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Abstract We propose an augmented Lagrangian algorithm for solving large-scale
constrained optimization problems. The novel feature of the algorithm is an adap-
tive update for the penalty parameter motivated by recently proposed techniques for
exact penalty methods. This adaptive updating scheme greatly improves the overall
performance of the algorithm without sacrificing the strengths of the core augmented
Lagrangian framework, such as its ability to be implemented matrix-free. This is
important as this feature of augmented Lagrangianmethods is responsible for renewed
interests in employing such methods for solving large-scale problems. We provide
convergence results from remote starting points and illustrate by a set of numerical
experiments that our method outperforms traditional augmented Lagrangian methods
in terms of critical performance measures.
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1 Introduction

Augmented Lagrangian (AL) methods, also known as methods of multipliers, have
been instrumental in the development of algorithms for solving constrained optimiza-
tion problems since the pioneering works by Hestenes [27] and Powell [37] in the late
1960s.Although subsequently overshadowed by sequential quadratic optimization and
interior-point methods in recent decades, AL methods are experiencing a resurgence
as interests grow in solving extremely large-scale problems. The attractive features of
ALmethods in this regard are that they can be implementedmatrix-free [1,4,9,32] and
possess fast local convergence guarantees under relatively weak assumptions [18,30].
Moreover, certain AL methods—e.g., of the alternating direction variety [21,25]—
have proved to be extremely efficient when solving structured large-scale problems
[6,38,41].

A critical disadvantage of AL methods when they are applied to solve generic
nonlinear problems is that their performance suffers when they are initialized with
poor choices of the penalty parameter and/or Lagrange multipliers. Specifically, if
the penalty parameter is too large and/or the Lagrange multipliers are poor estimates
of the optimal multipliers, then one often finds that little or no progress is made in
the primal space due to the iterates veering too far away from the feasible region.
This leads to much wasted computational effort, especially in early iterations. (If the
constraints are well-scaled, then these issues become less of a practical concern and
basic AL methods are quite efficient. Thus, our enhancements are most beneficial for
difficult and/or poorly scaled problems.) For example, by using the trivial choice of
setting the initial multipliers to zero, one may find that a relatively small value of
the penalty parameter is needed before progress is made, which in turn may lead to
practical inefficiencies throughout the remainder of the optimization process.

The purpose of this paper is to propose, analyze, and present numerical results for
an AL method specifically designed to overcome the disadvantage described in the
previous paragraph. We enhance a traditional AL approach with an adaptive penalty
parameter update inspired by a recently proposed technique for exact penalty methods
[7,8,34]. The adaptive procedure requires that each trial step yields a sufficiently
large reduction in linearized constraint violation, thus promoting consistent progress
towards constraint satisfaction. We focus on employing our adaptive updating scheme
within a trust region method, but a line search algorithm with similar features could
be similarly derived.

The paper is organized as follows. In Sect. 2, we outline a traditional AL algorithm
to discuss in more detail the inefficiencies that may arise in such an approach. Then,
in Sect. 3, we present and analyze our adaptive AL trust region method. We show that
the algorithm is well-posed and that it possesses global convergence guarantees. In
Sect. 4, we provide numerical results that illustrate the effectiveness of our adaptive
penalty parameter updating strategy. Finally, in Sect. 5, we summarize and reflect on
our proposed techniques.
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Additional background on AL methods can be found in [2,3,5,15,20,22]. We also
refer the reader to recent work on stabilized sequential quadratic optimization (SQO)
methods [19,31,33,36,40], which share similarly attractive local convergence prop-
erties with AL methods. In particular, see [24] for a globally convergent AL method
that behaves like a stabilized SQOmethod near primal solutions. Finally, we comment
that other classes of methods use the augmented Lagrangian as a merit function for
determining step acceptance and compute trial steps as solutions to subproblems with
linear constraints [14,17,23].

Notation We often drop function dependencies once they are defined and use sub-
scripts to denote the iteration number of an algorithm during which a quantity is
computed; e.g., we use xk to denote the kth primal iterate, fk := f (xk) to denote the
objective value computed at xk , and similarly for other quantities. We also often use
subscripts for constants to indicate the algorithmic quantity to which they correspond;
e.g., γμ denotes the reduction factor for the parameter μ.

2 A basic augmented Lagrangian algorithm

The algorithm we consider is described in the context of solving the constrained
optimization problem

minimize
x∈Rn

f (x) subject to c(x) = 0, l ≤ x ≤ u, (2.1)

where the objective function f : R
n → R and constraint function c : R

n → R
m are

assumed to be twice continuously differentiable. Defining the Lagrangian for (2.1) as

�(x, y) := f (x) − c(x)Ty,

our algorithm seeks a first-order optimal primal-dual solution of (2.1), i.e., an ordered
pair (x, y) satisfying

0 = FOPT(x, y) :=
(

FL(x, y)
∇y�(x, y)

)
=

(
P

[
x − ∇x�(x, y)

] − x
−c(x)

)
, (2.2)

where g(x) := ∇ f (x), J (x) := ∇c(x)T ,

FL(x, y) := P[x − ∇x�(x, y)] − x = P
[
x − (

g(x) − J (x)Ty
)] − x, (2.3)

and P is a projection operator defined componentwise by

(P[x])i =

⎧⎪⎨
⎪⎩
li if xi ≤ li ,

ui if xi ≥ ui ,

xi otherwise.
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If (2.1) is infeasible, then it is commonly preferred that an algorithm for solving (2.1)
returns a stationary point for

minimize
x∈Rn

v(x) subject to l ≤ x ≤ u, where v(x) := 1
2‖c(x)‖22, (2.4)

namely a point x satisfying

0 = FFEAS(x) := P[x − ∇xv(x)] − x = P[x − J (x)Tc(x)] − x . (2.5)

If (2.5) holds and v(x) > 0, then we say that x is an infeasible stationary point for
problem (2.1).

AL methods aim to solve (2.1), or at least (2.4), by solving a sequence of bound-
constrained subproblems whose objectives are a weighted sum of the Lagrangian �

and the constraint violation measure v. In particular, scaling � by a penalty parameter
μ ≥ 0, each subproblem involves the minimization of the augmented Lagrangian
function

L(x, y, μ) := μ�(x, y) + v(x) = μ( f (x) − c(x)Ty) + 1
2‖c(x)‖22.

For future reference, the gradient of the augmented Lagrangian with respect to x
evaluated at (x, y, μ) is

∇xL(x, y, μ) = μ
(
g(x) − J (x)Tπ(x, y, μ)

)
, where π(x, y, μ) := y − 1

μ
c(x).
(2.6)

A basic AL algorithm proceeds as follows. Given values for the Lagrangemultiplier
vector y and penalty parameter μ, the algorithm computes

x(y, μ) := argmin
x∈Rn

L(x, y, μ) subject to l ≤ x ≤ u. (2.7)

(There may be multiple solutions to the optimization problem in (2.7), or the problem
may be unbounded below. However, for simplicity in this discussion, we assume
that in (2.7) a point x(y, μ) can be computed as an approximate stationary point for
L(·, y, μ).) The first-order optimality condition for the problem in (2.7) is that x yields

0 = FAL

(
x, y, μ

) := P[x − ∇xL(x, y, μ)] − x . (2.8)

Inspection of the quantities in (2.2) and (2.8) reveals an important role played by the
functionπ in (2.6). In particular, if c(x(y, μ)) = 0 forμ > 0, thenπ(x(y, μ), y, μ) =
y and (2.8) implies that FOPT(x(y, μ), y) = 0, i.e., (x(y, μ), y) is a first-order optimal
solution of (2.1). For this reason, in a basic AL algorithm, if the constraint violation
at x(y, μ) is sufficiently small, then y is set to π(x, y, μ). Otherwise, if the constraint
violation is not sufficiently small, then the penalty parameter is decreased to place a
higher priority on reducing v during subsequent iterations.
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An adaptive augmented Lagrangian method 205

Algorithm 1 outlines a complete AL algorithm. The statement of this algorithm
may differ in various ways from previously proposed AL methods, but we claim that
the algorithmic structure is a good representation of a generic AL method.

Algorithm 1 Basic Augmented Lagrangian Algorithm
1: Choose constants {γμ, γt } ⊂ (0, 1).
2: Choose an initial primal-dual pair (x0, y0) and initialize {μ0, t0} ⊂ (0, ∞).
3: Set K ← 0 and j ← 0.
4: loop
5: if FOPT(xK , yK ) = 0, then
6: return the first-order optimal solution (xK , yK ).
7: end if
8: if ‖cK ‖2 > 0 and FFEAS(xK ) = 0, then
9: return the infeasible stationary point xK .
10: end if
11: Compute x(yK , μK ) ← argminx∈Rn L(x, yK , μK ) subject to l ≤ x ≤ u.
12: if ‖c(x(yK , μK ))‖2 ≤ t j , then
13: Set xK+1 ← x(yK , μK ).
14: Set yK+1 ← π(xK+1, yK , μK ).
15: Set μK+1 ← μK .
16: Set t j+1 ← γt t j .
17: Set j ← j + 1.
18: else
19: Set xK+1 ← xK or xK+1 ← x(yK , μK ).
20: Set yK+1 ← yK .
21: Set μK+1 ← γμμK .
22: end if
23: Set K ← K + 1.
24: end loop

The technique that we propose in the following section can be motivated by observ-
ing a particular drawback of Algorithm 1, namely the manner in which the penalty
parameter μ is updated. In Algorithm 1, μ is updated if and only if the else clause in
line 18 is reached. This is deemed appropriate since after the augmented Lagrangian
was minimized in line 11, the constraint violation was larger than the target value
t j ; thus, the algorithm decreases μ to place a higher emphasis on reducing v in sub-
sequent iterations. Unfortunately, a side effect of this process is that progress in the
primal space based on the update in line 19 is uncertain. Indeed, in such cases, there
are typically two possible outcomes. On one hand, the algorithmmay set xK+1 ← xK
so that the only result of the iteration—involving the minimization of the (nonlinear)
augmented Lagrangian—is that μ is decreased. Alternatively, the algorithm may set
xK+1 ← x(yK , μK ) so that progress in the primal-space may be obtained, but not
necessarily; indeed, in some cases this update may be counterproductive. In this case,
the only certain progress made during the iteration is the decrease of μ.

The scenario described in the previous paragraph illustrates that a basic AL algo-
rithm may be very inefficient, especially during early iterations when the penalty
parameter μ may be too large or the multiplier y is a poor estimate of the optimal
multiplier vector. The method that we propose in the following section is designed
to overcome this potential inefficiency by adaptively updating the penalty parameter
during the minimization process for the augmented Lagrangian.
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We close this section by noting that the minimization in line 11 of Algorithm 1
is itself an iterative process, the iterations of which we refer to as “minor” iterations.
This is our motivation for using K as the “major” iteration counter, so as to distinguish
it from the iteration counter k used in our method, which is similar—e.g., in terms of
computational cost—to the “minor” iterations in Algorithm 1.

3 An adaptive augmented Lagrangian trust region algorithm

In this section, we propose and analyze an AL trust region method with an adap-
tive updating scheme for the penalty parameter. The new key idea is to measure the
improvement towards linearized constraint satisfaction obtained by a given trial step
and compare it to that obtained by a step that solely seeks feasibility. If the former
improvement is not sufficiently large compared to the latter and the current constraint
violation is not sufficiently small, then the penalty parameter is decreased to place a
higher emphasis on minimizing constraint violation during the current iteration.

Our strategy involves a set of easily implementable conditions designed around
the following models of the constraint violation measure, Lagrangian, and augmented
Lagrangian, respectively:

qv(s; x) := 1
2‖c(x) + J (x)s‖22 ≈ v(x + s); (3.1)

q�(s; x, y) := �(x, y) + ∇x�(x, y)
Ts + 1

2 s
T∇2

xx�(x, y)s ≈ �(x + s, y); (3.2)

q(s; x, y, μ) := μq�(s; x, y) + qv(s; x) ≈ L(x + s, y, μ). (3.3)

We remark that this approximation to the augmented Lagrangian is not the standard
second-order Taylor series approximation; instead, we employ aGauss-Newtonmodel
for the constraint violation measure.

Each iteration of our algorithm requires the computation of a trial step sk toward
minimizing the augmented Lagrangian. Ideally, this trial step will also make progress
toward solving (2.1) and, in particular, towardminimizing v. To promote this behavior,
we compute a step sk that predicts a decrease in the augmented Lagrangian as well as
an acceptable value of linearized constraint violation.

Whether a computed step sk yields an acceptable value of linearized constraint
violation from the current iterate xk depends on that yielded by a steering step rk ,
defined as an approximate solution of

minimize
r∈Rn

qv(r; xk) subject to l ≤ xk + r ≤ u, ‖r‖2 ≤ θk, (3.4)

where δ > 0 is a constant and both

θk := θ(xk, δk) := min{δk, δ‖FFEAS(xk)‖2} ≥ 0 (3.5)

and δk > 0 are set dynamically within our algorithm. (Note that a consequence of
this choice of trust-region radius θk in (3.4) is that it approaches zero as the algorithm
approaches stationary points of the constraint violation measure [39]. This keeps the
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steering step from being too large relative to the progress that can bemade towardmin-
imizing v. Moreover, since in practice δ is chosen to be large, the term δ‖FFEAS(xk)‖2
will not impede superlinear convergence when the inverse of the Hessian matrix is
smaller in norm than δ in the neighborhood of solutions.) Importantly, we allow for
inexact solutions to this subproblem that still ensure convergence since we are inter-
ested in matrix-free implementations of our methods; see (3.11b). To this end, we
compute a Cauchy step for subproblem (3.4) as

rk := r(xk, θk) := P[xk − βk J
T
k ck] − xk (3.6)

such that rk satisfies

Δqv(rk; xk) := qv(0; xk) − qv(rk; xk) ≥ −εr r
T
k J

T
k ck and ‖rk‖2 ≤ θk (3.7)

for some βk := β(xk, θk) and εr ∈ (0, 1). Appropriate values for βk , rk , and the
auxiliary nonnegative scalar quantities εk andΓk (to be used shortly) may be computed
from Algorithm 2.

Algorithm 2 Cauchy step computation for the feasibility subproblem (3.4)
1: procedure Cauchy_feasibility(xk , θk )
2: restrictions : θk ≥ 0.
3: available constants : {εr , γ } ⊂ (0, 1).
4: Compute lk as the smallest nonnegative integer satisfying ‖P[xk − γ lk J Tk ck ] − xk‖2 ≤ θk
5: if lk > 0 then
6: Set Γk ← min{2, 1

2 (1 + ‖P[xk − γ lk−1 J Tk ck ] − xk‖2/θk )}.
7: else
8: Set Γk ← 2.
9: end if
10: Set βk ← γ lk , rk ← P[xk − βk J

T
k ck ] − xk , and εk ← 0.

11: while rk does not satisfy (3.7) do
12: Set εk ← max(εk , −Δqv(rk ; xk )/rTk J Tk ck ).
13: Set βk ← γ βk and rk ← P[xk − βk J

T
k ck ] − xk .

14: end while
15: return : (βk , rk , εk , Γk )

16: end procedure

The predicted reduction in the constraint violation from xk yielded by rk as mea-
sured byΔqv(rk; xk) is guaranteed to be positive at any xk that is not first-order critical
for v under the bound constraints; see part (i) of Lemma 3.5. The reductionΔqv(rk; xk)
is defined similarly for the steering step rk , whose computation will be discussed later
in this section.

With the Cauchy step for our steering problem computed, we proceed to identify a
new penalty parameter μk and trial step sk that satisfy certain properties. Specifically,
the step sk is defined as an approximate solution of the following quadratic trust-region
subproblem:

minimize
s∈Rn

q(s; xk, yk, μk) subject to l ≤ xk + s ≤ u, ‖s‖2 ≤ Θk, (3.8)
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208 F. E. Curtis et al.

where

Θk := Θ(xk, yk, μk, δk, Γk) = Γk min{δk, δ‖FAL(xk, yk, μk)‖2} ≥ 0 (3.9)

with Γk > 1 returned from Algorithm 2. Similar to (3.4), this definition of the
trust-region radius involves the first-order optimality measure FAL for minimizing
L(·, yk, μk). This choice ensures that the trust-region radius Θk is driven to zero as
first-order minimizers of L(·, yk, μk) are approached.

Problem (3.8) is, in fact, a quadratic optimization problem if we used the �∞-norm
to define the trust-region constraint. Nonetheless, our algorithm uses the �2-norm
and allows for inexact solutions to this subproblem that still ensure convergence; see
(3.11a). We define the Cauchy step for problem (3.8) as

sk := s(xk, yk, μk,Θk, εk) := P[xk − αk∇xL(xk, yk, μk)] − xk,

such that sk yields

Δq(sk; xk, yk, μk) := q(0; xk, yk, μk) − q(sk; xk, yk, μk)

≥ − (εk + εr )

2
sTk∇xL(xk, yk, μk) and ‖sk‖2 ≤ Θk (3.10)

for some αk = α(xk, yk, μk,Θk, εk), where εk ≥ 0 is returned from Algorithm 2.
Appropriate values forαk and sk may be computed fromAlgorithm3. (The importance
of using Γk in (3.9) and εk in (3.10) may be seen in the proofs of Lemmas 3.3 and 3.4
in Sect. 3.1.)

Algorithm 3 Cauchy step computation for the AL subproblem (3.8).
1: procedure Cauchy_AL(xk , yk , μk ,Θk , εk )
2: restrictions : μk > 0, Θk > 0, and εk ≥ 0.
3: available constant : γ ∈ (0, 1).
4: Set αk ← 1 and sk ← P[xk − αk∇xL(xk , yk , μk )] − xk .
5: while (3.10) is not satisfied do
6: Set αk ← γαk and sk ← P[xk − αk∇xL(xk , yk , μk )] − xk .
7: end while
8: return : (αk , sk )
9: end procedure

The predicted reduction inL(·, yk, μk) from xk yielded by the step sk andmeasured
byΔq(sk; xk, yk, μk) is guaranteed to be positive at any xk that is not first-order critical
for L(·, yk, μk) under the bound constraints; see part (ii) of Lemma 3.5 for a more
precise lower bound for this predicted change. The reduction Δq(sk; xk, yk, μk) is
defined similarly for the trial step sk .

We now describe the kth iteration of our algorithm, specified as Algorithm 4 on
page 8. Let (xk, yk) be the current primal-dual iterate. We begin by checking whether
(xk, yk) is a first-order optimal point for (2.1) or if xk is an infeasible stationary
point, and terminate in either case. Otherwise, we enter the while loop in line 11 to
obtain a value for the penalty parameter for which FAL(xk, yk, μk) �= 0; recall (2.8).
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An adaptive augmented Lagrangian method 209

This is appropriate as the purpose of each iteration is to compute a step towards
a bound-constrained minimizer of the augmented Lagrangian L(·, yk, μk), and if
FAL(xk, yk, μk) = 0, then no feasible descent directions for L(·, yk, μk) from xk
exist. (Lemma 3.2 shows that this while loop terminates finitely.) Next, we enter a
while loop on line 19 that recovers an approximate solution rk to problem (3.4) and
an approximate solution sk to problem (3.8) that satisfy

Δq(sk; xk, yk, μk)

≥ κ1Δq(sk; xk, yk, μk) > 0, l ≤ xk + sk ≤ u, ‖sk‖2 ≤ Θk, (3.11a)

Δqv(rk; xk) ≥ κ2Δqv(rk; xk), l ≤ xk + rk ≤ u, ‖rk‖2 ≤ θk, (3.11b)

and Δqv(sk; xk) ≥ min{κ3Δqv(rk; xk), vk − 1
2 (κt t j )

2}, (3.11c)

where {κ1, κ2, κ3, κt } ⊂ (0, 1) and the quantity t j > 0 represents the j th target for
the constraint violation. At this stage of the algorithm, there are many vectors rk and
sk that satisfy (3.11), but for our purposes we simply prove that they are satisfied for
rk = rk and sk = sk ; see Theorem 3.6.

The conditions in (3.11) can bemotivated as follows.Conditions (3.11a) and (3.11b)
ensure that the trial step sk and steering step rk yield nontrivial decreases in the mod-
els of the augmented Lagrangian and the constraint violation, respectively, compared
to their Cauchy points. The motivation for condition (3.11c) is more complex as it
involves a minimum of two values on the right-hand side, but this condition is crit-
ical as it ensures that the reduction in the constraint violation model is sufficiently
large for the trial step. The first quantity on the right-hand side, if it were the min-
imum of the two, would require the decrease in the model qv yielded by sk to be
a fraction of that obtained by the steering step rk ; see [7,8] for similar conditions
enforced in exact penalty methods. The second quantity is the difference between
the current constraint violation and a measure involving a fraction of the target value
t j > 0. Note that this second term allows the minimum to be negative. Therefore,
this condition allows for the trial step sk to predict an increase in the constraint viola-
tion, but only if the current constraint violation is sufficiently within the target value
t j . It is worthwhile to note that in general one may consider allowing the penalty
parameter to increase as long as the resulting trial step satisfies conditions (3.11a)–
(3.11c) and the parameter eventually settles down at a small enough value to ensure
that constraint violation is minimized. However, as this only would be a heuristic
and not theoretically interesting, we ignore this possibility and simply have the para-
meter decrease monotonically. We remark that the computation of rk requires extra
effort beyond that for computing sk , but the expense is minor as rk can be computed
in parallel with sk and must only satisfy a Cauchy decrease condition [i.e., (3.11b)]
for (3.4).

With the trial step sk in hand, we proceed to compute the ratio

ρk ← L(xk, yk, μk) − L(xk + sk, yk, μk)

Δq(sk; xk, yk, μk)
(3.12)

123
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Algorithm 4 Adaptive Augmented Lagrangian Trust Region Algorithm
1: Choose {γ, γμ, γt , γT , γδ, κF , κ1, κ2, κ3, εr , κt , ηs , ηvs } ⊂ (0, 1), {δ, δR , ε, Y } ⊂ (0, ∞), Γδ > 1

such that ηvs ≥ ηs .
2: Choose initial primal-dual pair (x0, y0) and initialize {μ0, δ0, t0, t1, T1, Y1} ⊂ (0, ∞) such that Y1 ≥ Y

and ‖y0‖2 ≤ Y1.
3: Set k ← 0, k0 ← 0, and j ← 1.
4: loop
5: if FOPT(xk , yk ) = 0, then
6: return the first-order optimal solution (xk , yk ).
7: end if
8: if ‖ck‖2 > 0 and FFEAS(xk ) = 0, then
9: return the infeasible stationary point xk .
10: end if
11: while FAL(xk , yk , μk ) = 0, do
12: Set μk ← γμμk .
13: end while
14: Define θk by (3.5).
15: Use Algorithm 2 to compute (βk , rk , εk , Γk ) = Cauchy_feasibility(xk , θk ).
16: Define Θk by (3.9).
17: Use Algorithm 3 to compute (αk , sk ) = Cauchy_AL(xk , yk , μk , Θk , εk ).
18: Compute approximate solutions rk to (3.4) and sk to (3.8) that satisfy (3.11a)–(3.11b).
19: while (3.11c) is not satisfied or FAL(xk , yk , μk ) = 0, do
20: Set μk ← γμμk and define Θk by (3.9).
21: Use Algorithm 3 to compute (αk , sk ) = Cauchy_AL(xk , yk , μk , Θk , εk ).
22: Compute an approximate solution sk to (3.8) satisfying (3.11a).
23: end while
24: Compute ρk from (3.12).
25: if ρk ≥ ηvs , then
26: Set xk+1 ← xk + sk and δk+1 ← max{δR , Γδδk }. 
 very successful iteration
27: else if ρk ≥ ηs , then
28: Set xk+1 ← xk + sk and δk+1 ← max{δR , δk }. 
 successful iteration
29: else
30: Set xk+1 ← xk and δk+1 ← γδδk . 
 unsuccessful iteration
31: end if
32: if ‖ck+1‖2 ≤ t j , then
33: Compute any ŷk+1 satisfying (3.13).
34: if min{‖FL(xk+1, ŷk+1)‖2, ‖FAL(xk+1, yk , μk )‖2} ≤ Tj , then
35: Set k j ← k + 1 and Y j+1 ← max{Y, t−ε

j−1}.
36: Set t j+1 ← min{γt t j , t1+ε

j } and Tj+1 ← γT min{1, μk }Tj .
37: Set yk+1 from (3.14) where αy satisfies (3.15).
38: Set j ← j + 1.
39: else
40: Set yk+1 ← yk .
41: end if
42: else
43: Set yk+1 ← yk .
44: end if
45: Set μk+1 ← μk .
46: Set k ← k + 1.
47: end loop

of actual-to-predicted decrease in L(·, yk, μk). Since Δq(sk; xk, yk, μk) is positive
by (3.11a), it follows that if ρk ≥ ηs for ηs ∈ (0, 1), then the augmented Lagrangian
has been sufficiently reduced. In such cases, we accept xk + sk as the next iterate.
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An adaptive augmented Lagrangian method 211

Moreover, if we find that ρk ≥ ηvs for ηvs ∈ (ηs, 1), then our choice of trust region
radius may have been overly cautious so we multiply the upper bound for the trust
region radius (i.e., δk) by Γδ > 1. If ρk < ηs , then the trust region radius may have
been too large, so we counter this by multiplying the upper bound by γδ ∈ (0, 1).

Next we determine how to define our nextmultiplier vector yk+1. The first condition
that we check is whether the constraint violation at xk+1 is sufficiently small compared
to t j . If this requirement is met, then we may compute any prospective multiplier
estimate ŷk+1 that satisfies

‖FL(xk+1, ŷk+1)‖2≤min {‖FL(xk+1, yk)‖2,‖FL(xk+1, π(xk+1, yk, μk))‖2} . (3.13)

Computing ŷk+1 as an approximate least-squares multiplier estimate from an asso-
ciated linear optimization problem or simply from π as defined in (2.6) are both
viable options, but for flexibility in the statement of our algorithm we simply
enforce (3.13). With it being satisfied, we then check if either ‖FL(xk+1, ŷk+1)‖2
or ‖FAL(xk+1, yk, μk)‖2 is sufficiently small with respect to a target value Tj > 0. If
this condition is satisfied, we choose new target values t j+1 < t j and Tj+1 < Tj , and
then set Y j+1 ≥ Y j and

yk+1 ← (1 − αy)yk + αy ŷk+1, (3.14)

where αy is the largest value in [0, 1] such that

‖(1 − αy)yk + αy ŷk+1‖2 ≤ Y j+1. (3.15)

Note that this updating procedure is well-defined since the choice αy ← 0 results in
yk+1 ← yk , which at leastmeans that (3.15) is satisfiable by thisαy . On the other-hand,
i.e., when the aforementioned condition is not satisfied, we simply set yk+1 ← yk .

For future reference, we define the subset of iterations where line 35 of Algorithm 4
is reached as

Y := {
k j : ‖ck j ‖2 ≤ t j and min{‖FL(xk j , ŷk j )‖2, ‖FAL(xk j , yk j−1, μk j−1)‖2}≤Tj

}
.

(3.16)

We conclude this section by noting that, in practice, lines 5 and 8 in Algorithm 4
should be replaced by practical conditions that include positive stopping tolerances.
For example, see the implementation details given in Sect. 4.1.

3.1 Well-posedness

We prove that Algorithm 4 is well-posed—i.e., either the algorithm will terminate
finitely or will produce an infinite sequence {(xk, yk, μk)}k≥0 of iterates—under the
following assumption. This assumption is assumed throughout this section and is
therefore not stated explicitly in each result.
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Assumption 3.1 At a given xk, the objective function f and constraint function c are
both twice-continuously differentiable.

Well-posedness in our context first requires that thewhile loop that begins at line 11
of Algorithm 4 terminates finitely. The proof of this fact requires the following simple
result.

Lemma 3.1 Suppose l ≤ x ≤ u and let v be any vector in R
n. If there exists a scalar

ξs > 0 such that P[x − ξsv] = x, then P[x − ξv] = x for all ξ > 0.

Proof Since l ≤ x ≤ u, it follows the definition of the projection operator P and the
facts that ξs > 0 and P[x − ξsv] = x that

vi ≥ 0 if xi = li ; vi ≤ 0 if xi = ui ; and vi = 0 otherwise.

It follows that P[x − ξv] = x for all ξ > 0, as desired. ��
Lemma 3.2 If line 11 of Algorithm 4 is reached, then FAL(xk, yk, μ) �= 0 for all
sufficiently small μ > 0.

Proof Suppose that line 11 is reached and, to reach a contradiction, suppose also that
there exists an infinite positive sequence {ξh}h≥0 such that ξh → 0 and

FAL(xk, yk, ξh) = P
[
xk − ξh(gk − J Tk yk) − J Tk ck

] − xk = 0 for all h ≥ 0. (3.17)

It follows from (3.17) and the fact that ξh → 0 that

FFEAS(xk) = P[xk − J Tk ck] − xk = 0.

If ck �= 0, then Algorithm 4 would have terminated in line 9; hence, since line 11 is
reached, we must have ck = 0. We then may conclude from (3.17), the fact that {ξh}
is positive for all h, and Lemma 3.1 that FL(xk, yk) = 0. Combining this with (2.2)
and the fact that ck = 0, it follows that FOPT(xk, yk) = 0 so that (xk, yk) is a first-order
optimal point for (2.1). However, under these conditions, Algorithm 4 would have
terminated in line 6. Hence, we have a contradiction to the existence of the sequence
{ξh}. ��

We now show that the Cauchy step computations given by Algorithms 2 and 3 are
well defined when called in steps 15, 17, and 21 of Algorithm 4.

Lemma 3.3 The following hold true:

(i) The computation of (βk, rk, εk, Γk) in step 15 is well defined and yieldsΓk ∈ (1, 2]
and εk ∈ [0, εr ).

(ii) The computation of (αk, sk) in steps 17 and 21 is well defined.

Proof We start by proving part (i). Consider the call to Algorithm 2 made during
step 15 of Algorithm 4. If θk = 0, then, since δk > 0 by construction, we must have
FFEAS(xk) = 0, which in turn implies that Algorithm 2 trivially computes lk = 0,
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Γk = 2, βk = 1, and εk = 0. In this case, (i) clearly holds, so now let us suppose that
θk > 0. If lk = 0, then Γk = 2; otherwise, if lk > 0, then it follows that either Γk = 2
or

2 > Γk = 1
2

(
1 + ‖P[

xk − γ lk−1 J Tk ck
] − xk‖2

θk

)
> 1

2

(
1 + θk

θk

)
= 1.

Next, thewhile loop at line 11 terminates finitely as shown by [35, Theorem 4.2] since
εr ∈ (0, 1). The fact that εk ∈ [0, εr ) holds since εr ∈ (0, 1) by choice, εk is initialized
to zero in Algorithm 2, and every time εk is updated we have−Δqv(rk; xk)/rTk J Tk ck <

εr (by the condition of the while loop).
Now consider part (ii). Regardless of how step 17 or 21 is reached in Algorithm 4,

we have that μk > 0 and Θk ≥ 0 by construction, and from part (i) we have that
Γk ∈ (1, 2] and εk ∈ [0, εr ). If Θk = 0, then, since δk > 0 by construction, it follows
that FAL(xk, yk, μk) = 0, and therefore Algorithm 3 terminates with αk = 1 and
sk = 0. Thus, we may continue supposing that Θk > 0. We may now use the fact
that

0 < εr/2 ≤ (εk + εr )/2 < εr < 1

and [35, Theorem 4.2] to say that Algorithm 3 will terminate finitely with (αk, sk)
satisfying (3.10). ��

The following result illustrates critical relationships between the quadratic models
qv and q as μ → 0.

Lemma 3.4 Let (βk, rk, εk, Γk) ← Cauchy_feasibility(xk, θk) with θk defined
by (3.5) and let (αk(μ), sk(μ)) ← Cauchy_AL(xk, yk, μ,Θk(μ), εk)withΘk(μ) :=
Γk min{δk, δ‖FAL(xk, yk, μ)‖2} (see (3.9)). Then, the following hold true:

lim
μ→0

(
max‖s‖2≤2δk

|q(s; xk, yk, μ) − qv(s; xk)|
)

= 0, (3.18a)

lim
μ→0

∇xL(xk, yk, μ) = J Tk ck, (3.18b)

lim
μ→0

sk(μ) = rk, (3.18c)

and lim
μ→0

Δqv(sk(μ); xk) = Δqv(rk; xk). (3.18d)

Proof Since xk and yk are fixed, for the purposes of this proof we drop them from
all function dependencies. From the definitions of q and qv , it follows that for some
M > 0 independent of μ we have

max‖s‖2≤2δk
|q(s;μ) − qv(s)| = μ max‖s‖2≤2δk

|q�(s)| ≤ μM.
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Hence, (3.18a) follows. Similarly, we have

∇xL(μ) − J Tk ck = μ(gk − J Tk yk),

from which it is clear that (3.18b) holds.
We now show (3.18c) by considering two cases. We emphasize that throughout

these two arguments all quantities in Algorithm 2 are unaffected by μ, so the reader
can consider them as fixed.

Case 1: Suppose that FFEAS(xk) = 0. This implies that θk = min{δk, δ‖FFEAS(xk)‖2} =
0, so that rk = 0 and Δqv(rk) = 0. Moreover, from (3.18b) we have Θk(μ) → 0 as
μ → 0, which means that sk(μ) → 0 = rk .

Case 2: Suppose FFEAS(xk) �= 0. We find it useful to define the functions

rk(l) = P[xk − γ l J Tk ck] − xk and sk(l, μ) = P[xk − γ l∇xL(μ)] − xk

for any integer l ≥ 0 and scalar μ > 0. We also let lβ ≥ 0 be the integer such that
βk = γ lβ , which implies

rk = rk(lβ). (3.19)

It follows from (3.18b) that

lim
μ→0

sk(l, μ)=rk(l) for any l ≥ 0 and, in particular, lim
μ→0

sk(lβ, μ)=rk(lβ) = rk .

(3.20)
Therefore, to show (3.18c), it suffices to prove that

sk(μ) = sk(lβ, μ) for all μ > 0 sufficiently small. (3.21)

Since the Cauchy computation for sk(μ) computes a nonnegative integer lα,μ so that

sk(μ) = P
[
xk − γ lα,μ∇xL(μ)

] − xk,

to prove (3.21) it suffices to show that lα,μ = lβ for all μ > 0 sufficiently small.
Before proving this result, however, we show that

min
(
lβ, lα,μ

) ≥ lk for all μ > 0 sufficiently small, (3.22)

where lk is computed in Algorithm 2. If lk = 0, then (3.22) holds trivially. Thus, let
us suppose that lk > 0. We may first observe that the inequality lβ ≥ lk holds by
construction of Algorithm 2. Also, it follows from the definition of Θk(μ), (3.18b),
the definition of Γk , θk > 0, and the fact that ‖P[xk − γ lk−1 J Tk ck

] − xk‖2 > θk due
to the choice of lk in Algorithm 2, that
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lim
μ→0

Θk(μ) = lim
μ→0

Γk min(δk, δ‖FAL(xk, yk, μ)‖2) = Γk min(δk, δ‖FFEAS(xk)‖2)
= Γkθk

= min

[
2, 1

2

(
1 + ‖P[xk − γ lk−1 J Tk ck] − xk‖2

θk

)]
θk

= min
[
2θk, 1

2

(
θk + ‖P[xk − γ lk−1 J Tk ck] − xk‖2

)]

∈ (
θk, ‖P[xk − γ lk−1 J Tk ck] − xk‖2

)
.

Using this and (3.18b), we may observe that

lim
μ→0

‖P[xk − γ lk−1∇xL(μ)] − xk‖2 = ‖P[xk − γ lk−1 J Tk ck] − xk‖2
> Θk(μ) for all μ > 0 sufficiently small,

which shows that lα,μ ≥ lk for all μ > 0 sufficiently small and, consequently,
that (3.22) again holds.

We now proceed to prove that lα,μ = lβ for all μ > 0 sufficiently small. It follows
from the definition of lβ above, (3.19), the structure of Algorithm 2, definition of εk ,
and part (i) of Lemma 3.3 that

−Δqv(rk)

rTk J
T
k ck

= −Δqv

(
rk(lβ)

)
rk(lβ)TJ Tk ck

≥ εr and

−Δqv

(
rk(l)

)
rk(l)TJ Tk ck

≤ εk < εr for all integers lk ≤ l < lβ.

(3.23)

(Note that [11, Theorem 12.1.4] shows that all denominators in (3.23) are negative.)
It follows from (3.18b), (3.20), (3.18a), (3.23), and part (i) of Lemma 3.3 that

lim
μ→0

− Δq
(
sk(lβ, μ)

)
sk(lβ, μ)T∇xL(μ)

= −Δqv(rk)

rTk J
T
k ck

≥ εr >
εk + εr

2
(3.24)

and

lim
μ→0

− Δq
(
sk(l, μ)

)
sk(l, μ)T∇xL(μ)

= −Δqv

(
rk(l)

)
rk(l)TJ Tk ck

≤ εk <
εk + εr

2
for all integers lk ≤ l < lβ.

(3.25)

It now follows from (3.22), (3.24), (3.25), and (3.10) that lα,μ = lβ for all μ > 0
sufficiently small, which proves (3.18c).

Finally, we notice that (3.18d) follows from (3.18c) and continuity of the model
qv . ��

To show that Algorithm 4 is well-posed, we also need the following results.
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Lemma 3.5 Let Ω be any value such that

Ω ≥ max{‖μk∇2
xx�(xk, yk) + J Tk Jk‖2, ‖J Tk Jk‖2}. (3.26)

Then, the following hold true:

(i) For some κ4 ∈ (0, 1), the Cauchy step for subproblem (3.4) yields

Δqv(rk; xk) ≥ κ4‖FFEAS(xk)‖2 min

{
θk,

1

1+Ω
‖FFEAS(xk)‖2

}
. (3.27)

(ii) For some κ5 ∈ (0, 1), the Cauchy step for subproblem (3.8) yields

Δq(sk; xk, yk, μk) ≥ κ5‖FAL(xk, yk, μk)‖2 min

{
Θk,

1

1 + Ω
‖FAL(xk, yk, μk)‖2

}
.

(3.28)

Proof We first show (3.27). We know from [35, Theorem 4.4] and (3.10) that

Δqv(rk; xk) ≥ εr κ̄4‖FFEAS(xk)‖2 min

{
θk,

1

Σk
‖FFEAS(xk)‖2

}

for some κ̄4 ∈ (0, 1) with Σk := 1 + sup{|ωk(r)| : 0 < ‖r‖2 ≤ θk} and

ωk(r) := −Δqv(r; xk) − rTJ Tk ck

‖r‖22
.

By rewriting ωk(r) and using (3.26), the Cauchy-Schwartz inequality, and standard
norm inequalities, we have that

ωk(r) = rTJ Tk Jkr

2‖r‖22
≤ Ω.

Therefore, Σk ≤ 1 + Ω and (3.27) follows immediately with κ4 := εr κ̄4.
Now we show (3.28). We know from [35, Theorem 4.4] and (3.10) that

Δq(sk; xk, yk, μk) ≥ εk + εr

2
κ̄5‖FAL(xk, yk, μk)‖2 min

{
Θk,

1

Σ̄k
‖FAL(xk, yk, μk)‖2

}

for some κ̄5 ∈ (0, 1) with Σ̄k := 1 + sup{|ω̄k(s)| : 0 < ‖s‖2 ≤ Θk} and

ω̄k(s) := −Δq(s; xk, yk, μk) − sT∇xL(xk, yk, μk)

‖s‖22
.
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By rewriting ω̄k(s) and using (3.26), we have that

ω̄k(s) = μksT∇2
xx�(xk, yk, μk)s + sTJ Tk Jks

2‖s‖22
≤ ‖μk∇2

xx�(xk, yk, μk) + J Tk Jk‖2‖s‖22
2‖s‖22

≤ Ω.

Therefore, Σ̄k ≤ 1 + Ω and (3.28) follows immediately with κ5 := 1
2εr κ̄5 ≤

1
2 (εk + εr ) κ̄5. ��

In the following theorem, we combine the previous lemmas to prove that Algo-
rithm 4 is well-posed.

Theorem 3.6 The kth iteration of Algorithm 4 is well-posed. That is, either the
algorithm will terminate in line 6 or 9, or it will compute μk > 0 such that
FAL(xk, yk, μk) �= 0 and for the steps sk = sk and rk = rk the conditions in (3.11)
will be satisfied, in which case (xk+1, yk+1, μk+1) will be computed.

Proof If in the kth iteration Algorithm 4 terminates in line 6 or 9, then there is nothing
to prove. Therefore, for the remainder of the proof, we assume that line 11 is reached.
Lemma 3.2 then ensures that

FAL(xk, yk, μ) �= 0 for all μ > 0 sufficiently small. (3.29)

Consequently, the while loop in line 11 will terminate for a sufficiently small μk > 0.
By construction, conditions (3.11a) and (3.11b) are satisfied for any μk > 0 by

sk = sk and rk = rk . Thus, all that remains is to show that for a sufficiently small
μk > 0, (3.11c) is also satisfied by sk = sk and rk = rk . From (3.18d), we have that

lim
μ→0

Δqv(sk; xk) = lim
μ→0

Δqv(sk; xk) = Δqv(rk; xk) = Δqv(rk; xk). (3.30)

If Δqv(rk; xk) > 0, then (3.30) implies that (3.11c) will be satisfied for sufficiently
small μk > 0. On the other hand, suppose

Δqv(rk; xk) = Δqv(rk; xk) = 0, (3.31)

which along with (3.27) and the definitions of θk and δk > 0, must mean that
FFEAS(xk) = 0. If ck �= 0, then Algorithm 4 would have terminated in line 9 and,
therefore, we must have ck = 0. This and (3.31) imply that

min{κ3Δqv(rk; xk), vk − 1
2 (κt t j )

2} = − 1
2 (κt t j )

2 < 0 (3.32)

since t j > 0 by construction and κt ∈ (0, 1) by choice. Therefore, we can deduce
that (3.11c) will be satisfied for sufficiently small μk > 0 by observing (3.30), (3.31)
and (3.32). Combining this with (3.29) and the fact that the while loop on line 19
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ensures that μk will eventually be as small as required, guarantees that the while
loop will terminate finitely. This completes the proof as all remaining steps in the kth
iteration are well-posed and explicit. ��

3.2 Global convergence

We analyze the global convergence properties of Algorithm 4 under the assumption
that the algorithm does not terminate finitely. That is, in this section we assume that
neither a first-order optimal solution nor an infeasible stationary point is found after a
finite number of iterations so that the sequence {(xk, yk, μk)}k≥0 is infinite.

We provide global convergence guarantees under the following assumption. This
assumption is assumed throughout this section and is therefore not stated explicitly in
each result.

Assumption 3.2 The iterates {xk}k≥0 are contained in a convex compact set over
which the objective function f and constraint function c are both twice-continuously
differentiable.

This assumption and the bound on themultipliers enforced in line 37 of Algorithm 4
imply that there exists a positivemonotonically increasing sequence {Ω j } j≥1 such that
for all k j ≤ k < k j+1 we have

‖∇2
xxL(σ, yk, μk)‖2 ≤Ω j for all σ on the segment [xk, xk+sk], (3.33a)

‖μk∇2
xx�(xk, yk) + J Tk Jk‖2 ≤ Ω j , (3.33b)

and ‖J Tk Jk‖2 ≤ Ω j . (3.33c)

We begin our analysis in this section by proving the following lemma, which pro-
vides critical bounds on differences in (components of) the augmented Lagrangian
summed over sequences of iterations.

Lemma 3.7 The following hold true.

(i) If μk = μ for some μ > 0 and all sufficiently large k, then there exist positive
constants M f , Mc, and ML such that for all integers p ≥ 1 we have

p−1∑
k=0

μk( fk − fk+1) < M f , (3.34)

p−1∑
k=0

μk y
T
k (ck+1 − ck) < Mc, (3.35)

and
p−1∑
k=0

(L(xk, yk, μk) − L(xk+1, yk, μk)) < ML. (3.36)
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(ii) If μk → 0, then the sums

∞∑
k=0

μk( fk − fk+1), (3.37)

∞∑
k=0

μk y
T
k (ck+1 − ck), (3.38)

and
∞∑
k=0

(L(xk, yk, μk) − L(xk+1, yk, μk)) (3.39)

converge and are finite, and

lim
k→∞ ‖ck‖2 = c̄ for some c̄ ≥ 0. (3.40)

Proof Under Assumption 3.2 we may conclude that for some constant M f > 0 and
all integers p ≥ 1 we have

p−1∑
k=0

( fk − fk+1) = f0 − f p < M f .

If μk = μ for all sufficiently large k, then this implies that (3.34) clearly holds for
some sufficiently large M f . Otherwise, if μk → 0, then it follows from Dirichlet’s
Test [12, §3.4.10] and the fact that {μk}k≥0 is a monotonically decreasing sequence
that converges to zero that (3.37) converges and is finite.

Next, we show that for some constant Mc > 0 and all integers p ≥ 1 we have

p−1∑
k=0

yTk (ck+1 − ck) < Mc. (3.41)

First, suppose that Y defined in (3.16) is finite. It follows that there exists k′ ≥ 0 and
y such that yk = y for all k ≥ k′. Moreover, under Assumption 3.2 there exists a
constant M̂c > 0 such that for all p ≥ k′ + 1 we have

p−1∑
k=k′

yTk (ck+1 − ck) = yT
p−1∑
k=k′

(ck+1 − ck) = yT (cp − ck′) ≤ ‖y‖2‖cp − ck′ ‖2 < M̂c.

It is now clear that (3.41) holds in this case. Second, suppose that |Y| = ∞ so that
the sequence {k j } j≥1 in Algorithm 4 is infinite. By construction t j → 0, so for some
j ′ ≥ 1 we have

t j = t1+ε
j−1 and Y j+1 = t−ε

j−1 for all j ≥ j ′. (3.42)
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From the definition of the sequence {k j } j≥1, (3.14), and (3.15), we know that

k j+1−1∑
k=k j

yTk (ck+1 − ck) = yTk j

k j+1−1∑
k=k j

(ck+1 − ck) = yTk j(ck j+1 − ck j )

≤ ‖yk j ‖2‖ck j+1 − ck j ‖2 ≤ 2Y j+1t j = 2t j−1 for all j ≥ j ′,

where the last equality follows from (3.42). Using these relationships, summing over
all j ′ ≤ j ≤ j ′ + q for an arbitrary integer q ≥ 1, and using the fact that t j+1 ≤ γt t j
by construction, leads to

j ′+q∑
j= j ′

⎛
⎝

k j+1−1∑
k=k j

yTk (ck+1 − ck)

⎞
⎠ ≤ 2

j ′+q∑
j= j ′

t j−1

≤ 2t j ′−1

q∑
l=0

γ l
t = 2t j ′−1

1 − γ
q+1
t

1 − γt
≤ 2t j ′−1

1 − γt
.

It is now clear that (3.41) holds in this case as well.
We have shown that (3.41) always holds. Thus, ifμk = μ for all sufficiently large k,

then (3.35) holds for some sufficiently large Mc. Otherwise, ifμk → 0, then it follows
from Dirichlet’s Test [12, §3.4.10], (3.41) and the fact that {μk}k≥0 is a monotonically
decreasing sequence that converges to zero that (3.38) converges and is finite.

Finally, observe that

p−1∑
k=0

L(xk, yk, μk) − L(xk+1, yk, μk)

=
p−1∑
k=0

μk( fk − fk+1) +
p−1∑
k=0

μk y
T
k (ck+1 − ck) + 1

2

p−1∑
k=0

(‖ck‖22 − ‖ck+1‖22)

=
p−1∑
k=0

μk( fk − fk+1) +
p−1∑
k=0

μk y
T
k (ck+1 − ck) + 1

2 (‖c0‖22 − ‖cp‖22). (3.43)

If μk = μ for all sufficiently large k, then it follows from Assumption 3.2, (3.34),
(3.35), and (3.43) that (3.36) will hold for some sufficiently large ML. Otherwise,
consider whenμk → 0. Taking the limit of (3.43) as p → ∞, we have from Assump-
tion 3.2 and conditions (3.37) and (3.38) that

∞∑
k=0

(L(xk, yk, μk) − L(xk+1, yk, μk)) < ∞.

Since the terms in this sum are all nonnegative, it follows from the Monotone Conver-
gence Theorem that (3.39) converges and is finite. Moreover, we may again take the
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limit of (3.43) as p → ∞ and use (3.37), (3.38), and (3.39) to conclude that (3.40)
holds. ��

In the following subsections, we consider different situations depending on the
number of times that the Lagrange multiplier vector is updated.

3.2.1 Finite number of multiplier updates

In this section, we consider the case when Y in (3.16) is finite. In this case, the counter
j in Algorithm 4, which tracks the number of times that the dual vector is updated,
satisfies

j ∈ {1, 2, . . . j̄} for some finite j̄ . (3.44)

For the purposes of our analysis in this section, we define

t := t j̄ > 0 and T := Tj̄ > 0. (3.45)

We consider two subcases depending on whether the penalty parameter stays
bounded away from zero, or if it converges to zero. First we consider cases when
it converges to zero.

Lemma 3.8 If |Y| < ∞ and μk → 0, then there exist a vector y and integer k ≥ 0
such that

yk = y for all k ≥ k, (3.46)

and for some constant c̄ > 0, we have the limits

lim
k→∞ ‖ck‖2 = c̄ > 0 and lim

k→∞ FFEAS(xk) = 0. (3.47)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.

Proof Since |Y| < ∞, we know that (3.44) and (3.45) both hold for some j̄ ≥ 0. It
follows by construction in Algorithm 4 that there exists y and a scalar k ≥ k j̄ such
that (3.46) holds.

From (3.40), it follows that ‖ck‖2 → c̄ for some c̄ ≥ 0. If c̄ = 0, then by Assump-
tion 3.2, the definition of ∇xL, (3.46), and the fact that μk → 0 it follows that
limμ→0 ∇xL(xk, y, μk) = J Tk ck = 0, which implies that limμ→0 FAL(xk, y, μk) =
FFEAS(xk) = 0. This would imply that for some k ≥ k the algorithm would set
j ← j̄ + 1, violating (3.44). Thus, we conclude that c̄ > 0, which proves the first part
of (3.47).

Next, we prove that
lim inf
k≥0

FFEAS(xk) = 0. (3.48)

If (3.48) does not hold, then there exists ζ ∈ (0, 1) and k′ ≥ k such that

‖FFEAS(xk)‖2 ≥ 2ζ for all k ≥ k′. (3.49)
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Hence, by (3.49) and the fact that μk → 0, there exists k′′ ≥ k′ such that

‖FAL(xk, y, μk)‖2 ≥ ζ for all k ≥ k′′. (3.50)

We now show that the trust region radius Θk is bounded away from zero for k ≥ k′′.
In order to see this, suppose that for some k ≥ k′′ we have

0 < Θk ≤ min

{
ζ

1 + Ω j̄
,
(1 − ηvs)κ1κ5ζ

1 + Ω j̄

}
=: δthresh (3.51)

where {Ω j } j≥1 is defined with (3.33). It then follows from (3.11a), (3.28), (3.33b),
(3.50), and (3.51) that

Δq(sk; xk, y, μk) ≥ κ1Δq(sk; xk, y, μk) ≥ κ1κ5ζ min

{
ζ

1 + Ω j̄
,Θk

}
≥ κ1κ5ζΘk .

(3.52)
Using the definition of q, Taylor’s Theorem, (3.33a), (3.33b), and the trust-region
constraint, we may conclude that for some σk on the segment [xk, xk + sk] we have

|q(sk; xk, y, μk) − L(xk + sk, y, μk)| = 1
2

∣∣∣sTk (μk∇2
xx�(xk, yk) + J Tk Jk)sk

−sTk∇2
xxL(σk, y, μk)sk

∣∣∣
≤ Ω j̄‖sk‖22 ≤ Ω j̄Θ

2
k . (3.53)

The definition of ρk , (3.51), (3.52), and (3.53) then yield

|ρk − 1| =
∣∣∣∣q(sk; xk, y, μk)−L(xk + sk, y, μk)

Δq(sk; xk, y, μk)

∣∣∣∣ ≤ Ω j̄Θ
2
k

κ1κ5ζΘk
= Ω j̄Θk

κ1κ5ζ
≤ 1 − ηvs .

This implies that the if clause in line 26 of Algorithm 4 will be true, and along
with (3.50) we may conclude that the trust region radius will not be decreased any
further. Consequently, we have shown that the trust region radius updating strategy in
Algorithm 4 guarantees that for some δmin ∈ (0, δthresh) we have

Θk ≥ δmin for all k ≥ k′′. (3.54)

Now, since Θk is bounded below, there must exist an infinite subsequence, indexed
by an ordered set S ⊆ N, of successful iterates. If we define S ′′ := {k ∈ S : k ≥ k′′},
then we may conclude from the fact that xk+1 = xk when k /∈ S, (3.46), (3.12), (3.52),
and (3.54) that
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∞∑
k=k′′

L(xk, y, μk) − L(xk+1, y, μk) =
∑
k∈S ′′

L(xk, y, μk) − L(xk+1, y, μk)

≥
∑
k∈S ′′

ηsΔq(sk; xk, y, μk) ≥
∑
k∈S ′′

ηsκ1κ5ζ δmin

=∞, (3.55)

contradicting (3.39). Therefore, we conclude that (3.48) holds.
Now we prove the second part of (3.47). By contradiction, suppose FFEAS(xk) � 0.

This supposition and (3.48) imply that the subsequence of successful iterates indexed
by S is infinite and there exists a constant ε ∈ (0, 1) and sequences {ki }i≥0 and {ki }i≥0
defined in the following manner: k0 is the first iterate in S such that ‖FFEAS(xk0)‖2 ≥
4ε > 0; ki for i ≥ 0 is the first iterate strictly greater than ki such that

‖FFEAS(xki )‖2 < 2ε; (3.56)

and ki for i ≥ 1 is the first iterate in S strictly greater than ki−1 such that

‖FFEAS(xki )‖2 ≥ 4ε > 0. (3.57)

We may now define

K := {k ∈ S : ki ≤ k < ki for some i ≥ 0}.

Since μk → 0, we may use (3.46) to conclude that there exists k′′′ such that

‖FAL(xk, y, μk)‖2 ≥ ε for all k ∈ K such that k ≥ k′′′. (3.58)

It follows from the definition of K, (3.11a), (3.28), (3.46), (3.33b), and (3.58) that

L(xk, yk, μk)−L(xk+1, yk, μk)

≥ ηsΔq(sk; xk, yk, μk)

≥ ηsκ1κ5εmin

{
ε

1 + Ω j̄
,Θk

}
for all k ∈ K such that k ≥ k′′′.

(3.59)

It also follows from (3.39) and since L(xk+1, yk, μk) ≤ L(xk, yk, μk) for all k ≥ 0
that

∞ >

∞∑
k=0

L(xk, yk, μk) − L(xk+1, yk, μk)

=
∑
k∈S

L(xk, yk, μk) − L(xk+1, yk, μk) ≥
∑
k∈K

L(xk, yk, μk) − L(xk+1, yk, μk).

(3.60)
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Summing (3.59) for k ∈ K and using (3.60) yields limk∈K Θk = 0, which combined
with (3.59) and (3.46) leads to

L(xk, y, μk) − L(xk+1, y, μk) ≥ ηsκ1κ5εΘk > 0 for all sufficiently large k ∈ K.

(3.61)
By the triangle-inequality and (3.61), there exists some ī ≥ 1 such that

‖xki − xki ‖2 ≤
ki−1∑
j=ki

‖x j − x j+1‖2 =
ki−1∑
j=ki

‖s j‖2 ≤
ki−1∑
j=ki

Θ j

≤ 1

ηsκ1κ5ε

ki−1∑
j=ki

L(x j , y, μ j ) − L(x j+1, y, μ j ) for i ≥ ī .

Summing over all i ≥ ī and using (3.39), we find

∞∑
i=ī

‖xki − xki ‖2 ≤ 1

ηsκ1κ5ε

∞∑
i=ī

⎛
⎝ki−1∑

j=ki

L(x j , y, μ j ) − L(x j+1, y, μ j )

⎞
⎠

≤ 1

ηsκ1κ5ε

∑
k∈K

L(xk, y, μk) − L(xk+1, y, μk)

≤ 1

ηsκ1κ5ε

∞∑
k=0

L(xk, y, μk) − L(xk+1, y, μk) < ∞,

which implies that
lim
i→∞ ‖xki − xki ‖2 = 0.

It follows from the previous limit, (3.57), and Assumption 3.2 that for i sufficiently
large we have ‖FFEAS(xki )‖2 > 2ε, contradicting (3.56). We may conclude that the
second part of (3.47) holds.

The fact that every limit point of {xk}k≥0 is an infeasible stationary point follows
from (3.47). ��

The next lemma considers the case when μ stays bounded away from zero. This is
possible, for example, if the algorithm converges to an infeasible stationary point that
is stationary for the augmented Lagrangian.

Lemma 3.9 If |Y| < ∞ and μk = μ for some μ > 0 for all sufficiently large k, then
with t defined in (3.45) there exist a vector y and integer k ≥ 0 such that

yk = y and ‖ck‖2 ≥ t for all k ≥ k, (3.62)

and we have the limit
lim
k→∞ FFEAS(xk) = 0. (3.63)

Therefore, every limit point of {xk}k≥0 is an infeasible stationary point.
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Proof Since |Y| < ∞, we know that (3.44) and (3.45) both hold for some j̄ ≥ 0.
Since we also suppose that μk = μ > 0 for all sufficiently large k, it follows by
construction in Algorithm 4 that there exists y and a scalar k′ ≥ k j̄ such that

μk = μ and yk = y for all k ≥ k′. (3.64)

Next, we prove that
lim inf
k≥0

‖FAL(xk, y, μ)‖2 = 0. (3.65)

If (3.65) does not hold, then there exists ζ ∈ (0, 1) and k′′ ≥ k′ such that

‖FAL(xk, y, μ)‖2 ≥ ζ for all k ≥ k′′. (3.66)

We now show that the trust region radius Θk is bounded away from zero for k ≥ k′′.
In order to see this, suppose that for some k ≥ k′′ we have

0 < Θk ≤ min

{
ζ

1 + Ω j̄
,
(1 − ηvs)κ1κ5ζ

1 + Ω j̄

}
=: δthresh (3.67)

where {Ω j } j≥1 is defined with (3.33). It then follows from (3.11a), (3.28), (3.33b),
(3.66), and (3.67) that

Δq(sk; xk, y, μ) ≥ κ1Δq(sk; xk, y, μ) ≥ κ1κ5ζ min

{
ζ

1 + Ω j̄
,Θk

}
≥ κ1κ5ζΘk .

(3.68)
Using the definition of q, Taylor’s Theorem, (3.33a), (3.33b), and the trust-region
constraint, we may conclude that for some σk on the segment [xk, xk + sk] we have

|q(sk; xk, y, μk) − L(xk + sk, y, μk)|
= 1

2

∣∣∣sTk (μk∇2
xx�(xk, yk) + J Tk Jk)sk − sTk∇2

xxL(σk, y, μk)sk
∣∣∣

≤ Ω j̄‖sk‖22 ≤ Ω j̄Θ
2
k . (3.69)

The definition of ρk , (3.69), (3.68), and (3.67) then yield

|ρk − 1| =
∣∣∣∣q(sk; xk, y, μk) − L(xk + sk, y, μk)

Δq(sk; xk, y, μk)

∣∣∣∣
≤ Ω j̄Θ

2
k

κ1κ5ζΘk
= Ω j̄Θk

κ1κ5ζ
≤ 1 − ηvs .

This implies that a very successful iteration will occur and along with the trust region
radius updating strategy inAlgorithm4,wemay conclude that for some δmin ∈ (0, δthresh)

we have
Θk ≥ δmin for all k ≥ k′′. (3.70)
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Now, since Θk is bounded below, there must exist an infinite subsequence, indexed
by an ordered set S ⊆ N, of successful iterates. If we define S ′′ := {k ∈ S : k ≥ k′′},
then we may conclude from the fact that xk+1 = xk when k /∈ S, (3.64), (3.12), (3.68),
and (3.70) that

∞∑
k=k′′

L(xk, y, μ) − L(xk+1, y, μ) =
∑
k∈S ′′

L(xk, y, μ) − L(xk+1, y, μ)

≥
∑
k∈S ′′

ηsΔq(sk; xk, y, μ)≥
∑
k∈S ′′

ηsκ1κ5ζ δmin =∞,

contradicting (3.36). Therefore, we conclude that (3.65) holds. Moreover, the same
argument used in the second part of the proof of Lemma 3.8 (with FFEAS replaced by
FAL) shows that

lim
k→∞ ‖FAL(xk, y, μ)‖2 = 0. (3.71)

It then follows that there exists k ≥ k′ such that ‖ck‖2 ≥ t for all k ≥ k, since
otherwise it follows from (3.71) that for some k ≥ k Algorithm 4 sets j ← j̄ + 1,
violating (3.44). Thus, we have shown that (3.62) holds.

Next, we turn to the limits in (3.63). It follows from (3.71) and part (i) of Lemma 3.3
that

lim
k→∞ ‖sk‖2 ≤ lim

k→∞ Θk = lim
k→∞ Γk min{δk, δ‖P[xk − ∇xL(xk, y, μ)] − xk‖2} = 0.

(3.72)
From (3.72) and Assumption 3.2, we have

lim
k→∞ Δqv(sk; xk) = 0, (3.73)

and from the definition of v, (3.45), and (3.62) that

vk − 1
2 (κt t j̄ )

2 ≥ 1
2 t

2 − 1
2 (κt t)

2 = 1
2 (1 − κ2

t )t2 > 0 for all k ≥ k. (3.74)

We now prove that FFEAS(xk) → 0. To see this, first note that

FAL(xk, y, μ) �= 0 for all k ≥ k,

or else the algorithm would set μk+1 < μ in line 12 of Algorithm 4, violating (3.64).
Standard trust-region theory [11] then ensures that there will be infinitely many suc-
cessful iterations, which we denote by S, for k ≥ k. If we suppose that FFEAS(xk) � 0,
then for some ζ ∈ (0, 1) there exists an infinite subsequence indexed by

Sζ := {k ∈ S : k ≥ k and ‖FFEAS(xk+1)‖2 ≥ ζ }.
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We may then observe from the updating strategies for θk and δk that

θk+1 = min{δk+1, δ‖FFEAS(xk+1)‖2}
≥ min{max{δR, δk}, δζ } ≥ min{δR, δζ } > 0 for all k ∈ Sζ . (3.75)

Using (3.11b), (3.27), (3.33c), (3.44), and (3.75), we then find for k ∈ Sζ that

Δqv(rk+1; xk+1) ≥ κ2Δqv(rk+1; xk+1) ≥ κ2κ4ζ min

{
ζ

1 + Ω j̄
, δR, δζ

}
=: ζ ′ > 0.

We may now combine the previous equation, (3.74), and (3.73) to state that (3.11c)
must be violated for sufficiently large k ∈ Sζ and, consequently, the penalty parameter
will be decreased. However, this is a contradiction to (3.64), so we conclude that
FFEAS(xk) → 0. The fact that every limit point of {xk}k≥0 is an infeasible stationary
point follows since ‖ck‖2 ≥ t for all k ≥ k from (3.62) and FFEAS(xk) → 0. ��

This completes the analysis for the case that the setY is finite. The next section con-
siders the complementarity situation when the Lagrange multiplier vector is updated
an infinite number of times.

3.2.2 Infinite number of multiplier updates

We now consider the case when |Y| = ∞. In this case, it follows by construction in
Algorithm 4 that

lim
j→∞ t j = lim

j→∞ Tj = 0. (3.76)

As in the previous subsection, we consider two subcases depending on whether the
penalty parameter remains bounded away from zero, or if it converges to zero. Our
next lemma shows that when the penalty parameter does remain bounded away from
zero, then a subsequence of iterates converges to a first-order optimal point. In general,
this is the ideal case for a feasible problem.

Lemma 3.10 If |Y| = ∞ and μk = μ for some μ > 0 for all sufficiently large k,
then

lim
j→∞ ck j = 0 (3.77)

and lim
j→∞ FL(xk j , ŷk j )= 0. (3.78)

Thus, any limit point (x∗, y∗) of {(xk j , ŷk j )} j≥0 is first-order optimal for (2.1).

Proof Since |Y| = ∞, it follows that the condition in line 32 holds an infinite number
of times. The limit (3.77) then follows by (3.76) since line 35 sets k j ← k + 1 for all
k j ∈ Y .

To prove (3.78), we first define

Y ′ = {k j ∈ Y : ‖FL(xk j , ŷk j )‖2 ≤ ‖FAL(xk j , yk j−1, μk j−1)‖2}.
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It follows from (3.76) and line 34 of Algorithm 4 that if Y ′ is infinite, then

lim
k j∈Y ′ FL(xk j , ŷk j ) = 0. (3.79)

Meanwhile, it follows from (3.76) and line 34 of Algorithm 4 that if Y\Y ′ is infinite,
then

lim
k j∈Y\Y ′ FAL(xk j , yk j−1, μk j−1) = 0. (3.80)

Under Assumption 3.2, (3.80) may be combined with (3.77) and the fact that μk = μ

for some μ > 0 to deduce that if Y\Y ′ is infinite, then

lim
k j∈Y\Y ′ FL(xk j , yk j−1) = 0. (3.81)

We may now combine (3.81) with (3.13) to state that if Y\Y ′ is infinite, then

lim
k j∈Y\Y ′ FL(xk j , ŷk j ) = 0. (3.82)

The desired result (3.78) now follows from (3.79), (3.82), and the supposition that
|Y| = ∞. ��

We now prove a corollary showing that if Algorithm 4 employs a particular update
for ŷk+1 in line 33 (satisfying (3.13)), then a subsequence of multiplier estimates {ŷk}
converges to an optimal Lagrange multiplier vector when the linear independence
constraint qualification (LICQ) holds at limit points. For this result only, we make the
following additional assumption.

Assumption 3.3 If x∗ is a limit point of {xk} that is feasible for problem (2.1), then
the index set I(x∗) := {i : [x∗]i > 0} is nonempty and the matrix JI(x∗) that contains
the subset of columns of J (x∗) corresponding to the index set I(x∗) has full row rank.

Corollary 3.11 If |Y| = ∞, μk = μ > 0 for all sufficiently large k, and line 33 of
Algorithm 4 sets

ŷk+1 ←
{
yk if ‖FL(xk+1, yk)‖2 ≤ ‖FL(xk+1, π(xk+1, yk, μk))‖2,
π(xk+1, yk, μk) otherwise,

(3.83)
then there exists an infinite ordered set J ⊆ N such that

lim
j∈J

(xk j , yk j ) = (x∗, y∗),

where (x∗, y∗)afirst-order optimal point for problem (2.1), the vector y∗ is the (unique)
solution of
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min
y∈Rm

‖gI(x∗) − JI(x∗)Ty‖22, (3.84)

and gI(x∗) and JI(x∗)T contain the rows of g(x∗) and J (x∗)T , respectively, corre-
sponding to I(x∗).

Proof Weknow from |Y| = ∞ andAssumption 3.2 that there exists an infinite ordered
set J1 ⊆ N and a vector x∗ such that lim j∈J1 xk j = x∗. It also follows from this fact,
the assumptions of this corollary, and Lemma 3.10 that

lim
j∈J1

c(xk j ) = 0, lim
j∈J1

FL(xk j , ŷk j ) = 0, (3.85)

and any limit points of (xk j , ŷk j ) are first-order KKT points for (2.1). Let us define
the set

J2 := { j ∈ J1 : ‖FL(xk j , ŷk j )‖2 ≤ ‖FAL(xk j , π(xk j , yk j−1, μk j−1))‖2},

which is motivated by line 34 of Algorithm 4. Also, we note that

lim
j∈J1

Y j = ∞ (3.86)

as a result of (3.76) and line 35 of Algorithm 4. We now consider two cases.

Case 1: Suppose that |J2| = ∞. It follows from (3.76), line 34 of Algorithm 4, and
definition of J2 that

0 = lim
j∈J2

‖FL(xk j , ŷk j )‖2 = lim
j∈J2

‖P[
xk j − (

g(xk j ) − J (xk j )
T ŷk j

)] − xk j ‖2.

Using this limit and the definition of I(x∗), it follows that

lim
j∈J2

(
gI(xk j ) − JI(xk j )

T ŷk j
) = 0,

which, when combined with lim j∈J1 xk j = x∗, Assumption 3.3, and (3.84), implies
that

lim
j∈J2

ŷk j = y∗ (3.87)

so that (x∗, y∗) = lim j∈J2(xk j , ŷk j ) is a first-order point for (2.1). Using (3.87), the
fact that the upper bound on the multipliers increases to infinity in (3.86), and the
definition of yk+1 in line 37, we then have

lim
j∈J2

yk j = y∗.

Defining J := J2 ⊆ J1, this completes the proof for this case.

Case 2: Suppose that |J2| < ∞. Since |J2| < ∞, it follows from (3.76), line 34 of
Algorithm 4, and the fact that μk = μ > 0 for all sufficiently large k that
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0 = lim
j∈J1

‖FAL(xk j , π(xk j , yk j−1, μ), μ)‖2
= lim

j∈J1

‖P[
xk j − μ

(
g(xk j ) − J (xk j )

Tπ(xk j , yk j−1, μ)
)] − xk j ‖2.

Using this limit, the definition of I, and lim j∈J1 xk j = x∗ shows that

lim
j∈J1

gI(xk j ) − JI(xk j )
Tπ(xk j , yk j−1, μ) = 0,

which, under Assumption 3.3, yields

lim
j∈J1

π(xk j , yk j−1, μ) = y∗. (3.88)

It then follows from this fact and (3.85) that

lim
j∈J1

yk j−1 = y∗. (3.89)

Combining (3.88) and (3.89) with (3.83) implies that

lim
j∈J1

ŷk j = y∗ (3.90)

so that (x∗, y∗) = lim j∈J1(xk j , ŷk j ) is a first-order KKT point for problem (2.1).
Finally, combining (3.90), the fact that the upper bound on the multipliers increases
to infinity in (3.86), and the definition of yk+1 in line 37 of Algorithm 4, we have

lim
j∈J1

yk j = y∗.

Defining J := J1, this completes the proof for this case. ��

Finally, we consider the case when the penalty parameter converges to zero. For
this case, we require the following technical lemma.

Lemma 3.12 Suppose l ≤ x ≤ u and let v be any vector in R
n. Then, for any scalar

ξ > 1 we have
‖P[x + ξv] − x‖2 ≤ ξ‖P[x + v] − x‖2.

Proof It suffices to prove the result for the case when l ≤ 0 ≤ u and x = 0 since the
proof for the more general case is similar. We may write

P[ξv] = P[v] + (P[ξv] − P[v]) =: P[v] + w1

and ξ P[v] = P[v] + (ξ − 1)P[v] =: P[v] + w2,

123



An adaptive augmented Lagrangian method 231

where, since ξ > 1, we have for all i ∈ {1, . . . , n} that

[w1]i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if vi ≤ li
0 if vi ≥ ui
li − vi if li < vi < ui and ξvi ≤ li
ui − vi if li < vi < ui and ξvi ≥ ui
(ξ − 1)vi if li < ξvi < ui

and

[w2]i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ξ − 1)li if vi ≤ li
(ξ − 1)ui if vi ≥ ui
(ξ − 1)vi if li < vi < ui and ξvi ≤ li
(ξ − 1)vi if li < vi < ui and ξvi ≥ ui
(ξ − 1)vi if li < ξvi < ui .

Hence, it is easily verified that

P[v]Tw1 ≤ P[v]Tw2 and ‖w1‖22 ≤ ‖w2‖22,

which along with the identity 1
2‖P[v]+w‖22 = 1

2‖P[v]‖22 + P[v]Tw + 1
2‖w‖22 yields

the desired result. ��
We now prove the following lemma, which reveals that if there are an infinite

number of multiplier updates and the penalty parameter converges to zero, then the
constraint violation measure converges to zero. Moreover, in such cases, as long as the
number of decreases of the penalty parameter between consecutive multiplier updates
is bounded, then any limit point of one of two possible subsequences is a first-order
optimal point for (2.1).

Lemma 3.13 If |Y| = ∞ and μk → 0, then

lim
k→∞ ck = 0. (3.91)

If, in addition, there exists a positive integer p such that μk j−1 ≥ γ
p
μ μk j−1−1 for all

sufficiently large j , then there exists an infinite ordered set J ⊆ N such that

lim
j∈J , j→∞

‖FL(xk j , ŷk j )‖2 = 0 or lim
j∈J , j→∞

‖FL(xk j , π(xk j , yk j−1, μk j−1))‖2=0.

(3.92)
In such cases, if the first (respectively, second) limit in (3.92) holds, then along with
(3.91) it follows that any limit point of {(xk j , ŷk j )} j∈J (respectively, {(xk j , yk j−1)} j∈J )
is a first-order optimal point for problem (2.1).

Proof It follows from (3.40) that

lim
k→∞ ‖ck‖2 = c̄ ≥ 0. (3.93)
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However, it also follows from (3.76) and line 32 of Algorithm 4 that

lim
j→∞ ‖ck j ‖2 ≤ lim

j→∞ t j = 0. (3.94)

The limit (3.91) now follows from (3.93) and (3.94).
To prove the remainder of the result, first note that by lines 34 and 36 of Algorithm 4

and since
0 = lim

k→∞ μk = lim
j→∞ μk j , (3.95)

we have for all sufficiently large j that

min{‖FL(xk j , ŷk j )‖2, ‖FAL(xk j , yk j−1, μk j−1)‖2} ≤ Tj = γTμk j−1−1Tj−1. (3.96)

If there exists an infinite ordered setJ ⊆ N such that lim j∈J , j→∞ ‖FL(xk j , ŷk j )‖2 =
0, then the first limit in (3.92) holds and there is nothing left to prove. Thus, suppose
that {‖FL(xk j , ŷk j )‖2} is bounded below and away from zero for all sufficiently large
j . Then, from (3.95) and (3.96), we have

‖FAL(xk j , yk j−1, μk j−1)‖2 ≤ γTμk j−1−1Tj−1

for all sufficiently large j , from which it follows along with Lemma 3.12 that

γT Tj−1 ≥ 1
μk j−1−1

‖FAL(xk j , yk j−1, μk j−1)‖2
≥ ‖P[xk j − 1

μk j−1−1
∇xL(xk j , yk j−1, μk j−1)] − xk j ‖2

= ‖P[xk j − μk j−1

μk j−1−1
(g(xk j ) − J (xk j )

Tπ(xk j , yk j−1, μk j−1))] − xk j ‖2.

With these inequalities, (3.76), and the fact that μk j−1/μk j−1−1 ∈ [γ p
μ , 1] for all

sufficiently large j , Lemma 3.1 (taking a further infinite subset of J , if necessary)
yields the second limit in (3.92). ��

3.2.3 Overall global convergence result

We combine the lemmas in the previous subsections to obtain the following result.

Theorem 3.14 One of the following must hold true:

(i) every limit point of {xk} is an infeasible stationary point;
(ii) μk � 0 and there exists an infinite ordered setK ⊆ N such that every limit point

of {(xk, ŷk)}k∈K is first-order optimal for (2.1); or
(iii) μk → 0, every limit point of {xk} is feasible, and if there exists a positive integer

p such that μk j−1 ≥ γ
p
μ μk j−1−1 for all sufficiently large j , then there exists an

infinite ordered set J ⊆ N such that any limit point of either {(xk j , ŷk j )} j∈J or
{(xk j , yk j−1)} j∈J is first-order optimal for problem (2.1).
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Proof Lemmas 3.8, 3.9, 3.10, and 3.13 cover the only four possible outcomes of
Algorithm 4; the result follows from those described in these lemmas. ��

We complete this section with a discussion of Theorem 3.14. As with all penalty
methods for nonconvex optimization, Algorithm 4 may converge to a local minimizer
of the constraint violation that is not feasible, i.e., an infeasible stationary point. This
possible outcome is, in fact, unavoidable since we have not (implicitly) assumed that
problem (2.1) is feasible. By far, themost common outcome of our numerical results in
Sect. 4 is case (ii) of Theorem 3.14, in which the penalty parameter ultimately remains
fixed and convergence to a first-order primal-dual solution of (2.1) is observed. In fact,
these numerical tests show that our adaptive algorithm is far more efficient than our
basic implementation and, importantly, at least as reliable. The final possible outcome
is that the penalty parameter and the constraint violation both converge to zero. In this
case we are unable to guarantee that limit points are first-order solutions of (2.1), even
under the assumption that the MFCQ holds, and therefore have obtained a weaker
convergence result than many other augmented Lagrangian methods. Nonetheless, we
remain content since the numerical tests in Sect. 4 show that Algorithm 4 is superior
to the basic approach and that the penalty parameter consistently remains bounded
away from zero.

Of course, it is possible to view our adaptive strategy as a mechanism for quickly
obtaining an improved Lagrange multiplier estimate and value for the penalty para-
meter. These values may then be used as the initial input for a traditional augmented
Lagrangian method. For example, motivated by Lemma 3.13, one could employ our
algorithm, but transition to a traditional augmented Lagrangian method once the
Lagrange multiplier estimate has been updated more than a prescribed number of
times, the quantities μk and ‖c(xk)‖ are below prescribed positive tolerances, and the
penalty parameter has been decreased more than a prescribed number of times since
the most recent Lagrange multiplier estimate update. This simple strategy inherits the
well-documented convergence theory for standard augmented Lagrangian methods
and benefits from the practical advantages of steering exhibited by our approach.

Finally, it is also possible to modify Algorithm 4 so that convergence to first-order
optimal points may be established even in case (iii) of Theorem 3.14. Specifically, we
could make the following changes: (i) compute first-order multiplier estimates ŷk+1
during every iteration (whereas currently they are only computed when ‖ck+1‖2 ≤ t j );
(ii) switch the order of the two if statements in Lines 32 and 34 of Algorithm 4; (iii)
explicitly limit the number of decreases of the penalty parameter allowed between
updates to the multiplier vector (as motivated by part (iii) of Theorem 3.14); and (iv)
if the explicit bound on the number of updates allowed by part (iii) is reached, then
do not allow a further decrease to the penalty parameter until either the multiplier is
updated again, or an approximate minimizer of the augmented Lagrangian is found at
which the constraint violation is not sufficiently small, i.e., not less than t j . Although
these changes could be made to Algorithm 4, we have chosen not to do so for two
reasons. First, these additions would further complicate the algorithm in a manner
that we do not believe is justified from a practical perspective. Second, again from
a practical perspective, it may be inefficient to compute new multiplier estimates in
every iteration.
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4 Numerical experiments

In this section we describe the details of an implementation of our trust region method
and provide the results of numerical experiments. These experiments include three
parts. First, we provide a single illustrative example to highlight the benefits of our
adaptive approach. Second, we compare our method with Lancelot [10] on a subset
of the equality constrained CUTEr [26] test problems. Third, we contrast our basic and
adaptive augmented Langrangianmethods on a subset of inequality constrained Hock-
Schittkowski test problems [28]. All together, we believe that these experiments are
the best way to isolate and measure the performance of our adaptive penalty parameter
updating procedure.

4.1 Implementation details

Algorithm 4 was implemented in Matlab and, hereinafter, will be referred to as
AAL-TR. For comparison purposes, we also implemented a trust-region variant of the
basic augmented Lagrangian method given by Algorithm 1, which we will refer to as
BAL-TR. The components of these two implementations were mostly identical. For
example, the implemented update for the trust region radii and trial step acceptance
procedure were exactly the same.

A critical component of both implementations was the approximate solution of
the trust region subproblem (3.8) and, in the case of AAL-TR, subproblem (3.4).
For the equality constrained problems of Sect. 4.3, we approximately solved these
subproblems (defined by an �2 trust-region constraint) with an implementation of a
conjugate gradient (CG) algorithm by Steihaug/Toint [11,13]. (In this manner, the
Cauchy points for each subproblem were obtained in the first iteration of CG.) For
each subproblem for which it was employed, the CG iteration was run until either
the trust region boundary was reached (perhaps due to a negative curvature direction
being obtained) or the gradient of the subproblem objective was below a predefined
constant κcg > 0. In the case of BAL-TR, the solution obtained from CG was used in
a minor iteration—see step 11 of Algorithm 1—whereas in the case of AAL-TR, the
solutions obtained from CG were used as explicitly stated in Algorithm 4. We believe
this strategy allows for a fair comparison with Lancelot on equality constrained
problems since Lancelot employs a similar iterative scheme for the subproblem
solves. However, for the inequality constrained problems tested in Sect. 4.4, we only
perform comparisons between BAL-TR and AAL-TR. In this setting, we simply use
theCplexQP solver [29] to compute “exact” solutions to the subproblems (defined by
an �∞ trust-region constraint), but with an infinity norm trust-region so that they are
bound-constrained QPs. Since Cplex requires the QP to be convex, we add multiples
of ten times the identity matrix to the Hessian of the QPs until Cplex successfully
returns a solution without encountering negative curvature. Importantly, this simple
strategy was used for both our basic and adaptive strategies to allow for a fair com-
parison. (We do not compare with Lancelot on inequality constrained problems as
it employs an iterative scheme to solve possibly indefinite QP subproblems. Such a
striking difference in the manner in which the subproblems are solved would lead to
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Table 1 Input parameter values used in AAL-TR and BAL-TR

Par. Val. Par. Val. Par. Val. Par. Val.

γμ 5e−01 κ3 1e−04 Y ∞ Y1 ∞
γt 5e−01 κt 9e−01 Γδ 6e−01 κcg 1e−10

γT 5e−01 ηs 1e−02 μ0 1e+00 κopt 1e−06

γδ 5e−01 ηvs 9e−01 t0 1e+00 κfeas 1e−06

κF 9e−01 δ 1e+04 t1 1e+00 μmin 1e−10

κ1 1e+00 δR 1e−04 δ0 1e+00 kmax 1e+03

κ2 1e+00 ε 5e−01 T1 1e+00 G 1e+02

a comparison between AAL-TR and Lancelot that does not isolate the effect that
steering has on efficiently finding solutions.)

A second component of AAL-TR that requires specification is the computa-
tion of the estimates {ŷk+1} to satisfy (3.13). If ‖FL(xk+1, π(xk+1, yk, μk))‖2 ≤
‖FL(xk+1, yk)‖2, then we set ŷk+1 ← π(xk+1, yk, μk); otherwise, we set ŷk+1 ← yk .

Algorithms AAL-TR and BAL-TR both terminated with a declaration of optimality
if

‖FL(xk, yk)‖∞ ≤ κopt and ‖ck‖∞ ≤ κfeas, (4.1)

and terminated with a declaration that an infeasible stationary point was found if

‖FFEAS(xk)‖∞ ≤ κopt/10, ‖ck‖∞ > κfeas, and μk ≤ μmin. (4.2)

Note that in the latter case our implementations differ slightly from Algorithms 1
and 4 as we did not declare that an infeasible stationary point was found until the
penalty parameter was below a prescribed tolerance. The motivation for this was to
avoid premature termination at (perhaps only slightly) infeasible points at which the
gradient of the infeasibility measure ‖FFEAS(xk)‖∞ was relatively small compared to
‖ck‖∞. Also, each algorithm terminated with a declaration of failure if neither (4.1)
nor (4.2) was satisfied within an iteration limit kmax. The problem functions were pre-
scaled so that the �∞-norms of the gradients of each at the initial point would be less
than or equal to a prescribed constant G > 0. This helped to facilitate termination for
poorly-scaled problems.

Table 1 summarizes the input parameter values that were chosen. Note that our
choice for Y means that we did not impose explicit bounds on the norms of the
multipliers, meaning that we effectively always chose αy ← 1 in (3.14).

4.2 An illustrative example

To illustrate the benefits of our adaptive updating strategy for the penalty parameter,
we study the CUTEr problem CATENA. We have chosen a relatively small instance of
the problem that consists of 15 variables and 4 equality constraints. We compare our
results with that obtained by Lancelot, a very mature Fortran-90 implementation
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Table 2 Input parameter values
used in Lancelot

Parameter Value

HISTORY-LENGTH-FOR-NON-MONOTONE-DESCENT 0.0

MAGICAL-STEPS-ALLOWED NO

USE-TWO-NORM-TRUST-REGION YES

SUBPROBLEM-SOLVED-ACCURATELY NO

INITIAL-PENALTY-PARAMETER 1.0

whose overall approach is well-represented by Algorithm 1. In fact, the algorithm in
Lancelot benefits from a variety of advanced features from which the implemen-
tation of our methods could also benefit. However, since ours are only preliminary
implementations, we set input parameters for Lancelot as described in Table 2

Fig. 1 Output from Lancelot for problem CATENA
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to have as fair a comparison as possible. The first two parameters disallowed a non-
monotone strategy and the possibility of using so-called “magical steps”. The third
and fourth parameters ensured that an �2-norm trust region constraint was used and
allowed the possibility of inexact subproblem solves, roughly as described in Sect. 4.1.
The last input parameter ensured that the initial value of the penalty parameter was
the same as for our implementation (see Table 1).

With the above alterations to its default parameters, we solved CATENA using
Lancelot. A stripped version of the output is given in Fig. 1. The columns
represent the iteration number (Iter), cumulative number of gradient evaluations
(#g.ev), objective value (f), projected gradient norm (proj.g), penalty parame-
ter value (penalty), constraint violation target (target), constraint violation value
(infeas), and a flag for which a value of 1 indicates that amultiplier update occurred.
(An empty entry indicates that a value did not change since the previous iteration.) We
make a couple observations. First, Lancelot only attempted to update the penalty
parameter and multiplier vector on iterations 11, 16, 21, 26, 31, 35, 38, 41, and 43
when an approximate minimizer of the augmented Lagrangian was identified. Second,
the constraint violation target was only satisfied in iterations 35, 41, and 43. Thus, one
might view the iterations that only lead to a decrease in the penalty parameter as inef-
fective since the target in feasibility was not obtained and the only (possible) progress
may have been in the primal space. For this example, this includes iterations 1–31 and
36–38, which accounted for ≈79% of the iterations.

Next we solved CATENA using AAL-TR and provide the results in Fig. 2. The
columns represent the iteration number (Iter.), objective value (Objective), a
measure of infeasibility (Infeas.), ‖gk − J Tk yk‖∞ (Lag.Err.), the target con-
straint violation for the current value of the penalty parameter and Lagrange multiplier
vector (Fea.Tar.), the value of the penalty parameter (Pen.Par.), Δqv(rk; xk)
(Dqv(r)), Δqv(sk; xk) (Dqv(s)), and a flag for which a value of 1 indicates that a
multiplier update occurred (y).

One can see that our method solved the problem efficiently since it quickly realized
that a decrease in the penalty parameter would be beneficial. Moreover, the feasibility
measureFea.Err. and optimalitymeasureLag.Err. converged quickly. Thiswas
due, in part, to the fact that the multiplier vector was updated during most iterations
near the end of the run. In particular, AAL-TR updated the multiplier vector during 5
of the last 6 iterations.

The most instructive column for witnessing the benefits of our penalty parameter
updating strategy is Dqv(s) since this column shows the predicted decrease in the
constraint violation yielded by the trial step sk . When this quantity was positive the
trial step predicted progress toward constraint satisfaction, and when it was negative
the trial step predicted an increase in constraint violation. This quantity was compared
with the quantity in column Dqv(r) in the steering condition (3.11c). It is clear in the
output that the penalty parameter was decreased when the steering step predicted an
increase in constraint violation, i.e., when Dqv(s) was negative, though exceptions
were made when the constraint violation was well within Fea.Tar., the constraint
violation target.

This particular problem shows that our adaptive strategy has the potential to be very
effective on problems that require the penalty parameter to be reduced from its initial
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Fig. 2 Output from AAL-TR for problem CATENA

value. In the next section we test the effectiveness of our new adaptive strategy on a
large subset of equality constrained problems from the CUTEr test set.

4.3 Equality constrained CUTEr test problems

In this section we observe the effects of our penalty parameter updating strategy on
a subset of the equality constrained CUTEr [26] test problems. We obtained our sub-
set by first choosing all constrained problems with equality constraints only. Next,
we eliminated aug2dc and dtoc3 because they are quadratic problems that were too
large for our Matlab implementation to solve. Next, we eliminated argtrig, artif,
bdvalue, bdvalues, booth, bratu2d, bratu2dt, brownale, broydn3d, cbratu2d, cbratu3d,
chandheu, chnrsbne, cluster, coolhans, cubene, drcavty1, drcavty2, drcavty3, eigenau,
eigenb, eigenc, flosp2th, flosp2tl, flosp2tm, gottfr, hatfldf, hatfldg, heart8, himmelba,
himmelbc, himmelbe, hypcir, integreq, msqrta, msqrtb, powellbs, powellsq, recipe,
rsnbrne, sinvalne, spmsqrt, trigger, yatp1sq, yatp2sq, yfitne, and zangwil3 because
Lancelot recognized them as not having an objective function, in which case a
penalty parameter was not required. This is appropriate since otherwise we would
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not be comparing a traditional AL method to our adaptive AL method, which is the
purpose of these tests. Next, we removed heart6, hydcar20, hydcar6, methanb8, and
methanl8 because these are nonlinear equation solving problems and Lancelot
solved them without introducing a penalty parameter. Again, since we wish to com-
pare our adaptive AL method to a traditional AL method, we feel this is justi-
fied. Finally, we removed arglcle, junkturn, and woodsne because all of the solvers
(including Lancelot) converged to a point that was recognized as an infeasi-
ble stationary point: on problem arglcle Lancelot terminated in 6 iterations and
AAL-TR terminated in 3 iterations; on problem junkturn Lancelot terminated in
117 iterations and AAL-TR terminated in 312 iterations; and on problem woodsne
Lancelot terminated in 103 iterations and AAL-TR terminated in 67 iterations.
This left us with a total of 91 problems composing our subset: bt1, bt10, bt11, bt12,
bt2, bt3, bt4, bt5, bt6, bt7, bt8, bt9, byrdsphr, catena, chain, dixchlng, dtoc1l, dtoc2,
dtoc4, dtoc5, dtoc6, eigena2, eigenaco, eigenb2, eigenbco, eigenc2, eigencco, elec,
genhs28, gridnetb, gridnete, gridneth, hager1, hager2, hager3, hs100lnp, hs111lnp,
hs26, hs27, hs28, hs39, hs40, hs42, hs46, hs47, hs48, hs49, hs50, hs51, hs52,
hs56, hs6, hs61, hs7, hs77, hs78, hs79, hs8, hs9, lch, lukvle1, lukvle10, lukvle11,
lukvle12, lukvle13, lukvle14, lukvle15, lukvle16, lukvle17, lukvle18, lukvle2, lukvle3,
lukvle4, lukvle6, lukvle7, lukvle8, lukvle9, maratos, mss1, mwright, optctrl3, optctrl6,
orthrdm2, orthrds2, orthrega, orthregb, orthregc, orthregd, orthrgdm, orthrgds, and
s316-322.

We compare the performance of AAL-TR, BAL-TR, and Lancelot on this set
of problems. As previously mentioned, both Lancelot and BAL-TR are based on
Algorithm 1, though the details of their implementations are quite different. Therefore,
we can compare them to illustrate that our implementation of BAL-TR is roughly on
par with Lancelot for solving equality constrained problems in terms of perfor-
mance.

To measure performance, we use performance profiles as introduced by Dolan
and Moré [16]. They provide a concise mechanism for comparing algorithms over
a collection of problems. Roughly, a performance profile chooses a relative metric,
e.g., the number of iterations, and then plots the fraction of problems (y-axis) that are
solved within a given factor (x-axis) of the best algorithm according to this metric.
Roughly speaking, more robust algorithms are “on top” towards the right side of the
plot, and more efficient algorithms are “on top” near the left side of the plot. Thus,
algorithms that are “on top” throughout the plot may be considered more efficient and
more robust, which is the preferred outcome.

The performance profiles in Figs. 3 and 4 compare AAL-TR, BAL-TR, and
Lancelot in terms of iterations and gradient evaluations, respectively. (Note that
in this comparison, we compare the number of “minor” iterations in Lancelot
with the number of iterations in our methods.) These figures show that BAL-TR per-
forms similarly to Lancelot in terms of iterations (Fig. 3) and gradient evaluations
(Fig. 4).Moreover, it is also clear that our adaptive penalty parameter updating scheme
in AAL-TR yields better efficiency and reliability when compared to BAL-TR and
Lancelot on this collection of problems.

Finally, it is pertinent to compare the final value of the penalty parameter for
Lancelot and our adaptive algorithm. We present these outcomes in Table 3. The
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Fig. 3 Performance profile for
iterations comparing AAL-TR,
BAL-TR, and Lancelot
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Fig. 4 Performance profile for
gradient evaluations comparing
AAL-TR, BAL-TR, and
Lancelot
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Table 3 Numbers of CUTEr problems for which the final penalty parameter value was in the given ranges

μfinal Lancelot Algorithm 4 μfinal Lancelot Algorithm 4

1 7 15 [10−4, 10−3) 7 10

[10−1, 1
)

34 7 [10−5, 10−4) 5 6
[10−2, 10−1) 16 18 [10−6, 10−5) 2 4
[10−3, 10−2) 13 20 (0, 10−6) 7 11

columnμfinal gives ranges for the final value of the penalty parameter, while the remain-
ing columns give the numbers of problems out of the total 91 whose final penalty
parameter fell within the specified range.

We make two observations about the results provided in Table 3. First, we observe
that our adaptive updating strategy generally does not drive the penalty parameter
smaller than does Lancelot. This is encouraging since the traditional updating
approach used in Lancelot is very conservative, so it appears that our adaptive
strategy obtains superior performance without driving the penalty parameter to unnec-
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essarily small values. Second, we observe that our strategy maintains the penalty
parameter at its initial value (μ0 ← 1) on more problems than does Lancelot. This
phenomenon can be explained by considering the situations in which Lancelot
and our methods update the penalty parameter. Lancelot considers an update once
the augmented Lagrangian has been minimized for y = yk and μ = μk . If the
constraint violation is too large and/or the Lagrange multipliers are poor estimates
of the optimal multipliers—both of which may easily occur at the initial point—
then the penalty parameter is decreased if/when such a minimizer of the augmented
Lagrangian is not sufficiently close to the feasible region. That is, Lancelot looks
globally at the progress towards feasibility obtained from a given point to the next
minimizer of the augmented Lagrangian. Our method, on the other hand, observes
the local reduction in linearized constraint violation. As long as this local reduction
is sufficiently large, then no reduction of the penalty parameter occurs, no matter the
progress towards nonlinear constraint satisfaction that has occurred so far. Overall,
we feel that this behavior illustrated in Table 3 highlights a strength of our algorithm,
which is that it is less sensitive to the nonlinear constraint violation targets than is
Lancelot.

4.4 Inequality constrained Hock-Schittkowski test problems

In this section we test our penalty parameter updating strategy by comparing our
basic and adaptive algorithms BAL-TR and AAL-TR, respectively, on a subset of
the inequality constrained Hock-Schittkowski test problems [28]. This subset was
obtained by first choosing all problems with at least one general inequality con-
straint. Next, we eliminated hs21, hs35, hs44, hs53, hs76, and hs118 because they
are simple quadratic problems, i.e., have quadratic objective functions and linear
constraints. We also eliminated hs67, hs85, and hs87 because they are not smooth
optimization problems. Next, we eliminated problem hs13 because the linear inde-
pendent constraint qualification is not satisfied at the solution. Problems hs72, hs88,
hs89, hs90, hs91, and hs92 were also removed since both BAL-TR and AAL-TR
converged to an infeasible stationary point. Finally, we removed problems hs101,
hs102, hs103, hs109, and hs116 since both BAL-TR and AAL-TR did not reach
the desired optimality tolerances. This left us with the following collection of 64
test problems: hs10, hs11, hs12, hs14, hs15, hs16, hs17, hs18, hs19, hs20, hs22,
hs23, hs24, hs29, hs30, hs31, hs32, hs33, hs34, hs36, hs37, hs41, hs43, hs54,
hs55, hs57, hs59, hs60, hs62, hs63, hs64, hs65, hs66, hs68, hs69, hs70, hs71, hs73,
hs74, hs75, hs76, hs80, hs81, hs83, hs84, hs86, hs93, hs95, hs96, hs97, hs98, hs99,
hs100, hs104, hs105, hs106, hs107, hs108, hs111, hs112, hs113, hs114, hs117, and
hs119.

The results on the previous test set are given in the form of performance profiles
in Figs. 5 and 6, and Table 4 (see Sect. 4.3 for a description of how these types of
profiles should be understood). The two profiles clearly show that our adaptive trust-
region algorithm is superior to a traditional approach in terms of efficiency without
sacrificing reliability. These results are promising and are further complemented by
Table 4, which shows that the final penalty parameter associated with our adaptive
strategy does not drive the penalty parameter unnecessarily small.
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Fig. 5 Performance profile for
iterations comparing AAL-TR
and BAL-TR
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Fig. 6 Performance profile for
gradient evaluations comparing
AAL-TR and BAL-TR
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Table 4 Numbers of Hock-Schittkowski problems for which the final penalty parameter value was in the
given ranges

μfinal AAL-TR BAL-TR μfinal AAL-TR BAL-TR

1 11 17 [10−4, 10−3) 7 7

[10−1, 1
)

5 12 [10−5, 10−4) 8 2

[10−2, 10−1) 13 9 [10−6, 10−5) 2 1

[10−3, 10−2) 17 13 (0, 10−6) 1 3

5 Conclusion

Wehave proposed, analyzed, and tested a newALalgorithm for large-scale constrained
optimization. The novel feature of the algorithm is an adaptive strategy for updating
the penalty parameter. We have proved that our algorithm is well-posed, possesses
global convergence guarantees, and outperforms traditional AL methods in terms of
the numbers of iterations and gradient evaluations on a wide range of test problems.
These improvements are realizedby requiring the computationof an additional steering
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step as an approximate solution to a convex QP. The conditions that we require of
the steering step allow for an approximate solution in the form of a simple Cauchy
step whose extra computation is negligible. A potential disadvantage of this simple
choice is that convergence may be slow on infeasible problems. In this case more
accurate solutions to the feasibility subproblem are likely to accelerate convergence
to locally infeasible minimizers of the constraint violation. A final observation is that
the computation of the steering step and trial step may be performed in parallel, again
making the additional calculations (in terms of time) negligible.

One potential deficiency of our proposed technique is the lack of a guarantee that
the penalty parameter will remain bounded away from zero, even when it is applied
to solve problems where a constraint qualification (e.g., MFCQ) is satisfied at all
solution points. We stress that in our numerical experiments, we did not find that our
method lead to unnecessary decreases in the penalty parameter, but this is an important
matter to consider in general. Fortunately, one simple technique to avoid this issue is
to transition from our algorithm to a traditional AL approach once consistent progress
towards nonlinear constraint satisfaction is observed. In this fashion, the convergence
guarantees of traditional AL methods can be relied upon in neighborhoods of solution
points.
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