk)
Td, 0}‖1 (10)

at xk given a direction d. Observe that the magnitude of this quantity relates to that of eTs in
the solution to (7). Our approach for updating the penalty parameter, based on the techniques in
[11,12], proceeds as follows. Let the reduction in the linear model of constraint violation given
in (10) at the current iterate xk and for any search direction d be defined as

lδ(d; xk) := l(0; xk) − l(d; xk)

= v(xk) − ‖ max{c(xk) + ∇c(xk)
Td, 0}‖1. (11)

For any search direction d at xk , (11) predicts how much progress towards feasibility d may
make. The basic tenet of the steering strategy defined in Procedure 1 is to promote progress
towards feasibility during every iteration, which it does by first evaluating the predicted viola-
tion reduction for the search direction dk produced for the current value of the penalty parameter.
If the resulting predicted violation reduction for dk seems inadequate, the steering strategy alter-
natively assesses the predicted violation reduction for the reference search direction d̃k , which
is the direction resulting from solving (7) with μ set to zero. By essentially biasing the search
direction calculation to the extreme of only promoting progress towards feasibility regardless of
the effect on the objective, the predicted violation reduction given for d̃k gives an indication of
the largest violation reduction the algorithm may hope to achieve when taking a step from xk . If
the predicted violation reduction for dk is still inadequate compared to the predicted reduction
given by the reference direction, then the steering strategy iteratively lowers the current value
of the penalty parameter until (7) produces a search direction satisfactorily balanced in terms of
progress towards the feasible set and minimizing the objective.

The benefits of the steering strategy in Procedure 1 are that the penalty parameter can be
dynamically set at every iteration, where the amount that it may be reduced is determined by how
difficult it appears to be to promote progress towards the feasible set from the current iterate. In
contrast, with the simple fixed penalty parameter restarting scheme SFPP, one must either wait
for BFGS to converge to a stationary point (which can be slow for nonsmooth problems) to assess
whether it is necessary to lower the penalty parameter and restart, or terminate BFGS early and
adjust the penalty parameter anyway, without knowing whether it is too high or not. Moreover,
empirical evidence has shown that a steering strategy such as that in Procedure 1 decreases the
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Optimization Methods & Software 7

Procedure 1 [dk , μnew] = sqp_steering_strategy(xk , Hk , μ)
Input:

Current iterate xk and BFGS Hessian approximation Hk

Current value of the penalty parameter μ

Constants:
Values cv ∈ (0, 1) and cμ ∈ (0, 1)

Output:
Search direction dk

Penalty parameter μnew ∈ (0, μ]

1: Solve QP (8) using μnew := μ to obtain search direction dk from (9)
2: if lδ(dk; xk) < cvv(xk) then
3: Solve (8) using μ = 0 to obtain reference direction d̃k from (9)
4: while lδ(dk; xk) < cvlδ(d̃k; xk) do
5: μnew := cμμnew

6: Solve QP (8) using μ := μnew to obtain search direction dk from (9)
7: end while
8: end if

Note: The constant cv specifies the fraction of either total violation v(xk) or predicted violation reduction lδ(d̃k ; xk) for
the reference direction d̃k that is deemed to be an acceptable amount of predicted progress towards feasibility for the
search direction dk. Otherwise, the constant cμ is used as the factor by which to iteratively reduce the penalty parameter
μnew and correspondingly compute new trial search directions. In practice, the while loop is terminated after a fixed
number of iterations, if its termination condition continues not to be met, and the last search direction and penalty
parameter are accepted regardless.

likelihood of divergence ensuing in the case that f (·) is unbounded below (but is bounded below
in the feasible region).

As the penalty function is generally nonsmooth at minimizers, we cannot expect the norm of
its gradient to decrease as iterates approach a minimizer. Consequently, we must consider an
alternative stopping strategy compared to the usual criteria for optimizing smooth functions. To
that end, following the approach taken in [35] for the unconstrained problem, consider the l most
recent iterates of the algorithm that are considered ‘close’ in some sense of distance and define

G := [∇f (xk+1−l) · · · ∇f (xk)]

and Ji := [∇ci(xk+1−l) · · · ∇ci(xk)], i ∈ {1, . . . , p}.

Our stationarity measure is derived by first forming a QP subproblem designed to compute a step
toward minimizing the penalty function along the same lines as (7). However, we augment the QP
with previously computed gradient information (from G and the Ji’s) in order to capture changes
in the problem functions in a neighbourhood around the current iterate. The motivation is similar
in gradient sampling where one aims to approximate subdifferential information by the random
sampling of gradients in a neighbourhood of a given point. Here, however, we are reusing the
gradients of the objective and constraints of previously computed points {xk+1−l, . . . , xk} to form
G and the Ji’s, provided that this set of previous iterates is sufficiently close to xk . Note that, in
practice, a set of l ‘close’ iterates can be maintained by purging the set any time the norm of the
most recent step is sufficiently large, e.g. if it is greater than some user-provided tolerance. If the
solution of the resulting QP is sufficiently small in norm, then we have reason to believe that
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8 F. E. Curtis et al.

we are in a small neighbourhood of a stationary point for the constrained optimization problem.
For consistency with (7), we employ the Hk-norm, which leads to the dual formulation, using
λ = [λ1

T, . . . , λp
T]T ∈ R

pl with λi ∈ R
l:

max
σ∈Rl ,λ∈Rpl

p∑
i=1

ci(xk)e
Tλi − 1

2

[
σ

λ

]
T[G, J1, . . . , Jp]TH−1

k [G, J1, . . . , Jp]

[
σ

λ

]

s.t. 0 ≤ λi ≤ e, eTσ = μ, σ ≥ 0. (12)

The termination condition is then that d
 is sufficiently small in norm, where

d
 = H−1
k [G, J1, . . . , Jp]

[
σ

λ

]
. (13)

Overall, motivated by [13, Equation (2.7)], this measure is reasonable since d
 is the minimizer
of a piecewise quadratic model of the penalty function about xk . The minimizer of this model
is given by the solution of a QP similar to (7), but augmented in the sense that ∇f (xk)

Td and
∇ci(xk)

Td for i ∈ {1, . . . , p} are, respectively, replaced by the maxima of terms involving the gra-
dients in G and the Ji’s (see [13, Equation (2.6)]). In our setting, the minimizer (13) is recovered
by solving the QP’s dual, given by (12).

We may now present our algorithm BFGS-SQP, shown in pseudocode in Procedure 2, where
the search direction is calculated using the SQP-based steering strategy of Procedure 1. Fol-
lowing Lewis and Overton [35] for unconstrained optimization using BFGS, we also make use
of an inexact Armijo-Wolfe line search to determine the length of the actual step taken along
the chosen search direction dk . The line search returns the next iterate of BFGS-SQP, that is,
the point xk+1 which satisfies the Armijo and weak Wolfe conditions for the penalty function,
along with the corresponding values of the penalty function, its gradient and the constraint vio-
lation amount at xk+1. Finally, BFGS-SQP is terminated once both ‖d
‖2 ≤ τ holds for some
fixed user-provided tolerance τ ∈ R

++, indicating that stationarity has been achieved, and the
constraints at this point are also satisfied to the desired accuracy, indicating that this stationary
point is also a feasible solution. We make no claims that BFGS-SQP has theoretical convergence
guarantees to such points, though we believe that the results of our numerical experiments justify
the algorithmic choices, which we have made in its design.

Remark 3.1 For brevity, we omit the primal form of (12) and instead refer to [13,
Equation (2.6)], where the problem is stated in terms of sample points, not previous iterates.

In the remainder of the paper, we compare the performance of an implementation of BFGS-
SQP against the performance of three other methods:2 the SFPP and SQP-GS methods already
described, and, in addition, Sparse Nonlinear OPTimizer (SNOPT) [18], a highly regarded gen-
eral purpose code for nonlinearly constrained optimization. Although SNOPT is not intended
for solving nonsmooth problems, it is worth noting that neither BFGS nor the SQP steering
strategy we employ were originally intended for nonsmooth optimization either. As SNOPT is
also a quasi-Newton SQP method, it is reasonable to ask whether it is effective on nonsmooth
problems and, if so, how effective it is compared to our new method. Consequently, in order to
empirically validate BFGS-SQP, we include SNOPT in addition to SFPP and SQP-GS in our
set of competing alternatives for constrained nonsmooth optimization. For more details on the
implementations and versions of these codes, see Section 6.1.
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Optimization Methods & Software 9

Procedure 2 [x�, f�, v�] = bfgs_sqp(f (·), c(·), x0, μ0)
Input:

Objective f : R
n → R and inequality constraints c : R

n → R
p given as f (·) and c(·)

Initial starting point x0 ∈ R
n and penalty parameter μ0 ∈ R

++

Constants:
Constants: positive stopping tolerances τ
 (stationarity) and τv (violation)

Output:
Best solution x� encountered with corresponding objective value f� and violation v�

1: Set H0 := I and μ := μ0

2: Set φ(·) as the penalty function given in (2) using f (·) and c(·)
3: Set ∇φ(·) and v(·) as the associated gradient (4) and violation function (3)
4: Evaluate φ0 := φ(x0; μ), ∇φ0 := ∇φ(x0; μ), and v0 := v(x0)

5: for k = 0, 1, 2, . . . do
6: [dk , μ̂] := sqp_steering_strategy(xk , Hk , μ)

7: if μ̂ < μ then
8: // Penalty parameter has been lowered by steering; update current iterate
9: Set μ := μ̂

10: Reevaluate φk := φ(xk; μ), ∇φk := ∇φ(xk; μ), and vk := v(xk)

11: end if
12: [xk+1, φk+1, ∇φk+1, vk+1] := inexact_linesearch(xk , φk , ∇φk , dk , φ(·), ∇φ(·))
13: Compute d
 via (12) and (13)
14: if ‖d
‖2 < τ
 and vk+1 < τv then
15: // Stationarity and feasibility sufficiently attained; terminate successfully
16: break
17: end if
18: Set Hk+1 using BFGS update formula
19: end for

Note: For brevity, we omit the specifics for tracking the best optimizer encountered so far and the set of previous
gradients which are considered ‘close’ to the current iterate. For details on the inexact line search method and the
BFGS update formula for the Hessian we refer to Lewis and Overton [35] and [40 pages 140–143], respectively. If the
line search fails, then the algorithm is terminated.

4. Nonsmooth, nonconvex, constrained optimization examples

4.1 Static-output-feedback controller design

Consider the discrete-time linear dynamical system with input and output defined by

xk+1 = Axk + Bwk ,

zk = Cxk

and the associated static-output-feedback plant [5,10,41]

A + BXC,

where the matrices A ∈ R
N ,N , B ∈ R

N ,M , and C ∈ R
P,N are given, X ∈ R

M ,P is an embedded vari-
able controller matrix, wk ∈ R

M is the control input, and zk ∈ R
P is the output. A well-known and
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10 F. E. Curtis et al.

an important problem is that of designing the controller matrix X such that, with respect to some
chosen measure of stability for dynamical systems, the stability of the static-output-feedback
plant is enhanced as much as possible. Typically, controller design for static-output-feedback
plants amounts to solving a nonsmooth, nonconvex optimization problem, one which may not
even be locally Lipschitz depending on which stability measure is specified in the problem.

4.2 Spectral radius optimization

Our first test problem requires the following definition.

Definition 4.1 The spectral radius of a matrix A ∈ C
N ,N is defined as

ρ(A) := max{|λ| : λ ∈ σ(A)},
where the spectrum, or set of eigenvalues of A, is

σ(A) = {λ ∈ C : det(A − λI) = 0}.
We say that A is stable if ρ(A) ≤ 1.

Remark 4.2 The discrete-time dynamical system xk+1 = Axk is asymptotically stable—i.e.
xk → 0 as k → ∞ for any x0 ∈ R

N —if and only if ρ(A) < 1. Hence, our usage of the term
‘stable’ is somewhat nonstandard since if A has a multiple eigenvalue with a Jordan block and
with modulus one, {xk} may diverge. However, it is convenient for the purposes of optimization
to work with non-strict inequalities and closed feasible regions, and in practice one can always
change 1 to a suitable number slightly less than 1.

Remark 4.3 Although the spectral radius function ρ(·) is nonsmooth at matrices with more than
one eigenvalue attaining the maximum modulus, and non-Lipschitz at matrices with multiple
(coinciding) eigenvalues attaining the maximum modulus [8], it is continuously differentiable
almost everywhere; as such, it is a suitable challenging function for comparing gradient-based
nonsmooth, nonconvex optimization methods.

We now consider the nonconvex, nonsmooth, and constrained optimization problem

min
X∈RM ,P

max{ρ(Ai + BiXCi) : i ∈ {p + 1, . . . , p + q}}

s.t. ρ(Ai + BiXCi) ≤ 1, i ∈ {1, . . . , p} (14)

where each static-output-feedback plant Ai + BiXCi is defined by the matrices Ai ∈ R
N ,N ,

Bi ∈ R
N ,M , and Ci ∈ R

P,N and the matrix X ∈ R
M ,P is an embedded variable controller for all

p+q plants. The goal is to compute X such that stability of the static-output-feedback plants
in the objective are all enhanced while simultaneously ensuring that the plants appearing in the
constraints remain stable.

Remark 4.4 This problem is a challenging nonsmooth, nonconvex optimization problem even
when there are no constraints and q= 1, in which case the objective is simply the spectral radius
of a single static-output-feedback plant. Problems of this form were investigated in [41]. Because
the matrices are real, the eigenvalues are either real or occur in complex conjugate pairs. It was
observed in [41] that at local minimizers of the spectral radius, typically several eigenvalues (real
and/or conjugate pairs) of the static-output-feedback plant have moduli that attain the spectral
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Optimization Methods & Software 11

Figure 1. The plots in the top row track the value of the spectral-radius-based objective function in terms of iteration
number for SNOPT, SFPP, BFGS-SQP, and SQP-GS (left to right) on a randomly generated example of dimension
N = 13 comprised of three plants in the objective and one in the constraint and where the controller matrix has
MP = 23 × 2 = 46 variables. In the top row of plots, the vertical dashed line indicates the iteration number whose
elapsed CPU-time was closest to BFGS-SQP’s total elapsed CPU-time while the horizontal dashed line indicates the
value of BFGS-SQP’s best feasible solution. The log10-scaled plots in the bottom row show the amount of violation
tracking with the iteration counts with ‘-Inf’ indicating zero violation (feasible points).

radius. We can consider the number of such ‘active’ real or conjugate pairs of eigenvalues, minus
one, as a measure of nonsmoothness at the solution: we call this the ‘number of activities’. When
a complex conjugate pair of active eigenvalues has multiplicity higher than one, that is two or
more conjugate pairs of active eigenvalues coincide with each other, the number of activities
and hence the degree of nonsmoothness is higher still, since both the real and imaginary parts
coincide, not only the modulus. For a discussion of related constrained problems, see [19].

In Figure 1, we compare SNOPT, SFPP, BFGS-SQP, and SQP-GS for designing a controller
for (14) on a randomly generated example comprised of three plants in the objective and one
plant in the constraint, with the controller matrix initially set to zero, a feasible starting point.
(See Section 6.1 for more details on the experimental set-up.) Though SNOPT’s iterates are all
feasible, we see that it achieves the least minimization of the objective amongst the four methods.
SFPP is able to provide moderately better minimization quality compared to SNOPT, but SFPP
struggled for well over 100 iterations before any real progress towards feasibility was made.
Despite SFPP’s penalty parameter update schedule every 20th iterate, the penalty parameter sim-
ply remained too high for too long. In contrast, BFGS-SQP immediately made progress towards
finding feasible points and minimizing the objective, even as it often encountered infeasible
regions as it progressed. Interestingly, SQP-GS maintained feasibility at almost every iterate,
and while it and BFGS-SQP minimized the objective significantly more than either SNOPT or
SFPP did, SQP-GS’s slower progress per iteration is not only outclassed by BFGS-SQP’s fast rate
of convergence, but, we also see that CPU time per iteration is well over an order of magnitude
larger for SQP-GS compared to BFGS-SQP. By the time BFGS-SQP has finished its 500 itera-
tions, SQP-GS has barely begun. For this particular problem, we see that BFGS-SQP happens to
reduce the objective the most of all four methods.

In Figure 2, for this same example, we show the final spectral configurations for the four con-
trollers ultimately produced by SNOPT, SFPP, BFGS-SQP, and SQP-GS. These are all plots in
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12 F. E. Curtis et al.

Figure 2. The four rows show the final spectral configurations for the four controllers found by SNOPT, SFPP,
BFGS-SQP, and SQP-GS (top to bottom) for the problem described in Figure 1. The left three columns indicate the
plants in the objective while the right column indicates the single plant in the constraint, with the plus signs indicating
the eigenvalues. On the objective plots, the dashed black circle corresponds to the max spectral radius of the three plants
in the objective for that particular algorithm’s controller. The dashed black circle on the constraint plots is the unit circle
(the stability boundary). The solid lighter circles indicate the spectral radius of each plant.

the complex plane, symmetric about the real axis because the matrix data and controller X are all
real. In all configurations, in accordance with Remark 4.4, we observe that the moduli of several
eigenvalues attain the relevant spectral radius. For example, in the third plant in the objective for
BFGS-SQP’s controller , we see the moduli of all 13 eigenvalues close to attaining the spectral
radius, with two complex conjugate pairs being close to coincident. A count of the number of
eigenvalues in this case shows that two real eigenvalues must actually be coincident, though this
cannot be observed from the plot, but a close-up view indicates that, unlike the others, the pos-
itive real eigenvalue does not quite have its modulus attaining the spectral radius. Furthermore,
we see that the spectral radii of the different plants in the objective are nearly the same, which fur-
ther increases the overall number of activities encountered at these solutions and demonstrates
the inherent high degree of nonsmoothness in the optimization problem. The constraint plant
also shows activities, with the moduli of several eigenvalues attaining the upper bound of one
imposed by the constraint, thus demonstrating that the algorithms converged to controllers where
both the objective and constraint are nonsmooth. (See Appendix A.1 for additional spectral radius
examples similar to the one shown in Figures 1 and 2.)

4.3 Pseudospectral radius optimization

Our second test problem requires the following definition.
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Optimization Methods & Software 13

Definition 4.5 The pseudospectral radius of a matrix A ∈ C
N ,N is defined as

ρε(A) := max{|λ| : λ ∈ σ(A + 
), 
 ∈ C
N ,N , ‖
‖2 ≤ ε},

where ρ0(A) = ρ(A). We say that A is stable with respect to the perturbation level ε ≥ 0 if
ρε(A) ≤ 1.

Remark 4.6 The pseudospectral radius can be equivalently defined in terms of the norm of the
resolvent as [46]

ρε(A) := max{|λ| : λ ∈ C, ‖(A − λI)−1‖2 ≥ ε−1},
where we use the convention that ‖(A − λI)−1‖2 = ∞ when A − λI is singular. The inequality
on the right-hand side of this equation can alternatively be expressed as imposing an upper bound
ε on the smallest singular value of A − λI.

Remark 4.7 Like the spectral radius, the pseudospectral radius is nonconvex, nonsmooth, and
continuously differentiable almost everywhere. However, in contrast to the spectral radius, the
pseudospectral radius is locally Lipschitz [20] and is thus potentially an easier function to opti-
mize. For example, the known convergence rates for gradient sampling hold for minimizing the
pseudospectral radius but not the spectral radius. On the other hand, the pseudospectral radius
(along with its gradient, where it is differentiable) is significantly more expensive to compute
than the spectral radius [37].

Remark 4.8 In contrast to the spectral radius, the pseudospectral radius can be considered a
robust stability measure, in the sense that it models the case where asymptotic stability of the
linear dynamical system is guaranteed under the influence of noise up to a specified amount.

For the given perturbation level of ε = 10−1, we now consider the following nonconvex,
nonsmooth, and constrained optimization problem

min
X∈RM ,P

max{ρε(Ai + BiXCi) : i ∈ {p + 1, . . . , p + q}}

s.t. ρε(Ai + BiXCi) ≤ 1, i ∈ {1, . . . , p}, (15)

which we may view as a locally Lipschitz regularization of (14). The goal is still to design a
matrix X such that stability of the static-output-feedback plants in the objective are all enhanced
while simultaneously ensuring that the plants appearing in the constraint functions remain stable,
except here stability means that any plant must remain stable under any perturbation up to norm
ε = 10−1.

In Figure 3, we again compare SNOPT, SFPP, BFGS-SQP, and SQP-GS (using the same exper-
imental set-up as used in Section 4.2 and described in Section 6.1) for designing a controller
for (15) on a randomly generated example comprised of three plants in the objective, one in the
constraint, and where the controller matrix was initially set to the zero matrix, again a feasible
point. For this particular pseudospectral radius optimization problem, we again see that both
SNOPT and SFPP provide the least amount of minimization of the four methods, with SNOPT
appearing to stagnate before reaching a stationary point while SFPP incurred over 160 iterations
before its penalty parameter was sufficiently lowered to promote any significant progress towards
satisfying feasibility. BFGS-SQP again initially stepped outside the feasible region but quickly
progressed back towards it while SQP-GS maintained feasibility a majority of the time, and
both algorithms simultaneously minimized the objective more than either SNOPT or SFPP once
again. Interestingly, as on the spectral radius problem, BFGS-SQP found a much better controller
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14 F. E. Curtis et al.

Figure 3. The plots in the top row track the value of the pseudospectral-radius-based objective function in terms of
iteration number for SNOPT, SFPP, BFGS-SQP, and SQP-GS (left to right) on a randomly generated example of dimen-
sion N = 5 comprised of three plants in the objective and one in the constraint and where the controller matrix has
MP = 13 × 2 = 26 variables. In the top row of plots, the vertical dashed line indicates the iteration number whose
elapsed CPU-time was closest to BFGS-SQP’s total elapsed CPU-time while the horizontal dashed line indicates the
value of BFGS-SQP’s best feasible solution. The log10-scaled plots in the bottom row show the amount of violation
tracking with the iteration counts with ‘-Inf’ indicating zero violation (feasible points).

than SQP-GS, even though SQP-GS’s convergence results hold for this particular problem while
BFGS-SQP provides no guarantees. As we expect, the higher number of function evaluations per
iteration required by SQP-GS cause it to be dramatically slower than BFGS-SQP with respect to
CPU time.

In Figure 4, for this particular example, we show the final pseudospectral configurations3 of
the four controllers ultimately produced by SNOPT, SFPP, BFGS-SQP, and SQP-GS. For almost
all the plants, we see that the resulting pseudospectral configurations show that there are multiple
nonsmoothness activities, in the sense that the optimal pseudospectral radius value is attained at
more than one point in the closed upper half-plane. Furthermore, we observe additional activities
due to the fact that pseudospectral radii for the three plants in the objectives have approximately
the same value. The constraint plant for most of the controllers also shows activities, with the
pseudospectral radius attaining the upper bound value of one at more than one point in the closed
upper half-plane. Thus, we see strong evidence that both the objective and the constraint are
indeed nonsmooth at the solutions found by each algorithm. (See Appendix A.2 for additional
pseudospectral radius examples similar to the one shown here in Figures 3 and 4.)

5. Comparing nonsmooth, nonconvex, and constrained optimization algorithms

For comparing codes for solving convex optimization problems, a popular visualization tool is a
performance profile [15], which is often used to simultaneously depict each code’s efficiency and
reliability on a test set of problems. For such a profile, made for a given performance measure
related to solving each problem, whether it be total CPU time, number of function evaluations,
etc., a code’s efficiency is measured on a per-problem basis by comparing its performance against
the performance of the ‘best’ code observed in the comparison for that problem, meaning the
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Optimization Methods & Software 15

Figure 4. The four rows show the final pseudospectral configurations for the four controllers found by SNOPT, SFPP,
BFGS-SQP, and SQP-GS (top to bottom) for the problem described in Figure 3. The left three columns indicate the
plants in the objective while the right column indicates the single plant in the constraint, with the plus signs indicating
the eigenvalues. On the objective plots, the dashed black circle corresponds to the max pseudospectral radius of the three
plants in the objective for that particular algorithm’s controller. The dashed black circle on the constraint plots is the unit
circle (the stability boundary). The solid lighter circles indicate the pseudospectral boundaries of each plant.

code which successfully solves that problem the fastest. Reliability, on the other hand, is mea-
sured in terms of the percentage of problems on which a given code is deemed to have been
successful. Mathematically, if the plot associated with a code passes through the point (a, b/100)

in a performance profile, then that code solves b% of the problems in the test set when its perfor-
mance measure of interest (say CPU time) is restricted to be less than or equal to a times that of
the performance measure of the ‘best’ code for each problem.

The ingenuity of performance profiles is that they capture such information about relative
efficiency and reliability in an easily read plot, while additionally ensuring that the illustrated
performance for a particular code is not skewed too much by its performance on one (or a small
subset) of problems. For example, if a code were to perform disastrously on one problem, then
an assessment based on overall running time to complete the test set could cause the code to
appear inferior, even if it is better than its competition on the remaining problems in the test
set. Performance profiles, by considering performance on a per-problem basis, allow a reader to
distinguish such behaviour.

However, by only focusing on whether or not a solver has solved each problem, performance
profiles do not distinguish the transient behaviours of each algorithm. Indeed, this deficiency
was a key motivator for the introduction of data profiles [39], where the authors explicitly state
that ‘the percentage of problems that can be solved (for a given tolerance τ ) with a given num-
ber of function evaluations . . . is essential to users with expensive optimization problems’. For
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16 F. E. Curtis et al.

particularly expensive optimization problems, permitting an algorithm to run until its conver-
gence criteria are met may be neither computationally possible nor efficient, especially if an
approximate solution will suffice. Even if the optimization problems are not expensive, algo-
rithms which generally make good initial progress but then plateau with little to no further
progress until they terminate will be correspondingly, and perhaps unfairly, penalized in a perfor-
mance profile benchmark in a nontransparent fashion. In such cases, it is often unclear whether
plateauing performance is a characteristic of the algorithm in question or merely the result of the
specific parameters chosen by the user (or by default). By plotting the percentage of problems
that a method has solved, to some predetermined level of accuracy, as a function of the number of
functions/gradients evaluated, data profiles elucidate how the relative rankings of methods may
change as the computational budget varies. Furthermore, unlike performance profiles where the
depicted performance of algorithms is influenced by their respective stopping parameters, data
profiles depict the performance of algorithms with respect to a consistent computational budget
metric, which significantly lessens the influence of the stopping parameters in the benchmark.
Lastly, by creating multiple data profiles for different levels of acceptable inaccuracy, one can
readily assess which algorithms are fastest for obtaining only approximate solutions versus ones
which are fastest for resolving accurate solutions to a high precision.

Nonetheless, despite the high utility of both performance and data profiles, either of which
can be used stand-alone or in conjunction with each other, implementing an informative and
fair benchmark remains a challenging prospect, even in convex, unconstrained settings. As men-
tioned in Section 1, not only does the choice of stopping parameters and success/failure criteria
influence the resulting performance profiles, but furthermore, these choices must often be made
arbitrarily. Data profiles help alleviate some of these issues, but one must still define success in
terms of what is considered a satisfactory solution in terms of some maximum permissible level
of inaccuracy.

When solving nonconvex problems with gradient-based local search methods, one can neither
expect that codes will find global minimizers nor that they will find the same local minimizers
for a given problem. Indeed, the codes might not find local minimizers at all. The general state
of affairs is that for any nonconvex problem, the codes being evaluated may each return their
own distinct approximate stationary point. While one could define the binary success/failure cri-
teria needed for performance and data profiles as (sufficiently) reaching any stationary point, it
is questionable whether such a metric would be either fair or informative for scenarios where
not all, or perhaps even none, of the algorithms have convergence theory, such as is the case
for the benchmark we show in Section 6.2 using only non-locally-Lipschitz problems of the
form described in Section 4.2. To this point, for the consideration of a success/failure criteria
for constrained optimization, in [4, Chapter 14] the authors make the case that finding a feasi-
ble point that is (approximately) stationary or finding a feasible point which obtains the lowest
value of the objective both have reasonable rationale and the priorities of users and optimization
method designers may be quite different. Indeed, in [2,3] it is advocated to employ performance
profiles generated using final objective values (compared to some best found per problem), but
this approach still has the pitfalls of having to prescribe some binary success/failure criterion,
which we seek to avoid doing here. Even in the event that one algorithm consistently finds bet-
ter (lower) minimizers and/or stationary points across a test set of nonconvex problems, there
is often little to no grounds for attributing such a success to the properties and design of the
algorithm. Furthermore, there is always an ambiguity as to whether the time to run an optimiza-
tion code is attributable to the algorithm itself, its implementation, or to the particular ease or
difficulty inherent in the problem itself for finding any given candidate solution. In the case of
nonsmooth, nonconvex, and constrained optimization, where the key performance metrics are
quality of objective minimization, attaining feasibility, and to what level those goals can be met
for given computational resources, there is no single agreeable definition of success. The above
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Optimization Methods & Software 17

challenges and ambiguities, which are not addressed by performance or data profiles, suggest that
an informative and fair benchmark should allow for different interpretations of success/failure,
depending on the priorities of the reader, and evaluators should aim not to define success but
present as much relevant benchmark data as possible in a concise and intuitive manner. We aim
to address these challenges.

5.1 Relative minimization profiles

Given a test set of problems, let us initially consider evaluating algorithms in term of quality
(amount) of objective minimization achieved and feasibility of iterates, without focusing on cost,
be it running time, number of function evaluations, or memory use. We propose producing a
plot, which we call an RMP, that relates the percentage of feasible iterates4 that each algorithm
found over the entire data set (measured on the y-axis) with the amount of per-problem objective
minimization achieved by the individual algorithms, measured as relative differences to some
prescribed per-problem target values � (measured on the x-axis).

To define an RMP precisely, we begin with the following definitions:

M := set of methods to compare

T := ordered set of test problems

ωi := target objective value for problem pi ∈ T
� := {ωi : pi ∈ T }

fi(x) := objective function for problem pi ∈ T
vi(x) := violation function (recall (3)) for problem pi ∈ T
{xk}m

i := iterates produced by method m ∈ M on problem pi ∈ T .

For method m on problem pi ∈ T , we define its best computed objective value over all feasible
iterates, in terms of some violation tolerance τv ∈ R

+, as

f m
i (τv) := min{ fi(x) : x ∈ {xk}m

i , vi(x) ≤ τv}, (16)

with the understanding that the value is ∞ if the set is empty. Furthermore, we define the
following relative residual function and its associated indicator function:5

r(ϕ, ϕ̃) :=
⎧⎨
⎩

∞ if ϕ = ∞ or ϕ̃ = ∞∣∣∣∣ϕ − ϕ̃

ϕ

∣∣∣∣ otherwise,

1r(ϕ, ϕ̃, γ ) :=
{

1 if r(ϕ, ϕ̃) ≤ γ

0 otherwise.

We may now formally define a RMP curve.

Definition 5.1 Given a fixed violation tolerance τv ∈ R
+, per-problem target objective value

set � := {ωi}, and method m ∈ M, a relative minimization profile curve rm
�,τv

: R
+ → [0, 1] is

that given by

rm
�,τv

(γ ) := 1

|T |
|T |∑
i=1

1r(ωi, f m
i (τv), γ ), (17)

where γ specifies the maximum relative difference allowed to the target set values �. (Note that
rm
�,τv

(γ ) is well defined at γ = ∞.)
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18 F. E. Curtis et al.

The RMP curve, which like performance and data profiles is also visually interpreted like a
receiver operating characteristic (ROC) (see, e.g. [28]) curve, is the cumulative proportion of
the number of best feasible (to violation tolerance τv) points returned by method m, as defined
by (16), that are each within a relative residual γ of their respective target values ωi ∈ �. How-
ever, unlike performance and data profiles where the success/failure criterion is fixed and the
rankings of the algorithms are shown dependent on how quickly they were able to find accept-
able solutions, the RMP curve defined in (17) instead shows the entire range over which the
success/failure criterion can be tuned, from requiring the best minimization possible on the fea-
sible set to merely obtaining feasibility, regardless of the objective value. An RMP curve portrays
how the percentage of feasible points found increases for each method as the maximum allowed
relative difference to the target values is relaxed. Of course, the utility of an RMP is influenced
by how the per-problem target value set � is defined, an issue we will now address.

If optimal objective values for the problems in T are known, then they may be used to define
�. However, in general, such data are not necessarily available or attainable. Moreover, using
such a defined target set can be problematic if none of the codes find points that (nearly) attain the
target values. Thus, we instead propose defining � as the set of best computed objective values
at (nearly) feasible points encountered across all methods in M. To do so, we first define the
best computed objective value encountered by any method on problem pi:

f Mi (τv) := min
m∈M

f m
i (τv) (18)

for a fixed violation τv ∈ R
+, and then define the per-problem target set as

� := {ωi : ωi = f Mi (τv)}. (19)

By using (19), the RMP curve defined in (17) measures the quality of the points obtained by
method m ∈ M relative to the best objective values known to be achievable in practice on the
sets of feasible and nearly feasible points for each problem.

In order to view the effect of the relative difference tolerance γ in an idiomatic and compact
fashion, we suggest that γ should be plotted using a base-10 log scaling, ranging from machine
precision to the highest relative difference observed. If this latter uppermost range is lessened,
one should still include γ = ∞ as the rightmost tick mark so that RMP curves will still depict
the ability of codes to find (nearly) feasible points, regardless of the amount of minimization
achieved. Thus, a key feature of an RMP’s design is that it highlights when a code’s performance
is subpar, such as when it either frequently fails to satisfy feasibility or tends to stagnate, while
simultaneously showing which codes most frequently and closely match the largest amount of
minimization observed. From an RMP, it can be inferred with what frequency codes are either
finding the same quality of points (and to what precision) or different points altogether. While a
single RMP does not compare methods in terms of their computational costs, in the next section
we will show how computational cost can be additionally and simultaneously considered in a
benchmark by employing a panel of multiple, related RMP plots.

Though an RMP has similarities to a conventional performance profile, there are crucial
differences. For a given performance metric, a conventional performance profile curve for a
given code is defined using relative ratios of the performance measurement of the given code
to the performance measurement of the ‘best’ code for each particular problem. While a relative
ratio is generally appropriate and makes for easily-understood plots for cost-based performance
measures (such as running time), it is not necessarily a natural choice for assessing the amount of
per-problem objective minimization over a test set, which is one of the reasons we have proposed
using relative differences for defining RMPs. Furthermore, outside of the mild requirement to set
a cut-off tolerance for the amount of violation allowed for each point, no such hard cut-off line
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Optimization Methods & Software 19

must be drawn to determine whether an algorithm was successful in terms of its minimization
quality. An RMP shows the entire continuum of per-problem relative minimization performance
achieved over the (nearly) feasible sets and how it affects the percentage of (nearly) feasible
points found. In contrast, conventional performance profiles have the drawback that the points
computed by each code are subjected to a binary classification into successes or failures, which
can oversimplify and even misleadingly skew the resulting plot, particularly if classification is
very sensitive around the success/failure boundary being chosen. Though RMPs still have this
problem with respect to a violation tolerance, it is a far more natural choice to have a hard limit
for amount of constraint violation allowed than it is for classifying accuracy with respect to some
measure of stationarity into successes and failures.

5.2 Benchmarking efficiency via multiple β-RMPs

In order to extend RMPs for additionally comparing the cost of each method, we will general-
ize (17) to what we call a β-RMP curve. The idea is to use the parameter β to specify a particular
set of per-problem computational budgets such that the modified RMP curve only considers the
subset of all iterates computed by each method within the limits specified by the budget. Then,
multiple β-RMP plots can be produced for various values of β to create a β-RMP benchmark
panel that depicts how the performance of each code’s relative rate of progress changes and
compares to one another as the per-problem computational budgets are increased/decreased.

To that end, for method m ∈ M on problem pi ∈ T , let us first define a generic function
tmi : Z

+ → R
+ that represents the cumulative cost (in the performance metric of one’s choosing)

to compute method m’s first j iterates:

tmi (j) := cumulative cost to compute {x0, . . . , xj} ⊆ {xk}m
i .

We may then define the set of iterates encountered by method m on problem pi, subject to some
cost limit t ∈ R

+:

Xm
i (t) :=

{
{xk}m

i if t = ∞,

{xj : xj ∈ {xk}m
i and tmi (j) ≤ t} otherwise.

(20)

Note that even if t = ∞, the set of iterates is finite due to whatever stopping conditions were
employed in the actual experiments.

Now, for method m on problem pi, we redefine its best computed objective value over all
feasible iterates to be in terms of some violation tolerance τv ∈ R

+ and some computational cost
limit t ∈ R

+:

f m
i (τv, t) := min{ fi(x) : x ∈ Xm

i (t), vi(x) ≤ τv}, (21)

with the two conventions that f m
i (τv, t) := ∞ if vi(x) > τv for all x ∈ Xm

i (t) and when argument
t is omitted, it is taken to be ∞, that is, f m

i (τv, ∞) = f m
i (τv). However, it is not prudent to just

replace the f m
i (τv) term appearing in the RMP curve defined in (17) with f m

i (τv, t) as doing so
would assign the same computational budget for all problems.

A beautiful property of conventional performance profiles curves is that they prevent any
one problem (or small subset) in the test set from exerting too much influence on the overall
performance implied by the curve, a property which is obtained by leveraging the observed
efficiency (or performance) in the experiments for the codes on each problem as statistics to
approximate the relative difficulty of each problem. We will adapt a similar strategy for defining
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20 F. E. Curtis et al.

β-RMPs, which will necessitate defining a computational budget B in a per-problem fashion:

B := {bi : bi is the maximum computational cost allowed for problem pi ∈ T }.

However, unlike conventional performance profiles, it is no longer as straightforward to define
the per-problem computational budgets relative to the fastest successful method for each prob-
lem because an RMP neither relates efficiency to success nor distinguishes what is specifically
meant by success and failure. While the fastest code for a particular test problem may be the
most efficient and successful method in the comparison, it is also possible that its apparent effi-
ciency is instead an indication that it terminated due to early stagnation. To combat such pitfalls,
we propose defining a relative per-problem budget using the statistics of either the average or
median efficiency per problem across all the codes being considered. Yet, if one’s purpose is to
benchmark a single new method m� in the context of competing methods, as opposed to doing
a multi-way comparison, then it is more sensible to use per-problem efficiencies of method m�

to define the budget B so that efficiency of all other methods will be assessed relative to the
efficiency of method m�. Mathematically, we define the baseline maximum computational cost
for problem pi ∈ T relative to a chosen method m� ∈ M as follows:

bi := max
xj∈{xk}m�

i

tm�

i (j), (22)

that is, bi is set to the total computational cost needed for method m� on problem pi.
We may now define a family of β-RMP curves relative to the budgets in B.

Definition 5.2 Given a fixed violation tolerance τv ∈ R
+, per-problem target objective value

set � := {ωi}, per-problem computational budget set B := {bi}, constant factor β ∈ R
++, and

method m ∈ M, a β-RMP curve rm,β
�,τv

: R
+ → [0, 1] is that given by

rm,β
�,τv

(γ ) := 1

|T |
|T |∑
i=1

1r(ωi, f m
i (τv, βbi), γ ). (23)

Note that if β ≥ 1 and B is defined by using (22), then we have the following equivalence:

rm�,β
�,τv

(γ ) ≡ rm�

�,τv
(γ ).

In other words, for this specific case, (23) is equivalent to (17) since increasing the per-problem
budgets with respect to each bi ∈ B has no effect as B is the set of per-problem budgets method
m� required on the test set. Like the RMP curve defined in (17), a β-RMP curve is still the
cumulative proportion of the number of best objective values found by method m ∈ M in the
(nearly) feasible sets, which are within a relative residual γ of their respective target values
ωi ∈ �, but, with the additional constraint that these best iterates computed by method m are
obtained within the multiplicative factor β applied to the per-problem budgets bi given by B.

A natural choice for defining the target set � for a β-RMP benchmark panel is to reuse the
best objective values known to be achievable on the (nearly) feasible sets, that is, to set each
ωi to the values given by (18). However, while this has the benefit of consistent y-axis scaling
for all β-RMP plots, the desired β-RMP plots may not all be conducive to a single scaling for
visualization purposes. As an alternative, we proceed by proposing a rolling target value set
which is updated as the parameter β is changed.
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Optimization Methods & Software 21

Analogous to (20) and (21), where each method m ∈ M is subject to a fixed computational
limit of t ∈ R

+, we define the set of iterates computed by all methods, namely

XM
i (t) :=

⋃
m∈M

Xm
i (t), (24)

and similarly define the best computed objective value over all methods being compared:

f Mi (τv, t) := min{ fi(x) : x ∈ XM
i (t), vi(x) ≤ τv}. (25)

We may now define the rolling target value set by specifying each target value additionally in
terms of parameter β as follows:

ωi := f Mi (τv, βbi), (26)

that is, each problem’s target value is the best known objective value at a feasible iterate encoun-
tered by any of the methods so far within the computational limit given by βbi. The effect of
using the rolling target value set defined by (26) is that each β-RMP plot is scaled to maximize
the separation of each method’s β-RMP curve.

For β = ∞, a β-RMP depicts how the codes compare given no computational constraint
whatsoever. In the case where (22) is employed to define β-RMPs relative to a chosen method
m�, a β-RMP plot for β = 1 shows how the other methods perform relative to method m� when
each method is only allowed a computational budget equal to the per-problem cost needed by
method m�. For intermediate values, say β = 5, we see how the codes’ performances compare
when their computational budgets are allowed up to five times the total computational cost of
method m� on any given problem while for β < 1, all methods are only given a fraction of the
method m�’s computational budget. Generally, β = 1 and β = ∞ (assuming they yield different
plots) should always be included in a panel of β-RMP plots; other values of β must be chosen
or generated automatically but it is usually straightforward and fairly effortless to manually find
a handful of additional β values to make an illuminating β-RMP benchmark panel. A well-
made β-RMP benchmark panel will highlight how relative rankings and performance gaps of
the algorithms may, or may not, change as the relative per-problem computational budgets are
increased/decreased via changing parameter β.

5.3 Practical considerations for β-RMPs

As β-RMPs effectively simulate stopping criteria based on the costs to optimize and attain fea-
sibility, which can be restricted by respectively adjusting β and the violation tolerance, it is
important to encourage all algorithms to run as long as possible when performing an evalua-
tion. Typically, this means setting extremely tight termination tolerances, which would be quite
unusual in practice. However, doing so not only allows for the most data to be collected for gener-
ating the β-RMPs but, crucially, helps to decouple a β-RMP evaluation from each method’s own
specific stopping criteria. Instead, each method’s relative progress, and how it changes, is judged
on equal footing in terms of the computational budget, obviating any need to consider how to
fairly set each method’s stopping parameters for the benchmark, beyond setting the maximum
number of iterations allowed for each method.

While RMPs depict the relative amount of minimization achieved versus the frequency of
satisfying (near) feasibility, the effect of changing the computational cost allowed per problem
is only coarsely approximated across two or more β-RMPs. This is due to several reasons. First,
measuring computational cost is usually inherently variable, such as measuring CPU-time, in
contrast to assessing feasibility of a point and its corresponding objective value, which can usu-
ally be done very precisely. Second, by the discrete nature of the iterates, there will also be an
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22 F. E. Curtis et al.

unavoidable quantization effect when trying to compare two or more algorithms at any given
computational limit. Third, depending on the codes being compared, accurate histories of the
iterates, and with what cost that they were obtained (such as elapsed CPU-time) may not always
be practically obtainable.

In our experience, it is often sufficient to use an average computational cost per iterate as a
proxy metric for the purposes of generating data for plotting β-RMPs, such as average elapsed
CPU-time per iterate, and especially so when the test sets contain numerous problems and each
method typically requires a high number of iterations before converging. If the methods are
indeed significantly different in terms of speed, then that property itself will most likely be the
dominant factor in determining what is presented by the plots, not the limitation of estimating the
timing data. Furthermore, if comparing the relative speeds of the algorithms requires high preci-
sion, then it suggests that running time is not a particularly discriminating or even reproducible
performance characteristic amongst the codes being compared. In such cases, a single RMP,
without specifying a computational limit, should be sufficient, perhaps with a supplemental table
listing the overall time reported for each algorithm. As a result, we typically envision using a
β-RMP benchmark panel when there are significant differences in computational costs between
algorithms, where the distances between the chosen values of β are well above any level of error
in the computational cost data. In case a more exact history of timing data is desired, we refer to
[38, pages 161–162] for further discussion.

Finally, it is worth noting that while data profiles are precise in terms of the cost to run the
algorithms, they give only an approximate indication of the accuracy of the candidate solutions
achieved unless many plots are made for various specified accuracy levels. By contrast, RMPs
are precise in terms of both the frequency of feasible points found and the quality of minimization
achieved over the data set (and their relationship to each other) while only a handful of β-RMPs
plots are needed to highlight performance differences of algorithms as the computational budget
is changed. This alternative prioritization of how algorithms are compared via β-RMPs is a new
benchmarking tool that we believe many will find useful, at least in nonconvex and/or nonsmooth
settings and potentially in unconstrained convex settings as well.

6. Numerical results

6.1 Experimental set-up

We created two test sets comprised of 100 problems each, where the problems in the first set
are spectral radius optimization problems of the form (14) while the problems in the second set
are pseudospectral radius optimization problems of the form (15). For both test sets, each prob-
lem was comprised of two to five plants, split randomly between the objective and constraints
(ensuring both were assigned at least one plant each). In order to compare to SQP-GS, for which
gradient sampling is so expensive, we chose to generate small-dimensional test problems, where
N was chosen randomly from {4, . . . , 20} for the spectral radius problems and from {4, . . . , 8}
for the more expensive-to-compute pseudospectral radius problems. A candidate value for MP
was picked by randomly choosing an integer Q between �(N/4)(p + 2q)� and �(N/4)(3p + 6q)�
inclusively. In order to provide variety in the shapes of controller matrices X generated, M was
set to a random integer chosen from [1, �√Q�] and then P was set to Q/M rounded to the nearest
integer. Normally distributed matrices Ai were generated using the randn function and were
subsequently destabilized (for the objective) or stabilized (for the constraints) by successively
multiplying the matrices by a constant greater or less than one, respectively. Each Bi matrix was
set to either (a) consist of a column of ones followed by a uniform distribution of randomly
generated positive and negative ones over the remaining entries of the matrix or (b) a normally
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Optimization Methods & Software 23

distributed random matrix, with the choice between (a) and (b) being made randomly with a
probability of one half for each. Similarly, each Ci matrix was set to either (a) the first m rows
of the identity matrix or (b) a normally distributed random matrix. Since the origin is a feasible
point for all the problems, each algorithm was initialized with X set to the zero matrix. We also
initialized 20% of the problems in our tests sets from multiple infeasible starting points generated
via randn(), to assess whether or not the choice of always initializing from the feasible origin
biased our results. While we noticed some minor differences when starting from randomly gen-
erated infeasible points, we omit the details for the sake of brevity since the overall conclusions
made from these additional experiments agree with our results and interpretation given here in
the paper. We used μ = 16 as the initial penalty parameter value.6

As noted earlier, we include four methods in our comparisons. We used version 7.5-1.4 of
SNOPT [18]. SFPP was implemented using the BFGS routine from the 2.02 version of the
Matlab hanso optimization package [26], with a limit of 20 iterations per BFGS call before
lowering the penalty parameter if the 20th iterate was infeasible. We used version 1.1 of SQP-GS,
available on the first author’s homepage. We implemented our BFGS-SQP method, supporting
both inequality and equality constraints, in a new open-source Matlab code called granso:
GRadient-based Algorithm for Non-Smooth Optimization, utilizing a modified version of the
Armijo–Wolfe line search routine from hanso. For parameters for our implementation of Pro-
cedure 1, we set cν = 0.1 and cμ = 0.9, limited its loop to at most 10 iterations, and only applied
steering at infeasible iterates, while returning the direction computed in line 1 for feasible iterates.
Both SQP-GS and BFGS-SQP require a QP solver and for these experiments we used Mosek 7.
Note that SNOPT is the only compiled, non-interpreted code in the evaluation and hence has a
significant advantage in terms of speed.

As per the guidelines given in Section 5.3 for implementing a β-RMP benchmark, we aimed
to encourage the algorithms to continue optimizing as long as possible by using very tight
stopping parameters. To that end, we set BFGS-SQP’s termination tolerance, τ
, to machine
precision (2.22 × 10−16) and its violation tolerance, τv, to zero (noting that zero can be a reason-
able violation tolerance when there are only inequality constraints present, as is the case for our
test sets). Similarly, we respectively set the analogous termination and violation tolerances for
SFPP and SQP-GS to machine precision and zero as well. We also used machine precision for
SNOPT’s ‘major optimality tolerance’ but the code would then not allow its ‘major feasibility
tolerance’ to be set to zero, or even machine precision, so we instead used a slightly bigger num-
ber (2.23 × 10−16). All four methods were allowed to run for up to 500 iterations each; in the
case of SNOPT, we allowed 500 major iterations and 100 minor iterations.

To specifically validate our proposed algorithm BFGS-SQP, we chose to define the com-
putational budget B so that the β-RMP benchmark panels would be relative to BFGS-SQP’s
efficiency on each problem in the test set, using (22). As no optimal values were known for
our test sets, we used a rolling target value set � based on the best-encountered iterate by any
algorithm so far, as defined by B and the particular value of β using (26). We made β-RMP
plots for β = 1, 5, 10, and ∞, using a violation tolerance of zero, since all the problems were
only inequality constrained, and excluded the feasible origin starting points from the histories of
iterates from every method (since otherwise, each method would have a feasible point for every
problem). Neither SQP-GS nor hanso’s BFGS codes provide per-iterate timing data, so, as out-
lined and justified in Section 5.3, for each method, and for every problem, we chose to compute
an average time per-iterate statistic and used it to approximate the necessary cost data for plot-
ting an RMP. Given the large differences in running times between the codes in our experiments,
and the fact that the convergence is generally slow in terms of the number of iterations on the
problems created for our test sets, it is unlikely that using an average time per-iterate proxy would
significantly skew the β-RMP benchmark panel for comparing the relative rates of progress for
the algorithms.
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24 F. E. Curtis et al.

Figure 5. Performance benchmark using β-RMPs, on the spectral radius optimization problems, of SNOPT, SFPP,
BFGS-SQP, and SQP-GS. For β = 1 (top left) and 5 (top right), where the other methods are, respectively, given one and
then five times the per-problem computational budget as BFGS-SQP’s per-problem total elapsed CPU-time, we observe
that BFGS-SQP provides the greatest percentage of best optimizers on the test set, readily increasing its performance
margin as β is decreased towards one. Only as β is increased to 10 and higher, where little to no restriction is put on
computational budgets, do we see SQP-GS outperforming BFGS-SQP over the test, but this accomplishment is only
attained by respectively incurring a higher computational overhead that is ten times (bottom left) or 26.6 times (bottom
right) greater than that of BFGS-SQP.

All experiments described in this section were run on an Intel Xeon X5650 2.67 Ghz CPU
using Matlab R2012b. Matlab source code for granso and for generating RMPs, along with
the data and function files defining our test set, are publicly available.7

6.2 Spectral radius optimization

We begin analysing the relative performance of the four codes by first turning our attention to the
bottom right ∞-RMP in Figure 5, where the methods are tested using the non-locally-Lipschitz
spectral radius set and where none of them have convergence guarantees. Here, each algorithm
was allowed to run without any time restriction and we see that despite the promising example
shown earlier in Figure 1 for BFGS-SQP, SQP-GS ended up finding 78% of the best optimizers
while BFGS-SQP found 22% of the best optimizers. However, we see that BFGS-SQP’s perfor-
mance over the data set starts to look better if we relax how much of the minimization of the
best known candidate solution is necessary to be considered a success, indicating that BFGS-
SQP generally either converged to different (worse) points or perhaps was stagnating early
compared to SQP-GS. By comparison, SNOPT and SFPP appear to be completely uncompet-
itive, though it is notable that SNOPT does at least find more feasible points compared to SFPP,
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Optimization Methods & Software 25

even if neither are able to do so for every problem, unlike BFGS-SQP and SQP-GS. While the
impression given by this ∞-RMP does not initially appear promising for BFGS-SQP, the fact
remains that SQP-GS actually took 26.6 times longer to run to obtain these better results, which
is a computational cost difference that is likely not be readily absorbed by many users.

In fact, by now turning our attention to the bottom left 10-RMP in Figure 5, where SQP-
GS was allowed to run up to 10 times longer than BFGS-SQP, a still significant and not usually
dismissed computational cost increase, we see that the performance gap between BFGS-SQP and
SQP-GS has been greatly narrowed, with BFGS-SQP finding about 45% of the best optimizers
and SQP-GS finding 55%. If we further consider the 5-RMP in the top right, where SQP-GS
is now allowed up to five times as much time as BFGS-SQP per problem, we are now able to
observe that BFGS-SQP actually found 59% of the best optimizers, compared to SQP-GS’s 40%,
while only expending a fraction of the computational resources spent by SQP-GS. Finally, in the
top left 1-RMP, where SNOPT, SFPP, and SPQ-GS are assessed at the per-problem times at which
BFGS-SQP terminated, we see that BFGS-SQP completely outclasses all the other methods,
finding 92% of the best optimizers, with SQP-GS only finding 7% of the best minimizers and
SNOPT and SFPP faring even worse.

Since SNOPT and SFPP, respectively ran over the test set in only 13.0% and 74.7% of the
elapsed CPU-time that BFGS-SQP required, we also generated two panels of β-RMPs relative
to SNOPT and SFPP, where BFGS-SQP’s computational budget is determined by factors of the
generally faster per-problem running times of SNOPT and SFPP. Since both panels of β-RMPs
showed BFGS-SQP greatly outperforming SNOPT and SFPP, we omit both panels for brevity.
For even β = 1, where BFGS-SQP is allowed only a small fraction of its normal total running
time, it respectively found about 70% and 86% of the best optimizers for SNOPT-based 1-RMP
and SFPP-based 1-RMP.

6.3 Pseudospectral radius optimization

On the pseudospectral radius problems, we see that even in the bottom right ∞-RMP in Figure 6,
where no running time restrictions were put on the algorithms, BFGS-SQP significantly outper-
formed SQP-GS, with 59% of the best optimizers found by BFGS-SQP and only 34% found by
SQP-GS (in terms of matching the best observed objective values to at least 12 digits, i.e. 10−12

on the RMPs). The other RMPs for smaller values of β only paint BFGS-SQP in a significantly
more favourable light. To put that in context, BFGS-SQP more frequently produced better min-
imizers over the test set compared to SQP-GS, regardless of computational budget limits. This
is a remarkable outcome given that the convergence results for SQP-GS hold for the problems
in the pseudospectral radius test set (as they are locally Lipschitz) while BFGS-SQP provides no
theoretical guarantees yet still manages to provide better overall performance while simultane-
ously being 14.4 times faster. Indeed, it is in stark contrast to the spectral radius test set results,
where SQP-GS could at least pull ahead compared to BFGS-SQP when SQP-GS was allowed to
run 10–26.6 times longer.

Interestingly, we also see that SNOPT and SFPP both do noticeably better on the Lips-
chitz problems, though both are still outperformed by BFGS-SQP at all computational budgets
considered. Only SNOPT ran faster than BFGS-SQP over the test set, taking 30.0% of BFGS-
SQP’s elapsed CPU-time. For this reason, we generated panels of β-RMPs relative to SNOPT’s
per-problem running times, but these still showed BFGS-SQP outperforming SNOPT for β ≥ 1,
though the performance gap between the two was less than observed in the spectral radius case.
Again for brevity, we omit these β-RMPs and merely remark that for β = 1, where BFGS-SQP is
generally given about 30% of its normal per-problem running time, it still found 63% of the best
minimizers compared to SNOPT’s 30%.
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26 F. E. Curtis et al.

Figure 6. Performance benchmark using β-RMPs, on the pseudospectral radius optimization problems, of SNOPT,
SFPP, BFGS-SQP, and SQP-GS. For β = 1 (top left), 5 (top right), and 10 (bottom left), where the other methods are
respectively given 1, 5, and then 10 times the per-problem computational budget as BFGS-SQP’s per-problem total
elapsed CPU-time, we again observe that BFGS-SQP provides the greatest percentage of best optimizers on the test set,
readily increasing its performance margin as β is decreased. Even when no computational budget is applied to SQP-GS,
where SQP-GS took 14.4 times longer than BFGS-SQP to run over the test set, the overall fraction of best minimizers
returned by SQP-GS is still significantly less than that of BFGS-SQP, shown for β = ∞ (bottom right).

6.4 The effect of regularizing the Hessian approximation

As the enforced limits on the conditioning of the Hessian approximation required for SQP-
GS’s convergence results seem to be at odds with the argument in the unconstrained case that
ill-conditioning is actually beneficial [35], we explore the effect of regularizing the Hessian
approximation in BFGS-SQP. However, as BFGS-SQP requires solving QPs, there is also a
potential tradeoff of regularizing to produce easier-to-solve QPs (or ones for which the QP solver
could produce more accurate solutions) versus not regularizing to retain the ill-conditioning in
the BFGS Hessian approximation. We note that on the non-locally-Lipschitz spectral radius test
set, the Hessian approximations formed in BFGS-SQP were generally more ill-conditioned than
those observed on the locally Lipschitz pseudospectral radius test set, with the max condition
numbers over all problems and iterations, respectively, being 2.03 × 1020 and 3.06 × 1017. Thus,
to assess the effect of regularization, we reran the BFGS-SQP experiments multiple times, where
the Hessian approximations appearing in the steering and termination QPs at every iteration were,
if necessary, regularized to ensure that their condition numbers did not exceed our specified lim-
its. We chose condition number limits of 102j, for j ∈ {0, . . . , 10} for the spectral radius test set
and for j ∈ {0, . . . , 8} for the pseudospectral radius test set, where the case of j= 0 corresponds
to replacing the Hessian approximation by a multiple of the identity.
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Optimization Methods & Software 27

Figure 7. Left: the spectral radius test set. Right: the pseudospectral radius test set. Both RMPs show how the perfor-
mance of BFGS-SQP changes over the test sets when increasing amount of regularization is applied to the inverse of the
Hessian approximation.

For the spectral radius problems, as shown in the left plot in Figure 7, we generally see that
any regularization hurts performance and more regularization is worse. We suspect that regular-
ization can make BFGS stagnation more likely and certainly this is the case when the Hessian
approximation is completely regularized to be a multiple of the identity, where BFGS reduces to
a steepest descent method. For the locally Lipschitz problems, however, where pseudospectral
radii are being minimized, we see in the right plot in Figure 7 that moderate levels of regu-
larization (such as 106 – 108) seem to have a strikingly clear beneficial effect compared to not
regularizing at all. It is hard to say why we observe this behaviour but it is conceivable that
the regularization helped improve the accuracy of the QP solves more than it hurt the effec-
tiveness of BFGS. In any case, the large differences between the spectral radius RMP and the
pseudospectral radius RMP in Figure 7 make it apparent that the effects of applying regulariza-
tion in BFGS-SQP are problem dependent. Certainly more investigation into this matter would
be a worthwhile pursuit.

7. Conclusion

We have empirically validated our new BFGS-SQP method against competing alternatives,
demonstrating BFGS-SQP’s efficiency and reliability, both in terms of satisfying feasibility and
minimizing the objective, on our test set of 200 challenging nonsmooth, nonconvex constrained
optimization problems arising in controller design. Indeed, not only did BFGS-SQP completely
outperform SNOPT and the SFPP method on the entire test set, it also outperformed SQP-GS
in terms of solution quality as well as efficiency on the locally Lipschitz problems, despite
the fact that BFGS-SQP has no theoretical convergence guarantees while SQP-GS does in this
domain. On the harder non-Lipschitz problems, where none of the algorithms have convergence
results, we see that only in the absence of computational budget concerns does SQP-GS out-
perform BFGS-SQP; in scenarios where devoting computational resources many times larger
than that needed by BFGS-SQP is intractable, we actually observe our new method outper-
forming SQP-GS, demonstrating BFGS-SQP’s high efficiency and practicality. The challenging
properties inherent to optimization problems arising in controller design, which are embodied
in our test sets, raise the question of whether BFGS-SQP’s performance demonstrated in this
domain extends to other nonconvex, constrained optimization problem classes; we leave such
investigations for future work. Finally, facilitating the algorithmic comparison done here, we
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have proposed RMPs as a new tool for benchmarking optimization software which allow
for a concise, yet detailed visualization for comparing pertinent performance characteristics of
algorithms and how they interrelate.

Notes

1. Note that we use Hk to denote an approximation to the Hessian at the kth iterate, as opposed to the notation used in
[35] and [40, page 140] where Hk is used to denote a BFGS approximation to the inverse of the Hessian.

2. We excluded the Fortran-based mpbngc software from our experiments since it is not equipped to provide the infor-
mation needed for our comparisons. In particular, mpbngc does not have a publicly available Matlab interface,
which would have been needed since our test problems are coded in Matlab and rely on third-party Matlab soft-
ware. In addition, mpbngc does not provide a complete history of the iterate sequence, which is necessary to
perform the types of comparisons performed in this paper.

3. Generated via Matlab’s contour by evaluating the smallest singular value of A − λI on a grid in the complex
plane, exploiting Remark 4.6. Note that because the matrices are real, the pseudospectra boundaries are symmetric
with respect to the real axis of the complex plane.

4. In fact, RMPs can be useful for comparing methods in unconstrained and/or convex settings. However, as our
main focus in here is to compare algorithms for nonsmooth, nonconvex, constrained optimization, we present and
motivate RMPs for this specific context. See [38, Remarks 7.12 and 7.16] for a brief discussion on the applicability
of RMPs to other settings.

5. Note that the case when φ = 0 must be handled specially, as r(ϕ, ϕ̃) is otherwise undefined. However, such special
treatment is not applicable here as φ is always strictly positive for all test problems in this paper.

6. Note that we use a power of two for the initial penalty parameter and, when reducing it, always halve it since
otherwise, in floating point arithmetic, we noticed that dk = −H−1

k (μ∇f (xk) + ∇c(xk)λk) was only approximately

equal to −μH−1
k f (xk) − H−1

k ∇c(xk)λk , and the latter form is what we use for efficiency reasons.
7. http://www.cims.nyu.edu/ ∼ tmitchell/
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Appendix

A.1. Spectral radius additional examples

Figure A1. The plots in the top row track the value of the spectral-radius-based objective function in terms of iteration
number for SNOPT, SFPP, BFGS-SQP, and SQP-GS (left to right) on a randomly generated example of dimension N = 5
comprised of one plant in the objective and one in the constraint and where the controller matrix has MP = 4 × 2 = 8
variables. In the top row of plots, the vertical dashed line indicates the iteration number whose elapsed CPU-time was
closest to BFGS-SQP total elapsed CPU-time while the horizontal dashed line indicates the value of BFGS-SQP’s best
feasible solution. The log10-scaled plots in the bottom row show the amount of violation tracking with the iteration counts
with ‘-Inf’ indicating zero violation (feasible points).

Figure A2. The four rows show the final spectral configurations for the four controllers found by SNOPT, SFPP,
BFGS-SQP, and SQP-GS (top to bottom) for the problem described in Figure A1. The left column indicates the single
plant in the objective while the right column indicates the single plant in the constraint, with the plus signs indicating the
eigenvalues. On the objective plots, the dashed black circle corresponds to the spectral radius of the plant in the objective
for that particular algorithm’s controller. The dashed black circle on the plots for constraints is the unit circle (the stability
boundary). The solid lighter circles indicate the spectral radius of each plant.
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Figure A3. The plots in the top row track the value of the spectral-radius-based objective function in terms of iteration
number for SNOPT, SFPP, BFGS-SQP, and SQP-GS (left to right) on a randomly generated example of dimension N = 10
comprised of one plant in the objective and four in the constraint and where the controller matrix has MP = 16 × 1 = 16
variables. In the top row of plots, the vertical dashed line indicates the iteration number whose elapsed CPU-time was
closest to BFGS-SQP total elapsed CPU-time while the horizontal dashed line indicates the value of BFGS-SQP’s best
feasible solution. The log10-scaled plots in the bottom row show the amount of violation tracking with the iteration counts
with ‘-Inf’ indicating zero violation (feasible points).

Figure A4. The four rows show the final spectral configurations for the four controllers found by SNOPT, SFPP,
BFGS-SQP, and SQP-GS (top to bottom) for the problem described in Figure A3. The left column indicates the single
plant in the objective while the right four columns indicate the plants in the constraint, with the plus signs indicating the
eigenvalues. On the objective plots, the dashed black circle corresponds to the spectral radius of the plant in the objective
for that particular algorithm’s controller. The dashed black circle on the plots for constraints is the unit circle (the stability
boundary). The solid lighter circles indicate the spectral radius of each plant.
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A.2. Pseudospectral radius additional examples

Figure A5. The plots in the top row track the value of the pseudospectral-radius-based objective function in terms
of iteration number for SNOPT, SFPP, BFGS-SQP, and SQP-GS (left to right) on a randomly generated example of
dimension N = 6 comprised of one plant in the objective and one in the constraint and where the controller matrix has
MP = 7 × 1 = 7 variables. In the top row of plots, the vertical dashed line indicates the iteration number whose elapsed
CPU-time was closest to BFGS-SQP total elapsed CPU-time while the horizontal dashed line indicates the value of
BFGS-SQP’s best feasible solution. The log10-scaled plots in the bottom row show the amount of violation tracking with
the iteration counts with ‘-Inf’ indicating zero violation (feasible points).

Figure A6. The four rows show the final pseudospectral configurations for the four controllers found by SNOPT, SFPP,
BFGS-SQP, and SQP-GS (top to bottom) for the problem described in Figure A5. The left column indicates the single
plant in the objective while the right column indicates the single plant in the constraint, with the plus signs indicating the
eigenvalues. On the objective plots, the dashed black circle corresponds to the pseudospectral radius of the plant in the
objective for that particular algorithm’s controller. The dashed black circle on the plots for constraints is the unit circle
(the stability boundary). The solid lighter circles indicate the pseudospectral boundaries of each plant.
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Figure A7. The plots in the top row track the value of the pseudospectral-radius-based objective function in terms
of iteration number for SNOPT, SFPP, BFGS-SQP, and SQP-GS (left to right) on a randomly generated example of
dimension N = 7 comprised of two plants in the objective and three in the constraint and where the controller matrix
has MP = 5 × 4 = 20 variables. In the top row of plots, the vertical dashed line indicates the iteration number whose
elapsed CPU-time was closest to BFGS-SQP total elapsed CPU-time while the horizontal dashed line indicates the value
of BFGS-SQP’s best feasible solution. The log10-scaled plots in the bottom row show the amount of violation tracking
with the iteration counts with ‘-Inf’ indicating zero violation (feasible points).

Figure A8. The four rows show the final pseudospectral configurations for the four controllers found by SNOPT,
SFPP, BFGS-SQP, and SQP-GS (top to bottom) for the problem described in Figure A7. The left two columns indicate
the plants in the objective while the right three columns indicate the plants in the constraint, with the plus signs indicating
the eigenvalues. On the objective plots, the dashed black circle corresponds to the max pseudospectral radius of the two
plants in the objective for that particular algorithm’s controller. The dashed black circle on the plots for constraints is the
unit circle (the stability boundary). The solid lighter circles indicate the pseudospectral boundaries of each plant.
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