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Abstract This paper describes an implementation of an interior-point algorithm for
large-scale nonlinear optimization. It is based on the algorithm proposed by Curtis
et al. (SIAM J Sci Comput 32:3447–3475, 2010), a method that possesses global con-
vergence guarantees to first-order stationary points with the novel feature that inexact
search direction calculations are allowed in order to save computational expense. The
implementation follows the proposed algorithm, but includes many practical enhance-
ments, such as functionality to avoid the computation of a normal step during every
iteration. The implementation is included in the IPOPT software package paired with
an iterative linear system solver and preconditioner provided in PARDISO. Numerical
results on a large nonlinear optimization test set and two PDE-constrained optimiza-
tion problems with control and state constraints are presented to illustrate that the
implementation is robust and efficient for large-scale applications.
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1 Introduction

The techniques described in this paper are motivated by increased interests in the
solution of large-scale nonlinear optimization problems. By large-scale, we refer to
classes of problems for which contemporary optimization techniques, including most
interior-point methods, have proved to be impractical due to large numbers of vari-
ables/constraints and significant fill-in during the factorization of derivative matrices.
New computationally efficient strategies are needed if such large-scale problems are
to be solved realistically in practical situations.

The main purpose of this paper is to describe a practical implementation, includ-
ing enhanced algorithmic features, for the algorithm proposed and analyzed in [13].
This algorithm addresses the challenges posed in large-scale nonlinear optimization by
employing iterative linear system solvers in place of direct factorization methods when
solving the large-scale linear systems involved in an interior-point strategy. Moreover,
computational flexibility is greatly increased as inexact search direction calculations
are allowed, but controlled sufficiently so that theoretical convergence guarantees are
maintained. Our experience has shown that the implementation described in this paper
achieves these desirable characteristics.

A prime example of a class of problems for which our techniques may be appli-
cable are those where the constraints involve discretized partial differential equations
(PDEs) [4,5,20]. Typical methods for solving these types of problems generally fall
into the categories of nonlinear elimination [1,3,23], reduced space [19,21], or full
space [6,7,18] techniques. The algorithm discussed in this paper fits into the category
of full-space methods, but is unique from many previously proposed approaches in its
ability to attain strong theoretical convergence guarantees with great computational
flexibility.

We describe our implementation in the context of the generic problem

min
x∈Rn

f (x) s.t. cE (x) = 0 and cI(x) ≥ 0, (1.1)

where the objective f : Rn → R, equality constraints cE : Rn → R
p, and inequality

constraints cI : Rn → R
q are assumed to be sufficiently smooth (e.g., C2). If problem

(1.1) is infeasible, however, then our algorithm is designed to return a stationary point
for the unconstrained problem

min
x∈Rn

1
2

∥
∥
∥cE (x)

∥
∥
∥

2

2
+ 1

2

∥
∥
∥ max {−cI(x), 0}

∥
∥
∥

2

2
(1.2)
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On the implementation of an inexact interior-point algorithm 211

as a certificate of infeasibility. A solution to (1.2) that does not satisfy the constraints
of problem (1.1) is known as an infeasible stationary point.

While the algorithm described in this paper is similar to the one presented in [13],
we present its implementation here in more detail. In addition, there are a number of
notable differences. The primary difference is the strategy we describe for switching
between two step computation methods. Our goal is to improve the overall efficiency
of the algorithm while still ensuring the convergence guarantees provided in [13].
The other main differences include refinements of the termination tests for the itera-
tive linear system solver and Hessian modification strategy, as well as a new adaptive
refinement strategy in the preconditioner computation. Due to space limitations, some
of the motivations behind our techniques are omitted. A more comprehensive devel-
opment can be found in the full-length version [10].

The focus of our numerical experiments is the performance of the nonlinear optimi-
zation algorithm when an iterative solver is used for the inexact solution of the arising
linear systems. We note, however, that in practice it is also extremely important to
employ effective preconditioners. For example, in the context of PDE-constrained
optimization, advantages can be gained by exploiting spectral properties of discrete
differential operators. In our study, we obtain very encouraging results using the gen-
eral-purpose preconditioner implemented in PARDISO; see Sect. 3.1.

Notation. All norms are considered �2. We drop function dependencies once they
are defined and, when applicable, apply iteration number information to the function
itself; i.e., by ck , we mean c(xk).

2 Algorithm description

We motivate and describe our implemented algorithm in this section. The method is
based on the series of inexact SQP, Newton, and interior-point algorithms that have
been proposed and analyzed in [8,9,12,13], though the majority relates to the latest
enhancements in [13]. We begin by describing the basic interior-point framework of
the approach, and then discuss the major computational component of the algorithm,
namely, the search direction calculation. Further specifications and details of our soft-
ware implementation are provided in Sects. 3 and 4.

It is important to note that, in this section, we consider scaled derivatives cor-
responding to the slack variables for the inequality constraints; see γ (z;μ), A(z),
and W (z, λ;μ) throughout this section. This results in scaled sets of equations
for computing the primal-dual step; see [10] for details. In particular, we denote
� ≈ S as a diagonal scaling matrix that depends on the values of the slack vari-
ables s.

2.1 Interior-point framework

The framework of the algorithm is a classical interior-point strategy. Let z = (x, s)
be the primal variables, where s ∈ R

q is a vector of slack variables, and let
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212 F. E. Curtis et al.

ϕ(z;μ) := f (x)− μ
q

∑

i=1

ln s(i) and c(z) :=
[

cE (x)
cI(x)− s

]

For a sequence of barrier parameters μ ↓ 0, problem (1.1) is solved through the
solution of a sequence of barrier subproblems of the form

min
z
ϕ(z;μ) s.t. c(z) = 0. (2.1)

If f , cE , and cI are continuously differentiable, then first-order Karush–Kuhn–Tucker
(KKT) optimality conditions for (2.1) are

[

γ (z;μ)+ A(z)T λ
c(z)

]

= 0 (2.2)

with s ≥ 0, where λ ∈ R
p+q are Lagrange multipliers, e ∈ R

q is a vector of ones,

γ (z;μ) :=
[ ∇ f (x)
−μS−1�e

]

, and A(z) :=
[∇cE (x)T 0
∇cI(x)T −�

]

.

In situations where (1.1) is infeasible, (2.1) has no solution, so the algorithm transi-
tions from solving (2.1) to solving (1.2). The latter problem has the KKT conditions
A(z)T c(z) = 0, s ≥ 0, and cI(x)− s ≤ 0. In fact, the algorithm maintains s ≥ 0 and
cI(x) − s ≤ 0 during each iteration by increasing s when necessary. Thus, conver-
gence to a solution of the barrier subproblem (2.1) or an infeasible stationary point of
(1.1) is achieved once (2.2) or A(z)T c(z) = 0, respectively, is satisfied.

At an iterate (zk, λk), the algorithm computes a primal-dual search direction (dk , δk)

satisfying appropriate conditions for guaranteeing global convergence; see Sect. 2.2.
Given such a direction, we compute the scaled direction d̃k := (dx

k , �kds
k ) along which

a line search is performed. The line search involves two conditions. First, to maintain
positivity of the slacks, a stepsize αmax

k ∈ (0, 1] satisfying

sk + αmax
k �kds

k ≥ (1− η1)sk (2.3)

is determined for a constant η1 ∈ (0, 1). We use η1 = max{0.99, 1−μ} in our imple-
mentation. The algorithm then backtracks from this value to compute αk ∈ (0, αmax

k ]
yielding sufficient decrease in the penalty function

φ(z;μ,π) := ϕ(z;μ)+ π‖c(z)‖, (2.4)

where π > 0 is a penalty parameter. The condition we enforce is

φ(zk + αk d̃k;μ,π) ≤ φ(zk;μ,π)− η2αk�mk(dk;μ,π) (2.5)

where η2 ∈ (0, 1) is a constant (we choose η2 = 10−8), and where �mk(dk;μ,π)
relates to the directional derivative of φ along the computed search direction.
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On the implementation of an inexact interior-point algorithm 213

We define �mk(dk;μ,π) in equation (2.9) in Sect. 2.2. In the dual space, we update
λk+1 ← λk + βkδk where βk is the smallest value in [αk, 1] satisfying

∥
∥
∥γk + AT

k λk+1

∥
∥
∥ ≤

∥
∥
∥γk + AT

k (λk + δk)

∥
∥
∥. (2.6)

Our complete interior-point framework is presented as Algorithm 1. In the algo-
rithm, we refer to two search direction computation variants, Algorithms 2 and 3,
presented in Sect. 2.2. These methods include mechanisms for computing (dk, δk) and
updating the penalty parameter π . The termination criteria for the original problem
(1.1) and the barrier problem (2.1), the choice of the initial point, and the updating
rule for the barrier parameter μ are identical with those in [28].

2.2 Search direction computation

The main computational component of Algorithm 1 is the primal-dual search direc-
tion calculation (step 4). We describe two approaches for computing this direction,
presented as Algorithms 2 and 3. The first approach is simpler, but global conver-
gence for Algorithm 1 is only guaranteed with this method if an infinite subsequence
of iterations involve (scaled) constraint Jacobians {Ak} that have full row rank and
singular values bounded away from zero. Otherwise, the second approach must be
employed to ensure convergence. The two algorithms have many common features,
and we start by discussing the components present in both techniques. (In Sect. 3.1 we
discuss our mechanism for having the algorithm dynamically choose between these
two approaches during each iteration of Algorithm 1.)

Algorithm 1 Interior-Point Framework
1: (Initialization) Choose line search parameters η1, η2 ∈ (0, 1), an initial barrier parameter μ > 0, and

an initial penalty parameter π > 0. Initialize (x0, s0, λ0) so that the slack variables satisfy s0 > 0 and
s0 ≥ cI (x0). Set k ← 0.

2: (Tests for convergence) If convergence criteria for (1.1) are satisfied, then terminate and return xk as an
optimal solution. Else, if convergence criteria for (1.2) are satisfied and xk is infeasible for (1.1), then
terminate and return xk as an infeasible stationary point.

3: (Barrier parameter update) If convergence criteria for (2.1) are satisfied, then decrease the barrier param-
eter μ > 0, reset π > 0, and go to step 2.

4: (Search direction computation) Compute (dk , δk ) and update π by Algorithm 2 or Algorithm 3. Set the
search direction as d̃k ← (dx

k , �kds
k ).

5: (Line search) If d̃k = 0, then αk ← 1. Else, let αmax
k be the largest value in (0, 1] satisfying (2.3) and

let l be the smallest value in N0 such that αk ← 2−lαmax
k satisfies (2.5).

6: (Iterate update) Set zk+1 ← zk + αk d̃k , sk+1 ← max{sk+1, cI (xk+1)}, update λk+1 according to
(2.6), set k ← k + 1, and go to step 3.

The search direction computation is based on Newton’s method applied to the KKT
conditions of problem (2.1). Defining the scaled Hessian matrix

W (z, λ;μ) :=
[∇2

xx f 0
0 ���

]

+
p

∑

i=1

λ
(i)
E

[∇2
xx c(i)E 0

0 0

]

+
q

∑

i=1

λ
(i)
I

[∇2
xx c(i)I 0

0 0

]

, (2.7)
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a Newton iteration for (2.2) is defined by the linear system

[

Wk AT
k

Ak 0

] [

dk

δk

]

= −
[

γk + AT
k λk

ck

]

. (2.8)

In (2.7), � is an approximate Hessian for the barrier term; see Sect. 3.2.
The central issue that must be confronted when applying Newton’s method for large-

scale applications is that exact solutions of (2.8) may be computationally expensive
to obtain. Therefore, our major concern is how an iterative linear system solver can
be employed for solving (2.8) in such a way that inexact solutions are allowed, yet
global convergence of the algorithm is guaranteed. This issue was the inspiration for
all of the algorithms proposed in [8,9,12,13].

Algorithms 2 and 3 each outline a series of termination tests for an iterative solver
applied to (2.8) that state conditions under which an inexact solution (dk, δk) can be
considered an acceptable direction for step 4 in Algorithm 1. Of central importance
in these termination tests are the residual vectors

ρk(dk, δk) := γk +Wkdk + AT
k (λk + δk) and rk(dk) := ck + Akdk,

as well as the primal-dual relative residual

�k(dk, δk) :=
∥
∥
∥
∥

[

ρk(dk, δk)

rk(dk)

]∥
∥
∥
∥

/ ∥
∥
∥
∥

[

γk + AT
k λk

ck

]∥
∥
∥
∥
.

To promote fast convergence, �k should be small [14]. Thus, our implementation
aims to compute steps for which this relative residual is below a desired threshold, but
appropriate fallbacks are in place in case this is difficult to achieve.

For convex problems, the algorithm can focus exclusively on �k , terminating the
calculation of (dk, δk) whenever this value is below a threshold [14]. For nonconvex
problems, however, the priority is to find solutions to (2.2) that correspond to minimiz-
ers, not saddle points or maximizers. The methods developed in [8,9,12,13] therefore
include additional conditions and procedures that aid the algorithms in converging
toward minimizers of (2.1). These additional conditions involve a local model of the
penalty function φ(z;μ,π) at zk , denoted as

mk(d;μ,π) := ϕk + γ T
k d + π‖ck + Akd‖,

and the reduction in this model yielded by dk , which is defined as

�mk(dk;μ,π) := mk(0;μ,π)− mk(dk;μ,π). (2.9)

It can be shown that Dφk(d̃k;μ,π) ≤ −�mk(dk;μ,π), where Dφk(d̃k;μ,π) is the
directional derivative ofφ(·;μ,π) at zk along d̃k ; see [13]. To ensure that d̃k is always a
descent direction for φ(·;μ,π) at zk , the termination tests require that�mk(dk;μ,π)
is sufficiently large, potentially after an increase of π .
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On the implementation of an inexact interior-point algorithm 215

We now present our first step computation approach, Algorithm 2. The algorithm
contains three termination tests that are similar in form to those contained in Algo-
rithm 3 later on. In [8,9,12,13], these tests are called sufficient merit function approxi-
mation reduction termination tests (SMART tests, for short) due to the significant role
that�mk(dk;μ,π) plays in the theoretical behavior the algorithm. For our numerical
experiments, we choose J = 100, κdes = 10−3, κ = 10−2, ε1 = 0.09, θ = 10−12μ

(whereμ is the current value of the barrier parameter), ζ = 10−4, τ = 0.1, κ3 = 10−3,
ε3 = 10−8, and κW = 10−2. In particular, we typically require the relative residual to
be only less than κ = 10−2 or κdes = κ3 = 10−3, but the actual tolerance is dictated
by the entirety of the termination criteria. The value for ξ is chosen as described in
Sect. 3.2.

Algorithm 2 Inexact Newton Iteration with SMART Tests
1: (Initialization) Choose parameters J ∈ N0, κdes ∈ (0, 1), κ ∈ (0, 1), ε1 ∈ (0, 1), θ > 0, ζ > 0,
τ ∈ (0, 1), κ3 ∈ (0, 1), ε3 > 0, and κW > 0. Choose a diagonal matrix Dk � 0. Initialize j ← 1 and
(dk , δk )← (0, 0).

2: (Residual test) If j ≤ J and �k > κdes, then go to step 7.
3: (Termination test 1) If �k ≤ κ and the model reduction condition

�mk (dk ;μ, π) ≥ max
{

1
2 dT

k Wkdk , θ‖dk‖2
}

+ ε1π max{‖ck‖, ‖r(dk )‖ − ‖ck‖} (2.10)

holds, then terminate by returning (dk , δk ) and the current π .
4: (Termination test 2) If the residual conditions

‖ρk (dk , δk )‖ ≤ κ‖ck‖ and ‖rk (dk )‖ ≤ κ‖ck‖

are satisfied and the curvature condition 1
2 dT

k Wkdk ≥ θ‖dk‖2 holds, then terminate by returning (dk , δk )

and π ← max{π, π t + ζ } where

π t ←
(

γ T
k dk + 1

2 dT
k Wkdk

) / (

(1− τ)(‖ck‖ − ‖rk (dk )‖)
)

.

5: (Termination test 3) If the dual displacement and feasibility measures satisfy

‖ρk (0, δk )‖ ≤ κ3

∥
∥
∥γk + AT

k λk

∥
∥
∥ and ‖ck‖ ≤ ε3

∥
∥
∥γk + AT

k λk

∥
∥
∥ ,

then terminate by returning (0, δk ) (i.e., reset dk ← 0) and the current π .
6: (Hessian modification) If �k ≤ κW and 1

2 dT
k Wkdk < θ‖dk‖2, then modify Wk ← Wk + ξDk , reset

j ← 1 and (dk , δk )← (0, 0), and go to step 2.
7: (Search direction update) Perform one iteration of an iterative solver on (2.8) to compute an improved

(approximate) solution (dk , δk ). Increment j ← j + 1 and go to step 2.

Our second approach, Algorithm 3, is a replacement for Algorithm 2 when the
scaled constraint Jacobian may be ill-conditioned or rank-deficient. In such cases, it is
necessary to regularize the step computation since otherwise the calculation may not
be well-defined, or at best may lead to long, unproductive search directions.

Algorithm 3 performs this regularization by decomposing the search direction as
dk ← vk+uk , where the normal component vk represents a direction toward linearized
feasibility and the tangential component uk represents a direction toward optimality.
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216 F. E. Curtis et al.

Algorithm 3 Regularized Inexact Newton Iteration with SMART Tests
1: (Initialization) Choose parameters J ∈ N0, κdes ∈ (0, 1), ψ > 0, θ > 0, κ ∈ (0, 1), ε1 ∈ (0, 1),
ε2 ∈ (0, 1), ζ > 0, τ ∈ (0, 1), κ3 ∈ (0, 1), ε3 ∈ (0, 1), and κW > 0. Choose a diagonal matrix Dk � 0.
Compute vk by Algorithm 3 in [10]. Initialize j ← 1 and (dk , δk )← (0, 0).

2: (Residual test) If j ≤ J and �k > κdes, then go to step 10.
3: (Direction decomposition) Set uk ← dk − vk .
4: (Tangential component test) If

‖uk‖ ≤ ψ‖vk‖ (2.11)

or if the inequalities

1
2 uT

k Wkuk ≥ θ‖uk‖2 (2.12a)

(γk +Wkvk )
T uk + 1

2 uT
k Wkuk ≤ 0 (2.12b)

are satisfied, then continue to step 5; otherwise, go to step 8.
5: (Dual residual test) If the dual residual condition

‖ρk (dk , δk )‖ ≤ κ min

{∥
∥
∥
∥

[

γk + AT
k λk

Akvk

]∥
∥
∥
∥
,

∥
∥
∥
∥

[

γk−1 + AT
k−1λk

Ak−1vk−1

]∥
∥
∥
∥

}

(2.13)

is satisfied, then continue to step 6; otherwise, go to step 8.
6: (Termination test 1) If the model reduction condition

�mk (dk ;μ, π) ≥ max
{

1
2 uT

k Wkuk , θ‖uk‖2
}

+ ε1π(‖ck‖ − ‖rk (vk )‖) (2.14)

is satisfied, then terminate by returning (dk , δk ) and the current π .
7: (Termination test 2) If ‖ck‖−‖rk (dk )‖ ≥ ε2(‖ck‖−‖rk (vk )‖) > 0, then terminate by returning (dk , δk )

and π ← max{π, π t + ζ } where

π t ←
(

γ T
k dk + 1

2 uT
k Wkuk

) / (

(1− τ)(‖ck‖ − ‖rk (dk )‖)
)

.

8: (Termination test 3) If the dual displacement δk yields

‖ρk (0, δk )‖ ≤ κ3 min

{∥
∥
∥
∥

[

γk + AT
k λk

Akvk

]∥
∥
∥
∥
,

∥
∥
∥
∥

[

γk−1 + AT
k−1λk

Ak−1vk−1

]∥
∥
∥
∥

}

and the stationarity and dual feasibility measures satisfy ‖AT
k ck‖ ≤ ε3‖γk + AT

k λk‖, then terminate by
returning (0, δk ) (i.e., reset dk ← 0) and the current π .

9: (Hessian modification) If �k ≤ κW , but both (2.11) and (2.12a) do not hold, then modify Wk ←
Wk + ξDk , reset j ← 1 and (dk , δk )← (0, 0), and go to step 2.

10: (Search direction update) Perform one iteration of an iterative solver on (2.16) to compute an improved
(approximate) solution (dk , δk ). Increment j ← j + 1 and go to step 2.

The normal component vk is defined as an approximate solution to

min
v

1
2 ‖rk(v)‖2 s.t. ‖v‖ ≤ ω‖AT

k ck‖ (2.15)

for some ω > 0. The trust region constraint regularizes the computation of the normal
step and controls the size of this component even when Ak loses rank. We initialize
ω ← 100, but have found it practically beneficial to set ω ← min{10ω, 1020} if
‖vk‖ = ω‖AT

k ck‖ and αk = 1 at the end of iteration k; see [12].
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On the implementation of an inexact interior-point algorithm 217

As with the linear system (2.8), the exact solution of (2.15) is expensive. However,
global convergence is guaranteed as long as vk is feasible for problem (2.15) and
satisfies Cauchy decrease, i.e., ‖ck‖ − ‖rk(vk)‖ ≥ εv(‖ck‖ − ‖rk(ᾱk v̄k)‖) for some
constant εv ∈ (0, 1) (we choose εv = 0.1); see [12,13]. Here, the vector v̄k := −AT

k ck

is the steepest descent direction for problem (2.15) at v = 0 and the steplength ᾱk is
the minimizer of 1

2‖ck + ᾱAk v̄k‖2 over all ᾱ ≤ ω.
A number of techniques have been developed for the inexact solution of large-scale

instances of problem (2.15) with solutions satisfying Cauchy decrease; e.g., see the
CG method described in [26]. In our software, we have implemented an inexact dog-
leg approach [24] similar to that in [13]; see [10] for details. It requires the inexact
solution of a system similar to (2.8) with Wk replaced by a positive definite diagonal
matrix.

We now present Algorithm 3. Since vk is computed separately from uk , we now
apply an iterative linear system solver to the reformulated system

[

Wk AT
k

Ak 0

] [

dk

δk

]

= −
[

γk + AT
k λk

−Akvk

]

. (2.16)

The relative residual �k is redefined accordingly as

�k(dk, δk) :=
∥
∥
∥
∥

[

ρk(dk, δk)

−Akvk + Akdk

]∥
∥
∥
∥

/ ∥
∥
∥
∥

[

γk + AT
k λk

−Akvk

]∥
∥
∥
∥
.

Since (2.16) stipulates Akdk = Akvk , the system is consistent for suitable Wk . We
choose the inputs for Algorithm 3 to be the same as those used in Algorithm 2. The
values for the new constants are chosen to be ε2 = 0.9 and ψ = 0.1.

3 Algorithm details

3.1 Switching between search direction calculations and preconditioning

Algorithm 1 paired with Algorithm 3 constitutes an approach that is theoretically glob-
ally convergent to first-order stationary points under common assumptions [13]. How-
ever, as Algorithm 2 will produce viable search directions in most practical situations
and, in contrast to Algorithm 3, it only requires the inexact solution of a single linear
system, it is generally advantageous to pair Algorithm 1 with Algorithm 2 rather than
with Algorithm 3. Thus, our implementation computes search directions with Algo-
rithm 2 and only switches to Algorithm 3 when there is evidence that Algorithm 2
may be unable to produce a productive search direction.

Our trigger for switching between the two search direction algorithms is based
on the steplength obtained as a result of the line search. If during a given iteration
of Algorithm 1, Algorithm 2 has been employed for computing the search direc-
tion and the line search produces a steplength below a given threshold ᾱ1, then this
may be an indication that Ak is losing rank, causing the steps to become too large.
(Of course, the short steplength may simply be due to the nonlinearity of the problem
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218 F. E. Curtis et al.

functions themselves, but even in that case the algorithm may benefit by employing
Algorithm 3.) In such cases, we decide to employ Algorithm 3 in the following iter-
ation of Algorithm 1 and continue to employ it until an iteration yields a steplength
above ᾱ1. The motivation for this scheme is that Algorithm 1 paired with Algorithm 2
is guaranteed to converge for an equality-constrained problem (e.g., a given barrier
subproblem) under common assumptions, as long as the constraint Jacobians have full
row rank and their smallest singular values are bounded away from zero. Specifically,
for the analysis of Algorithm 2 in [9], the latter requirement is used to show that the
steplength αk is bounded away from zero. Thus, we use a small steplength αk as an
indicator to switch to Algorithm 3. In our implementation, we choose the threshold
value to be ᾱ1 = 10−3.

When an iterative solver is used to solve the linear systems (2.8) and (2.16), an
effective preconditioner is essential to keep the number of iterations low. For best
performance, the preconditioner should be tailored to specific problems. However, for
our numerical experiments, we use a general-purpose preconditioning approach. The
details of our preconditioning method can be found in [10,25]. In short, the approach
is based on an algebraic multi-level preconditioner designed for symmetric highly
indefinite systems. It uses symmetric maximum weight matchings to improve the
block diagonal dominance of the system, followed by an inverse-based pivoting strat-
egy to compute an inexact factorization. In order to bound the norm of the inverse, the
factorization of some rows and columns might be postponed to the end. This leaves a
Schur complement to which the procedure is applied recursively within a multilevel
preconditioning framework.

For the iterative solution of linear systems we use the symmetric quasi-minimum
residual (SQMR) method [16] which has been found to work well with this precondi-
tioner. Here, we allow a depth up to 30 in the multi-level approach [25], the constant
bounding the norm of the inverse of the factor is chosen to be κL = 2, and the drop
tolerances for the factor and the Schur complement are set to be εL = 10−2 and
εS = 10−3, respectively. The SQMR method is allowed a maximum number of 1,500
iterations. If this number is exceeded, then the preconditioner is recomputed with tight-
ened drop tolerances (both divided by 3) and the iteration counter is reset. If necessary,
the tolerances are tightened repeatedly. If an acceptable solution for Algorithm 2 has
not been computed after 4 such attempts, then the method reverts to Algorithm 3. If an
acceptable solution for Algorithm 3 has not been computed after 4 such attempts, then
the last computed inexact solution is used (without guarantees for a successful line
search). In either of these latter two cases, before a new linear system is solved, the
drop tolerances are multiplied by 3, though they are never set higher than the default
values given above.

3.2 Hessian modification strategy and flexible penalty function

In the definition of the Hessian matrix Wk in (2.7), the choice �k = μS−2
k corre-

sponds to the so-called primal interior-point iteration. This was considered for the
global convergence analysis in [13]. However, our implementation follows the more
efficient primal-dual interior-point strategy �k = S−1

k Yk , where Yk = diag(yk) with
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dual variables yk corresponding to the slack bounds (i.e. s ≥ 0). It is easy to see that
the analysis in [13] still holds as long as νμS−2

k � �k � νμS−2
k for some constants

ν ≥ 1 ≥ ν > 0; we choose ν = 1010 and ν = 10−10 in our experiments. This is
achieved by adjusting yk , if necessary, after each iteration; see [28].

Our strategy for modifying the Hessian in Algorithms 2 and 3 is analogous to the
one described in [28], where a multiple of the identity is added to the unscaled Hes-
sian matrix. This corresponds to using Dk with a (1,1)-block being I and a (2,2)-block
being �2

k . Furthermore, we choose ξ according to the strategy for choosing δw in
Algorithm IC in [28]. However, in contrast to Algorithm IC, our trigger for a modifi-
cation is not the inertia of the primal-dual system. Rather, we trigger a modification
based on the conditions described in step 6 of Algorithm 2 and step 9 of Algorithm 3.
We have also found it beneficial to trigger a modification at the start of the search
direction computation if in the previous iteration the line search reduced αk due to
the sufficient decrease condition (2.5). This leads to somewhat shorter search direc-
tions and makes the acceptance of larger steplengths more likely, often leading to a
reduction in iteration count.

An important algorithmic feature of our code is the use of a flexible penalty function
[11]. This mechanism is designed to avoid a pitfall of penalty functions, namely the
potential for the algorithm to set an unnecessarily large value of the penalty parameter
and thus restrict the iterates to remain close to the feasible region. This can lead to
small steplengths and slow convergence.

The effect of the flexible penalty function on our line search is that, instead of requir-
ing αk to satisfy the sufficient decrease condition (2.5) for a fixed π , we only require
that αk satisfies a sufficient decrease condition for some π in an interval [π l , πu]. In
particular, given π l ≤ πm ≤ πu , αk ∈ (0, αmax

k ] is acceptable as long as

φ(zk + αk d̃k;μ,π) ≤ φ(zk;μ,π)− η2αk�mk(dk;μ,πm) for some π ∈ [π l , πu].
(3.1)

We have adapted the strategy proposed in [11] for updating π l and πu and for
setting πm during each iteration. In particular, our updates for π l and πu are essen-
tially those in [11]; the details can be found in [10]. As for the choice of πm , we
consider two cases. If in the current iteration Termination test 2 was satisfied, but
Termination test 1 was not, then we follow [11] and set πm to be the maximum of
π l and π t , where π t is computed during Termination test 2. This choice guarantees
that the model reduction �mk(dk;μ,πm) is positive. Otherwise, if Termination test
1 was satisfied, then we set πm to be π l since, based on our decision to use π l as the
penalty parameter value in (2.10) and (2.14), this choice also guarantees that the model
reduction �mk(dk;μ,πm) is positive. Overall, we guarantee that (3.1) is a sufficient
decrease condition for φ in either case.

4 Numerical experiments

The algorithm described in the previous sections was implemented in theIPOPT open-
source package (http://www.coin-or.org/Ipopt/); for our experiments we use revision
1954 of the branches/parallel development branch. The linear systems are
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solved using the iterative linear system solvers and preconditioners implemented in
PARDISO (http://www.pardiso-project.org/) version 4.1.1. The finite-element dis-
cretization of the PDEs in Sects. 4.1–4.2 was implemented using the open-source
libmesh library [22], revision 3881 in its trunk branch, together with the PETSc
library [2] version 3.1-p3. The three-dimensional meshes for the example in Sect. 4.2
are generated with the tetgen software (http://tetgen.berlios.de/).

In IPOPT, we use default parameter settings with a termination tolerance 10−6,
together with the parameter choices given in the previous sections. The iterative linear
solver in PARDISO uses SQMR [16] with the preconditioner described in Sect. 3.1.

To assess the robustness of the algorithm we compare its performance with the
default method in IPOPT on AMPL [15] versions of problems from the CUTE set
[17]; details of the experiment can be found in [10]. Algorithm 1 is able to solve 89 % of
the 617 problems, and is therefore almost as robust as the default algorithm in IPOPT
that solves 96 %. Note that for 142 problems, the algorithm switches to Algorithm 3 at
some point, indicating that the switching strategy in Sect. 3.1 was utilized by the algo-
rithm. In contrast, the method proposed in [13], which always uses Algorithm 3, has
a success rate of only 84 %, meaning that we have achieved an increase in robustness
of 5 % by utilizing Algorithm 2.

The numerical experiments in the rest of this section illustrate the performance
of our implementation on two PDE-constrained problems. We show that our method
provides improved computation times compared to the default IPOPT algorithm. The
results were obtained on 8-core Intel Xeon machines with 2.33 GHz clock speed and
32 GB RAM, running Ubuntu Linux with GNU 4.4.1 compilers.

4.1 Optimal boundary control

Our first PDE-constrained optimization problem is an optimal control problem moti-
vated by the “Heating with radiation boundary conditions” example in Section 1.3.1
of [27]. The PDE is to satisfy −�T = 0, where T denotes temperature, in a domain
� ⊆ R

3. A suitable boundary condition is to satisfy ∂T
∂n = χ(u−T 4) on the boundary

� of �. This condition expresses the radiation heat loss according to the Stefan–
Boltzmann law with a Stefan’s constant χ > 0, where the control u ≥ 0 dictates heat
that can be resupplied on �. The goal is to minimize the amount of heat supplied, i.e.,
∫

�
u da, while attaining a temperature of T min

j or more within NS subregions� j ⊆ �.

We multiply −�T = 0 with a test function v ∈ H1(�) and apply Green’s formula
together with the boundary condition. The weak formulation of the PDE is then to
find T ∈ H1(�) such that

0 = −
∫

�

�T v dx =
∫

�

∇T · ∇v dx − χ
∫

�

(T 4 − u) v da ∀v ∈ H1(�). (4.1)

We generate a regular mesh of tetrahedrons, each with volume h3/24 for h > 0,
and use the standard linear finite element basis functions {ϕi }i=1,...,nh . Projecting
(4.1) onto the generated finite dimensional subspace V h by approximating T with
T h = ∑

i T (i)ϕi and u by uh = ∑

i u(i)ϕi (the latter requires discretized values u(i)
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Table 1 Problem sizes for
instances of the example in
Sect. 4.1

h #var #bds #eq #ineq

0.04 89,453 9,183 81,951 0

0.03 199,389 16,498 186,319 0

0.02 670,153 42,313 640,151 0

Table 2 Performance measures for the example in Sect. 4.1

h alg it f (x∗) CPUs CPUs/it Speedup

0.04 IPOPT 33 39.9458 2,806.16 85.04

0.04 Alg. 1 33 39.9458 646.77 19.60 4.34

0.03 IPOPT 34 37.7909 16,330.56 480.31

0.03 Alg. 1 37 37.7909 4,495.83 121.51 3.63

0.02 IPOPT 46 40.9115 304,780.45 6,625.66

0.02 Alg. 1 47 40.9115 38,824.33 826.05 7.85

only corresponding to the boundary �), we solve the finite-dimensional problem

min
u(i),T (i)

∑

i

u(i)
∫

�

ϕi da

subject to u(i) ≥ 0 and

0 =
∫

�

∑

i

T (i)∇ϕi · ∇ϕ j dx − χ
∫

�

⎛

⎝

(
∑

i

T (i)ϕi

)4

−
∑

i

u(i)ϕi

⎞

⎠ϕ j da ∀ j

(4.2a)

T (i) ≥ T min
j for j ∈ {1, . . . , NS} and i ∈

{

î | ∃x ∈ � j : ϕî (x) = 1
}

. (4.2b)

We choose χ = 1 and � = (0, 1)3 and define two regions to be heated, �1 =
[0.1, 0.2] × [0.05, 0.3] × [0, 0.1] and�2 = [0.8, 1] × [0.75, 1] × [0.7, 1], with asso-
ciated threshold temperatures of T min

1 = 2.5 and T min
2 = 2. In (4.2b), we used the

fact that a nodal finite element basis was chosen, so that maxx∈� ϕi (x) = 1, and for
all x ∈ � we have

∑

i ϕi (x) = 1. Since ∇ϕi · ∇ϕ j = O(1/h2) and
∫

E dx = O(h3)

for a tetrahedron E , we multiply (4.2a) by 10−2/h in our implementation to ensure
that the gradients of these constraints do not vanish as h→ 0. Similarly, the objective
function was scaled internally by the factor 10−2/(h2).

We executed the optimization algorithm for three choices of the discretization level.
As initial point, we chose T = Tinit with Tinit = 1.1(T min

1 + T min
2 ), and u = (Tinit)

4.
Table 1 shows the discretization parameter (h), number of optimization variables
(#var), number of simple bound constraints (#bds), number of equality constraints
(#eq), and number of inequality constraints (#ineq) for various instances of this exam-
ple. Table 2 provides performance measures in the form of number of iterations (it),
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Fig. 1 Optimal state (left) and control (right) for the example in Sect. 4.1. The regions �1 (top) and �2
(bottom) are visualized as a box. It is interesting to note that the corners of the regions�1 and�2 are heated
most, instead of the inner part of its surface

final objective value f (x∗), CPU seconds (CPUs), and CPU seconds per iteration
(CPUs/it) for the default IPOPT algorithm and for Algorithm 1. The last column
shows the overall CPU time speedup obtained by the inexact algorithm. We see a sig-
nificant gain in computation speed that becomes more pronounced as the problem size
increases. For the largest problem, the speedup is a factor of 7.85. The corresponding
solution is depicted in Fig. 1.

Table 2 lists the average CPU time per iteration, but it should be noted that the
step computation requires considerably more time towards the end of the optimization
procedure. Considering the case h = 0.02, in the first 22 IPOPT iterations the precon-
ditioners (each computed in less than 1 min) have fill-in factors of at most 3 and SQMR
requires only between 35 and 200 iterations, leading to less than 4 min for each step
computation. However, in the final IPOPT iterations, the dropping tolerances have to
be tightened. Then, the preconditioner (computed in up to 9 min) has a fill-in factor
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of almost 10 and SQMR requires more than 1,000 iterations, leading to times up to
35 min per step computation.

4.2 Server room cooling

Our second example is motivated by the problem of cooling computer equipment. In
our simplified model, we assume that cold air is blown into a room from air conditioners
(ACs), and that air leaves the room at exhausts. Inside the domain lies equipment with
hot surfaces that need to be cooled by air passing alongside.

For simplicity, we suppose that air is incompressible, has no internal friction, and
that all velocities are far below the speed of sound. Under these assumptions, we can
model air velocity y(x) as the gradient of a potential�(x) satisfying the Laplace equa-
tion −�� = 0 in � ⊆ R

3. Appropriate boundary conditions for the walls (including
non-heat producing surfaces of the equipment)�W and for the heat producing surfaces
�T of the equipment are ∂�

∂n = 0 on �W ∪ �T . Similarly, boundary conditions for
the cold air inlets are ∂�

∂n = −u ACi��ACi
on �ACi , and for the exhausts are ∂�

∂n =
uExi��Exi

on�Exi . Here,��ACi
(x) (i = 1, . . . , NAC ) and��Exi

(x) (i = 1, . . . , NEx )
define velocity profiles on the surfaces of the ACs and exhausts, respectively. Simi-
larly, u ACi ∈ R and uExi ∈ R denote control parameters for the maximal flow rates at
these air inlets and outlets. The weak formulation of the PDE is to find � ∈ H1(�)

such that, for all v ∈ H1(�), we have

0 =
∫

�

∇� · ∇v dx +
NAC∑

i=1

∫

�ACi

u ACi��ACi
v da −

NEx∑

i=1

∫

�Exi

uExi��Exi
v da. (4.3)

It is important to note that (4.3) has a solution only if the controls satisfy the mass
balance equation

NAC∑

i=1

∫

�ACi

u ACi��ACi
da −

NEx∑

i=1

∫

�Exi

uExi��Exi
da = 0, (4.4)

and in that case (4.3) only determines the potential � ∈ H1(�) up to an additive
constant. Therefore, a normalization condition will be introduced below.

As a constraint, we require that the air speed at the heat-producing surfaces has
a minimum velocity so that heat is carried away. More precisely, recalling that the
velocity is the gradient of the potential function �, we impose the point-wise state
constraint ‖∇�(x)‖22 ≥ y2

min for all x ∈ �T with a constant ymin > 0.
To obtain the discretized problem, we generate an irregular mesh of tetrahedrons,

each with maximal volume h3, again choose a finite-dimensional subset V h ⊆ H1(�)

with a basis {ϕi }i=1,...,nh , and express the finite-dimensional approximation �h of
� = ∑

i φ
(i)ϕi with coefficients φ ∈ R

nh . Defining u = (u AC , uEx ) as the vec-
tor consisting of all control parameters, the discretized PDE (4.3) then becomes
Aφ − Bu = 0, where A denotes the stiffness matrix A(i, j) = ∫

�
∇ϕi · ∇ϕ j dx , and
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B = [BAC BEx ] implements the boundary conditions with B(i, j)
AC = −

∫

�AC j
��AC j

ϕi da and B(i, j)
Ex =

∫

�Ex j
��Ex j

ϕi da.

The finite-dimensional optimization problem is

min
φi ,ui ,ū

∑

β j u AC j

subject to u ≥ 0 and

Aφ − Bu + γ eū = 0 (4.5a)

γ eTφ − γ̄ ū = 0 (4.5b)

eT Bu = 0 (4.5c)

∫

�e

∇φ(x) · ∇φ(x) da − y2
min

⎛

⎜
⎝

∫

�e

da

⎞

⎟
⎠ ≥ 0 for �e ⊆ �T (4.5d)

with weights βi > 0 in the objective function, and e = (1, . . . , 1)T ∈ R
nh . Here,

(4.5c) is a compact way of writing (4.4), and (4.5d) is the discretized version of the
point-wise state constraint, which is posed for all element faces �e contained in a heat
producing surface �T . Note that the constraint (4.5d) is nonlinear and nonconvex.
Again, in our implementation of the above problem, we scaled the constraints (4.5a)
and (4.5d) by factors 10−2/h and 10−1/h, respectively, to ensure that the gradients
of those functions do not vanish as h→ 0.

To overcome the ill-posedness of the PDE, an auxiliary variable ū ∈ R has been
added. Equation (4.5a) includes the discretized PDE, where γ eū acts as a virtual source
or sink over �. Since we impose mass conservation in (4.5c), this term yields ū = 0.
Furthermore, an integral-type equation is imposed in (4.5b). Indeed, eTφ is a discret-
ization of

∫

�
�dμ for some measure μ depending on the finite-element discretization

and is set to zero in (4.5b) since ū = 0, therefore normalizing �.
For our experiments, we choose βi = 1, γ = 1, γ̄ = 108, ymin = 1, �AC1 = {0} ×

[0.4, 0.6]×[0.2, 0.4], �AC2 = [0.4, 0.6]×{0}×[0.2, 0.4], �AC3 = [0.4, 0.6]×{1}×
[0.2, 0.4], and �Ex1 = {1} × [0.4, 0.6] × [0.6, 0.8]. The equipment is placed so that
�Eq1 = [0.2, 0.7]× [0.2, 0.4]× [0, 0.8] and�Eq2 = [0.2, 0.6]× [0.6, 0.8]× [0, 0.8]
with the remaining boundaries�T and�W defined as illustrated in Fig. 2. The airflows
at the inlets and outlets are defined to have quadratic profiles.

Due to the nooks in� created by the equipment, numerical experiments with linear
finite elements showed only linear L2-convergence of the PDE solution as h → 0.
However, since the point-wise state constraint involves the gradient of the state var-
iable, superlinear convergence is crucial. Thus, we have chosen quadratic finite-ele-
ments and observed quadratic convergence for the PDE solution; see [10].

Table 3 shows sizes for various instances of this problem. As a starting point, we
calculated the solution of (4.5a)–(4.5c) for u ACi = 20. Table 4 provides performance
measures for the default IPOPT algorithm and for our implementation. Also here we
see a clear reduction in computation time achieved by using the inexact algorithm,
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Fig. 2 Optimal solution of the server room cooling optimization example. On the left, we see the stream-
lines of the airflow, going from the main AC on the left to the exhaust on the right. On the right, we have a
bottom view of the domain �, where the colors have been chosen to be dark if the air velocity is close to
the threshold ymin = 1. One can clearly see a region at the wall of the larger piece of equipment, at which
the velocity is close to critical, indicating the location of the active constraints (4.5d) in �T

Table 3 Problem sizes for
instances of the example in
Sect. 4.2

h #var #bds #eq #ineq

0.03 88,398 4 88,395 1,528

0.02 285,510 4 285,507 3,409

0.015 663,886 4 663,883 6,110

Table 4 Performance measures for the example in Sect. 4.2

h alg it f (x∗) CPUs CPUs/it Speedup

0.03 IPOPT 21 15.5283 4,511.48 214.83

0.03 Alg. 1 24 15.5283 1,710.30 71.26 2.64

0.02 IPOPT 33 15.5694 69,427.33 2,103.86

0.02 Alg. 1 28 15.5694 10,008.50 357.45 6.94

0.015 IPOPT 32 15.6509 528,320.22 16,510.01

0.015 Alg. 1 27 15.6509 29,526.53 1,093.58 17.89

without a loss in solution accuracy. Specifically, the computation time for the largest
instance with more than 600,000 variables was reduced from more than 6 days to 8.2 h,
a speedup by a factor of 17.89. Figure 2 shows the optimal solution for h = 0.015.

In this example, the default settings for the preconditioner thresholds were sufficient
in each iteration, so no tightening occurred. For the h = 0.015 case, the computation
time for the preconditioner ranged from 164 to 234 s (with an average of 204 s), the
number of SQMR iterations was 204–1,129 with an average of 396, and the time spent
in SQMR ranged from 365 to 2,018 s (with an average of 719 s). While there was some
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variation, we did not observe a degeneration of computation time per step computation
as in Sect. 4.1.

5 Conclusion and final remarks

We have presented a detailed description of an implementation of a primal-dual inte-
rior-point method for large-scale nonconvex optimization where the search directions
are computed inexactly by means of an iterative linear system solver. Ideally, the algo-
rithm computes a search direction through the inexact solution of a single linear system
(as in [9]). However, when appropriate, it falls back on the step decomposition strategy
proposed in [13] so that, overall, the strong global convergence properties presented
in [13] are attained. Numerical experiments on a large set of test problems and on
two PDE-constrained optimization problems have also been presented. These results
demonstrate the robustness of the approach and illustrate the significant speedup our
algorithm attains when compared to an algorithm based on direct factorizations of the
primal-dual system matrices.

As mentioned at the end of Sect. 4.1, we have observed a decrease in effectiveness
of the preconditioner as the barrier parameter approaches zero. It remains a subject of
future research to explore whether the specific structure of the ill-conditioning caused
by the log-barrier terms can be handled efficiently within the incomplete-factoriza-
tion-based preconditioner described in Sect. 3.1.
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