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A REDUCED-SPACE ALGORITHM FOR MINIMIZING
`1-REGULARIZED CONVEX FUNCTIONS∗
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Abstract. We present a new method for minimizing the sum of a differentiable convex function
and an `1-norm regularizer. The main features of the new method include: (i) an evolving set of
indices corresponding to variables that are predicted to be nonzero at a solution (i.e., the support); (ii)
a reduced-space subproblem defined in terms of the predicted support; (iii) conditions that determine
how accurately each subproblem must be solved, which allow for Newton, linear conjugate gradient,
and coordinate-descent techniques to be employed; (iv) a computationally practical condition that
determines when the predicted support should be updated; and (v) a reduced proximal gradient step
that ensures sufficient decrease in the objective function when it is decided that variables should be
added to the predicted support. We prove a convergence guarantee for our method and demonstrate
its efficiency on a large set of model prediction problems.
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1. Introduction. In this paper, we propose, analyze, and provide the results
of numerical experiments for a new method for solving `1-norm regularized convex
optimization problems of the form

(1) minimize
x∈Rn

F (x), where F (x) := f(x) + λ‖x‖1,

f : Rn → R is a twice continuously differentiable convex function, and λ > 0 is a
weighting parameter. A necessary and sufficient optimality condition for (1) is

(2) 0 ∈ ∂F (x) = ∇f(x) + λ∂‖x‖1

with ∂F and ∂‖ · ‖1 denoting the subdifferentials of F and ‖ · ‖1, respectively. Our
method for solving (1) generates a sequence of iterates such that any limit point of
the sequence satisfies (2). It is applicable when only first-order derivative information
is computed but is most effective when one can at least approximate second-order
derivative matrices, e.g., using limited-memory quasi-Newton techniques.

Problems of the form (1) arise in statistics, signal processing, and machine learn-
ing applications and are often associated with data fitting or maximum likelihood
estimation. A popular setting is binary classification using logistic regression (f is a
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logistic cost function), although instances of such problems also arise when performing
multiclass logistic regression, for example. Instances of (1) also surface when using
LASSO or elastic-net formulations to perform data analysis and discovery, e.g., in the
clustering of data drawn from a union of subspaces [10, 30, 31, 32].

1.1. Literature review and our key contributions. Popular first-order op-
timization methods for solving (1) include ISTA, FISTA, and SpaRSA [2, 29]. Second-
order methods have also been proposed, which can roughly be split into three classes:
continuously differentiable bound-constrained reformulations [4, 6, 15, 19, 21, 22, 23,
24], proximal-Newton methods [5, 16, 20, 25, 33], and orthant-based methods [1, 3, 18].
Continuously differentiable bound-constrained reformulations transform the uncon-
strained nondifferentiable problem (1) into a larger but equivalent bound-constrained
continuously differentiable optimization problem (equivalent in the sense that a so-
lution to the bound-constrained formulation directly emits a solution to (1)), which
may be solved using standard bound-constrained optimization solvers such as those
cited above. The other two classes more directly attack problem (1). In particular,
proximal-Newton methods solve problem (1) by minimizing a sequence of subproblems
formed as the sum of a quadratic approximation to f and the nonsmooth `1-norm reg-
ularizer. For example, the state-of-the-art software LIBLINEAR, which implements
newGLMNET [33], uses a coordinate descent algorithm to approximately minimize
each piecewise quadratic subproblem. Orthant-based methods, on the other hand,
minimize smooth quadratic approximations to (1) over a sequence of orthants in Rn
until a solution is found. Of particular interest is the recently proposed orthant-based
method OBA [18] in which every iteration consists of a corrective cycle of orthant
predictions and subspace minimization steps. OBA was shown to be slower than LI-
BLINEAR when the Hessian matrices were diagonally dominant but faster otherwise,
at least on the collection of test problems considered in [18].

Since LIBLINEAR and OBA are the most relevant to the algorithm described in
this paper, let us discuss their respective advantages and disadvantages in more detail.
The key advantage of LIBLINEAR is its use of a coordinate descent (CD) algorithm to
approximately minimize the piecewise quadratic subproblem. The use of CD means
that one should expect excellent performance on problems whose Hessian matrices
are strongly diagonally dominant. This expectation was confirmed, as mentioned
above, by the OBA paper [18]. For some problems encountered in model prediction,
e.g., when using logistic regression to perform classification, the Hessians are often
strongly diagonally dominant, at least after certain data scaling techniques are used.
However, not all prediction problems have such nice diagonal dominance properties,
and in some instances the user would prefer to avoid discovering a proper scaling for
their data. In these latter cases, the OBA method is typically superior.

Another potential advantage of the OBA method is its use of an active-set strat-
egy that uses quadratic subproblems that are smaller in dimension than the ambient
space. For many `1-norm regularized prediction problems, the number of nonzero
components in a solution is a small percentage of the ambient dimension, and thus
OBA spends most of its time solving small dimensional problems. This is an advan-
tage, at least when the zero and nonzero structure of the solution is quickly identified.

We have the perspective that both LIBLINEAR and OBA are valuable state-
of-the-art algorithms that complement each other. Our fast reduced space algorithm
(FaRSA) is designed to capitalize on the advantages of both while avoiding their
disadvantages. The following bulleted points summarize our key contributions.

(i) We present a new active-set line search method that utilizes reduced-space
quadratic subproblems, approximate solutions of which can be computed efficiently.
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Although similar subproblems are used by OBA, the precise manner in which they
are formulated as well as the conditions used to terminate their solution are different.

(ii) Unlike the active-set OBA method, our method does not require the com-
putation of an ISTA step during each iteration to ensure convergence. We achieve
convergence by combining a new projected backtracking line search procedure, an
approximate subspace minimization scheme, and a mechanism for determining when
the support of the solution estimate should be updated.

(iii) Our framework is flexible. In particular, we introduce a new set of conditions
that signal how accurately each quadratic subproblem should be solved and allow for
various subproblem solvers to be used. In so doing, our method easily accommodates
a CG subproblem solver as in OBA and a CD solver as in LIBLINEAR. Interestingly,
this allows for multiple subproblem solvers to be used in parallel, thus allowing for
numerical performance that can be as good as either LIBLINEAR and OBA regardless
of whether the problem Hessians are strongly diagonally dominant.

(iv) As demonstrated in the numerical experiments described in this paper, a
basic Matlab implementation of FaRSA has a practical performance that is often
better than OBA in terms of computational time on model prediction problems.

We remark that our proposed algorithm has similarities with the iterative method
that one would obtain using the following procedure: (i) at a given iterate xk, con-
struct a quadratic model of f and recast the minimization of this model plus the
regularization term λ‖x‖1 into a bound-constrained quadratic optimization problem
(similarly to the procedure in SpaRSA); (ii) approximately solve this subproblem us-
ing the techniques in [7, 8, 9] (see also [28]); and (iii) translate the resulting solution
back into the space of x variables to produce a trial step from xk, call it dk. Indeed,
our initial developments were based on these ideas. However, the algorithm proposed
in this paper involves some deviations and enhancements from this starting point.

We end this review by noting that the use of subspace minimization is certainly
not new. Serafini, Zanghirati, and Zanni [26, 27, 34, 35] showed that subspace mini-
mization can be very effective for solving support vector machine optimization prob-
lems. In these works, which were based on the ideas first proposed by Joachims [17],
the subspace selection procedure involves the solution of an optimization problem
that includes a constraint that bounds the size of the chosen subspace. The subspace
selection procedure was further refined and generalized to a broader class of prob-
lems by Gonzalez-Lima, Hager, and Zhang [14]. The improved subspace selection was
the result of adding a simple quadratic term to the objective function of the opti-
mization problem used to choose the subspace. Finally, the philosophy behind our
subspace procedure is similar in spirit to that developed for strictly convex bound-
constrained quadratic problems (BCQP) [7], convex BCQP [11, 12, 13], and nonconvex
BCQP [22].

1.2. Notation. Let I ⊆ {1, 2, . . . , n} denote an index set of variables. For any
v ∈ Rn, we let [v]I denote the subvector of v consisting of elements of v with indices
in I. Similarly, for any symmetric matrix M ∈ Rn×n, we let [M ]I,I denote the
submatrix of M consisting of the rows and columns of M that correspond to the
index set I. If, in addition, the index set I satisfies [x]i 6= 0 for all i ∈ I, then we
let ∇IF (x) and ∇2

IIF (x) denote the vector of first derivatives and matrix of second
derivatives of F at x, respectively, corresponding to the elements in I. For any vector
v, we let sgn(v) denote the vector of the same length as v whose ith component is 0
when [v]i = 0, is 1 when [v]i > 0, and is −1 when [v]i < 0. For any vector v, we let
‖v‖1 and ‖v‖ denote its `1-norm and `2-norm, respectively.
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2. Algorithm FaRSA. Crucial to our algorithm is the manner in which we
handle the zero and nonzero components of a solution estimate. In order to describe
the details of our approach, we first define the index sets

I0(x) := {i : [x]i = 0}, I+(x) := {i : [x]i > 0}, and I−(x) := {i : [x]i < 0}.

We call I0(x) the set of zero variables, I+(x) the set of positive variables, I−(x)
the set of negative variables, and the union of I−(x) and I+(x) the set of nonzero
variables at x. We use these sets to define measures of optimality corresponding to
the zero and nonzero variables at x. Respectively, these measures are as follows:

[β(x)]i :=


∇if(x) + λ if i ∈ I0(x) and ∇if(x) + λ < 0,
∇if(x)− λ if i ∈ I0(x) and ∇if(x)− λ > 0,

0 otherwise;

[φ(x)]i :=
0 if i ∈ I0(x),

min{∇if(x) + λ,max{[x]i,∇if(x)− λ}} if i ∈ I+(x) and ∇if(x) + λ > 0,
max{∇if(x)− λ,min{[x]i,∇if(x) + λ}} if i ∈ I−(x) and ∇if(x)− λ < 0,
∇if(x) + λ · sgn([x]i) otherwise.

If x was a solution to problem (1), then for any i ∈ I0(x), it holds from the optimality
conditions for problem (1) that |∇if(x)| ≤ λ. Therefore, the size of [β(x)]i indicates
how far is that zero variable from being optimal. In short, the size of the vector
β(x) is a measure of optimality for the zero variables, i.e., for those in I0(x). On the
other hand, for any i ∈ I+(x) ∪ I−(x), it holds from the optimality conditions that
∇if(x) + sgn([x]i)λ = 0. Therefore, the size of [φ(x)]i indicates how far that nonzero
variable is from being optimal, although we note that its definition also takes into
account the distance the nonzero variable can move before becoming zero, i.e., before
switching orthants. In short, the size of the vector φ(x) is a measure of optimality for
the nonzero variables, i.e., for those in I+(x)∪I−(x). (See Lemma A.1 in Appendix A
for an explanation of how β and φ are related to the well-known ISTA iteration.)

The following result shows that the functions β and φ together correspond to a
valid optimality measure for problem (1).

Lemma 2.1. Let S be an infinite set of positive integers such that {xk}k∈S → x∗.
Then, the x∗ is an optimal solution to (1) if and only if {β(xk)}k∈S → 0 and
{φ(xk)}k∈S → 0. Consequently, x∗ is an optimal solution to (1) if and only if
‖β(x∗)‖ = ‖φ(x∗)‖ = 0.

Proof. Suppose {β(xk)}k∈S → 0 and {φ(xk)}k∈S → 0. Then, first, consider any
i such that [x∗]i > 0, which means that [xk]i > 0 for all sufficiently large k ∈ S.
We now consider two subcases. If ∇if(xk) + λ ≤ 0 for infinitely many k ∈ S, then
it follows from the definition of φ(xk), {φ(xk)}k∈S → 0, and continuity of ∇f that
∇if(x∗) + λ = 0. On the other hand, if ∇if(xk) + λ > 0 for infinitely many k ∈ S,
then it follows from the definition of φ(xk), {φ(xk)}k∈S → 0, [x∗]i > 0, and continuity
of ∇f that ∇if(x∗) + λ = 0. By combining both cases, we have established that
∇if(x∗) + λ = 0, so that the ith component satisfies the optimality conditions (2). A
similar argument may be used for the case when one considers i such that [x∗]i < 0
to show that ∇if(x∗)− λ = 0.
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It remains to consider i such that [x∗]i = 0. We have four subcases to consider.
First, if infinitely many k ∈ S satisfy [xk]i = 0 and ∇if(xk) + λ < 0, then it follows
from the definition of β(xk), {β(xk)}k∈S → 0, and continuity of∇f that∇if(x∗)+λ =
0; a similar argument shows that if infinitely many k ∈ S satisfy [xk]i = 0 and
∇if(xk) − λ > 0, then ∇if(x∗) − λ = 0. Second, if infinitely many k ∈ S satisfy
[xk]i = 0 and |∇if(xk)| < λ, then, trivially, |∇if(x∗)| ≤ λ. Third, if infinitely many
k ∈ S satisfy [xk]i > 0 and ∇if(xk) + λ ≤ 0, then it follows from the definition of
φ(xk), {φ(xk)}k∈S → 0, and continuity of∇f that∇if(x∗)+λ = 0; a similar argument
shows that if infinitely many k ∈ S satisfy [xk]i < 0 and ∇if(xk) − λ ≥ 0, then
∇if(x∗)−λ = 0. Fourth, if infinitely many k ∈ S satisfy [xk]i > 0 and∇if(xk)+λ > 0,
then it follows from the definition of φ(xk), {φ(xk)}k∈S → 0, and continuity of∇f that
|∇if(x∗)| ≤ λ; a similar argument shows that if infinitely many k ∈ S satisfy [xk]i < 0
and ∇if(xk)− λ < 0, then |∇if(x∗)| ≤ λ. By combining these subcases, we conclude
that |∇if(x∗)| ≤ λ, so the ith component satisfies the optimality condition (2).

To prove the reverse implication, suppose that x∗ is a solution to problem (1).
If [x∗]i > 0, then [β(xk)]i = 0 for all sufficiently large k ∈ S and {[φ(xk)]i}k∈S → 0
since ∇if(x∗) + λ = 0 and ∇f is continuous. If [x∗]i < 0, then [β(xk)]i = 0 for
all sufficiently large k ∈ S and {[φ(xk)]i}k∈S → 0 since ∇if(x∗) − λ = 0 and ∇f is
continuous. Finally, if [x∗]i = 0, then |∇if(x∗)| ≤ λ and continuity of ∇f imply that
{[β(xk)]i}k∈S → 0 and {[φ(xk)]i}k∈S → 0. This completes the proof.

We now state our proposed method, FaRSA, as Algorithm 1. When considering
a reduced-space subproblem defined by a chosen index set Ik (see lines 7 and 14), the
algorithm makes use of a quadratic model of the objective of the form (see line 10)

mk(d) := gTkd+ 1
2d
THkd.

FaRSA also makes use of two line search subroutines, stated as Algorithms 2 and 3,
the former of which employs the following projection operator dependent on xk:

[Proj(y ;xk)]i :=


max{0, [y]i} if I+(xk),
min{0, [y]i} if I−(xk),
0 if I0(xk).

FaRSA computes a sequence of iterates {xk}. During each iteration, the sets
I0(xk), I+(xk), and I−(xk) are identified, which are used to define β(xk) and φ(xk).
We can see in line 4 of Algorithm 1 that when both ‖β(xk)‖ and ‖φ(xk)‖ are less than
a prescribed tolerance ε > 0, it returns xk as an approximate solution to (1); this is
justified by Lemma 2.1. Otherwise, it proceeds in one of two ways depending on the
relative sizes of ‖β(xk)‖ and ‖φ(xk)‖. We describe these two cases next.

(i) The relationship ‖β(xk)‖ ≤ γ‖φ(xk)‖ indicates that significant progress
toward optimality can still be achieved by reducing F over the current set of nonzero
variables at xk; lines 7–12 are designed for this purpose. In line 7, a subset Ik of
variables are chosen such that the norm of φ(xk) over that subset of variables is at least
proportional to the norm of φ(xk) over the full set of variables. This allows control
over the size of the subproblem, which may be as small as one-dimensional. Note that
for i ∈ Ik, it must hold that [φ(xk)]i 6= 0, which in turn means that i /∈ I0(xk); i.e., the
ith variable is nonzero. This means that the reduced space subproblem to minimize
mk(d) over d ∈ R|Ik| is aimed at minimizing F over the variables in Ik. Our analysis
does not require an exact minimizer of mk. Rather, we allow for the computation
of any direction d̄k that satisfies the conditions in line 10, namely, gTkd̄k ≤ gTkd

R
k and
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Algorithm 1. FaRSA for solving problem (1).
1: Input: x0
2: Constants: {ηφ, ηβ} ⊂ (0, 1], , ξ ∈ (0, 1), η ∈ (0, 1/2], and {γ, ε} ⊂ (0,∞)
3: for k = 0, 1, 2, . . . do
4: if max{‖β(xk)‖, ‖φ(xk)‖} ≤ ε then
5: Return the (approximate) solution xk of problem (1).
6: if ‖β(xk)‖ ≤ γ‖φ(xk)‖ then [k ∈ Sφ]
7: Choose any Ik ⊆ {i : [φ(xk)]i 6= 0} such that ‖[φ(xk)]Ik‖ ≥ ηφ‖φ(xk)‖.
8: Set Hk ← ∇2

IkIkF (xk) and gk ← ∇IkF (xk).
9: Compute the reference direction

dRk ← −αkgk, where αk ← ‖gk‖2/(gTkHkgk).

10: Compute any d̄k ≈ argmin mk(d) such that the following inequalities hold:

gTkd̄k ≤ gTkdRk and mk(d̄k) ≤ mk(0).

11: Set [dk]Ik ← d̄k and [dk]i ← 0 for i /∈ Ik.
12: Use Algorithm 2 to compute xk+1 ← linesearch φ(xk, dk, Ik, η, ξ).
13: else [k ∈ Sβ ]
14: Choose any Ik ⊆ {i : [β(xk)]i 6= 0} such that ‖[β(xk)]Ik‖ ≥ ηβ‖[β(xk)‖.
15: Set [dk]Ik ← −[β(xk)]Ik and [dk]i ← 0 for i /∈ Ik.
16: Use Algorithm 3 to compute xk+1 ← linesearch β(xk, dk, η, ξ).

Algorithm 2. A line search procedure for computing xk+1 when k ∈ Sφ.
1: procedure xk+1 = linesearch φ(xk, dk, Ik, η, ξ)
2: Set j ← 0 and y0 ← Proj(xk + dk ;xk).
3: while sgn(yj) 6= sgn(xk) do
4: if F (yj) ≤ F (xk) then
5: return xk+1 ← yj . [k ∈ SADD

φ ]

6: Set j ← j + 1 and then yj ← Proj(xk + ξjdk ;xk).
7: if j 6= 0 then
8: Set αB ← argsup {α > 0 : sgn(xk + αdk) = sgn(xk)}.
9: Set yj ← xk + αBdk.

10: if F (yj) ≤ F (xk) + ηαB∇IkF (xk)T [dk]Ik then
11: return xk+1 ← yj . [k ∈ SADD

φ ]

12: loop
13: if F (yj) ≤ F (xk) + ηξj∇IkF (xk)T [dk]Ik then
14: return xk+1 ← yj . [k ∈ SSD

φ ]

15: Set j ← j + 1 and then yj ← xk + ξjdk.

mk(d̄k) ≤ mk(0), where the reference direction dRk is computed in line 9 by minimizing
mk along the steepest descent direction. The first condition imposes how much descent
is required by the search direction d̄k, while the second condition ensures that the
model is reduced at least as much as a zero step. It will be shown (see Lemma 3.9)
that the first condition guarantees that the decrease in F for any iteration k ∈ SSD

φ

is bounded below by a positive constant factor of ‖gk‖22 (see (15)). It will be shown
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Algorithm 3. A line search procedure for computing xk+1 when k ∈ Sβ .
1: procedure xk+1 = linesearch β(xk, dk, η, ξ)
2: Set j ← 0 and y0 ← xk + dk.
3: while F

(
yj) > F (xk)− ηξj‖dk‖2 do

4: Set j ← j + 1 and then yj ← xk + ξjdk.
5: return xk+1 ← yj .

(see Lemma 3.8) that the second condition ensures that d̄k is bounded by a multiple
of ‖gk‖. Such conditions are satisfied by a Newton step, by any CG iterate, and
asymptotically by CD iterates. Once d̄k is obtained, the search direction dk in the full
space is obtained by filling its elements that correspond to the index set Ik with the
elements from d̄k and setting the complementary set of variables to zero (see line 11).
With the search direction dk computed, we call Algorithm 2 in line 12, which performs
a (nonstandard) backtracking projected line search. This line search procedure makes
use of the projection operator Proj(· ;xk). This operator projects vectors onto the
orthant inhabited by xk, a feature shared by OBA. The while-loop that starts in
line 3 of Algorithm 2 checks whether the trial point yj decreases the objective function
F relative to its value at xk when sgn(yj) 6= sgn(xk). If the line search terminates
in this while-loop, then this implies that at least one component of xk that was
nonzero has become zero for xk+1 = yj . Since the dimension of the reduced space will
therefore be reduced during the next iteration (provided line 6 of Algorithm 1 tests
true), the procedure only requires F (xk+1) ≤ F (xk) instead of a more traditional
sufficient decrease condition, e.g., one based on the Armijo condition. If line 7 of
Algorithm 2 is reached, then the current trial iterate yj satisfies sgn(yj) = sgn(xk);
i.e., the trial iterate has entered the same orthant as that inhabited by xk. Once this
has occurred, the method could then perform a standard backtracking Armijo line
search as stipulated in the loop starting at line 12. For the purpose of guaranteeing
convergence, however, the method first checks whether the largest step along dk that
stays in the same orthant as xk (see lines 8 and 9) satisfies the Armijo sufficient
decrease condition (see line 10). (This aspect makes our procedure different from a
standard backtracking scheme.) If Algorithm 2 terminates in line 5 or 11, then at
least one nonzero variable at xk will have become zero at xk+1, which we indicate by
saying k ∈ SADD

φ ⊆ Sφ. Otherwise, if Algorithm 2 terminates in line 14, then xk+1 and
xk are housed in the same orthant and sufficient decrease in F was achieved (i.e., the
Armijo condition in line 13 was satisfied). Since sufficient decrease has been achieved
in this case, we say that k ∈ SSD

φ ⊆ Sφ.
(ii) When ‖β(xk)‖ > γ‖φ(xk)‖, progress toward optimality is best achieved by

freeing at least one variable that is currently set to zero; lines 14–16 are designed for
this purpose. Since ‖β(xk)‖ is relatively large, in line 14 of Algorithm 1 a subset Ik
of variables is chosen such that the norm of β(xk) over that subset of variables is at
least proportional to the norm of β(xk) over the full set of variables. Similar to the
previous case, this allows control over the size of the subproblem, which in the extreme
case may be one-dimensional. If i ∈ Ik, then [β(xk)]i 6= 0, which in turn means that
i ∈ I0(xk); i.e., the ith variable has the value zero. The components of β(xk) that
correspond to Ik are then used to define the search direction dk in line 15. With
the search direction dk computed, Algorithm 3 is called in line 16, which performs
a standard backtracking Armijo line search to obtain xk+1. If a unit step length is
taken, i.e., if xk+1 = xk + dk, then xk+1 can be interpreted as the iterate that would
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be obtained by taking a reduced ISTA step in the space of variables indexed by Ik.
(For additional details, see Lemma A.1 in Appendix A.)

3. Convergence Analysis. Our analysis uses the following assumption that is
assumed to hold throughout this section.

Assumption 3.1. The function f : Rn → R is convex, twice continuously differ-
entiable, and bounded below on the level set L := {x ∈ Rn : F (x) ≤ F (x0)}. The
gradient function ∇f : Rn → Rn is Lipschitz continuous on L with Lipschitz con-
stant L. The Hessian function ∇2f : Rn → Rn×n is uniformly positive definite and
bounded on L; i.e., there exist positive constants θmin and θmax such that

θmin‖v‖2 ≤ vTH(x)v ≤ θmax‖v‖2 for all {x, v} ⊂ Rn.

The following remark concerning Assumption 3.1 is important.

Remark 3.2. The assumption that the Hessian function ∇2f is uniformly pos-
itive definite and bounded on L in Assumption 3.1 has been made for simplicity.
Such an assumption can easily be replaced by the requirement that the sequence of
matrices {Hk} used in line 8 of Algorithm 1 be chosen as any symmetric matrices
with eigenvalues that are uniformly bounded above and away from zero. In this case,
the convergence results presented in this paper for Algorithm 1 also apply when f is
merely convex.

Our analysis uses the index sets (already shown in Algorithms 1–2)

Sφ := {k : lines 7–12 in Algorithm 1 are performed during iteration k};
SADD
φ := {k ∈ Sφ : sgn(xk+1) 6= sgn(xk)};
SSD
φ := {k ∈ Sφ : sgn(xk+1) = sgn(xk)}; and

Sβ := {k : lines 14–16 in Algorithm 1 are performed during iteration k}.

We start with a lemma that establishes an important identity for iterations in Sβ .

Lemma 3.3. If k ∈ Sβ, then (Ik, dk) in lines 14 and 15 of Algorithm 1 yield

(3) [dk]Ik = −[∇f(xk) + λ · sgn(xk + ξjdk)]Ik for any integer j.

Consequently, the right-hand side of (3) has the same value for any integer j.

Proof. We prove that (3) holds for an arbitrary element of Ik. To this end, let
j be any integer and i ∈ Ik ⊆ {` : [β(xk)]` 6= 0]}, where Ik is defined in line 14. It
follows from the definition of Ik, the definition of dk in line 15, and i ∈ Ik that

(4) [dk]i =

{
−
(
∇if(xk) + λ

)
if ∇if(xk) + λ < 0,

−
(
∇if(xk)− λ

)
if ∇if(xk)− λ > 0,

so that [dk]i 6= 0. Also, since [xk]i = 0 for i ∈ Ik, we know that [xk + ξjdk]i 6= 0.
Thus, we need only consider the following two cases.

Case 1. Suppose [xk + ξjdk]i > 0. In this case, the right-hand side of (3) is equal
to −(∇if(xk) + λ). As for the left-hand side, since [xk]i = 0 and [xk + ξjdk]i > 0, we
have 0 < [xk + ξjdk]i = ξj [dk]i, which combined with ξj > 0 means that [dk]i > 0.
This fact and (4) gives [dk]i = −(∇if(xk) + λ), so (3) holds.

Case 2. Suppose [xk + ξjdk]i < 0. In this case, the right-hand side of (3) is equal
to −(∇if(xk) − λ). As for the left-hand side, since [xk]i = 0 and [xk + ξjdk]i < 0,
we have 0 > [xk + ξjdk]i = ξj [dk]i, which when combined with ξj > 0 means that
[dk]i < 0. This fact and (4) gives [dk]i = −(∇if(xk)− λ), so (3) holds.
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We can now establish a bound for a decrease in the objective when k ∈ Sβ .

Lemma 3.4. If k ∈ Sβ, then dk in line 15 of Algorithm 1 yields

F (xk + ξjdk) ≤ F (xk)− ξj

2
‖dk‖2 for any integer j with 0 ≤ ξj ≤ 1

L
.

Proof. Let j be any integer with 0 ≤ ξj ≤ 1
L and let yj := xk+ξjdk. By Lipschitz

continuity of the gradient function ∇f , we have

f(yj) ≤ f(xk) + ξj∇f(xk)Tdk +
L

2
‖ξjdk‖2

≤ f(xk) + ξj∇f(xk)Tdk +
ξj

2
‖dk‖2.(5)

It then follows from (5), convexity of both f and λ‖·‖1, the fact that sgn(yj) ∈ ∂‖yj‖1,
the definition of dk (in particular that [dk]i = 0 for i /∈ Ik), and Lemma 3.3 that the
following holds for all z ∈ Rn:

F (yj) = f(yj) + λ‖yj‖1(6)

≤ f(xk) + ξj∇f(xk)Tdk +
ξj

2
‖dk‖2 + λ‖yj‖1

≤ f(z) +∇f(xk)T(xk − z) + ξj∇f(xk)Tdk +
ξj

2
‖dk‖2

+ λ‖z‖1 + λ · sgn(yj)T(yj − z)
≤ F (z) + [∇f(xk) + λ · sgn(yj)]T (xk − z)

+ ξj [∇f(xk) + λ · sgn(yj)]T dk +
ξj

2
‖dk‖2

= F (z) + [∇f(xk) + λ · sgn(yj)]T (xk − z)− ξj‖dk‖2 +
ξj

2
‖dk‖2

= F (z) + [∇f(xk) + λ · sgn(yj)]T (xk − z)−
ξj

2
‖dk‖2.

The desired result follows by considering z = xk in (6).

We now show that Algorithm 3 called in line 16 of Algorithm 1 is well defined
and that it returns xk+1 yielding sufficient decrease in the objective function.

Lemma 3.5. If k ∈ Sβ, then xk+1 satisfies

(7) F (xk+1) ≤ F (xk)− κβ max{‖β(xk)‖2, γ2‖φ(xk)‖2},

where κβ := ηηβ min{1, ξ/L}.
Proof. Let j be any integer with 0 ≤ ξj ≤ 1

L and let yj := xk + ξjdk. It follows
from Lemma 3.4 and the fact that η ∈ (0, 1/2] in Algorithm 1 that

F
(
yj
)
≤ F (xk)− ξj

2
‖dk‖2 ≤ F (xk)− ηξj‖dk‖2.

It follows from this inequality that Algorithm 3 will return the vector xk+1 = xk+ξj∗dk
with ξj∗ ≥ min{1, ξ/L} when called in line 16 of Algorithm 1. Using this bound, line 3
of Algorithm 3, and lines 15 and 14 of Algorithm 1, we have
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F (xk+1) ≤ F (xk)− ηξj∗‖dk‖2 ≤ F (xk)− ηmin{1, ξ/L}‖dk‖2

= F (xk)− ηmin{1, ξ/L}‖[β(xk)]Ik‖2 ≤ F (xk)− ηηβ min{1, ξ/L}‖β(xk)‖2.

The inequality (7) follows from the definition of κβ , the previous inequality, and the
fact that the inequality in line 6 of Algorithm 1 must not hold since line 16 is assumed
to be reached.

We now show that the index set Sβ must be finite.

Lemma 3.6. The index set Sβ must be finite, i.e., |Sβ | <∞.

Proof. To derive a contradiction, suppose that |Sβ | =∞, which also means that
Algorithm 1 does not terminate finitely. Since Algorithm 1 does not terminate finitely,
we know from line 4 of Algorithm 1 that max{‖β(xk)‖, ‖φ(xk)‖} > ε for all k ≥ 0.
Combining this inequality with Lemma 3.5 and the fact that F (xk+1) ≤ F (xk) for all
k /∈ Sβ (as a result of Algorithm 2 called in line 12 of Algorithm 1), we may conclude
for any nonnegative integer ` and κβ > 0 defined in Lemma 3.5 that

F (x0)− F (x`+1) =
∑̀
k=0

[
F (xk)− F (xk+1)

]
≥

∑
k∈Sβ ,k≤`

[
F (xk)− F (xk+1)

]
≥

∑
k∈Sβ ,k≤`

κβ max{‖β(xk)‖2, γ2‖φ(xk)‖2}

≥
∑

k∈Sβ ,k≤`

κβ min{1, γ2}ε2.

Rearranging the previous inequality shows that

lim
l→∞

F (x`+1) ≤ lim
`→∞

F (x0)−
∑

k∈Sβ ,k≤`

κβ min{1, γ2}ε2


= F (x0)−
∑
k∈Sβ

κβ min{1, γ2}ε2 = −∞,

which contradicts Assumption 3.1. Thus, we conclude that |Sβ | <∞.

To prove that Algorithm 1 terminates finitely with an approximate solution to
problem (1), all that remains is to prove that the set Sφ is finite. To establish that
Sφ ≡ SADD

φ ∪ SSD
φ is finite, we proceed by showing individually that both SADD

φ and
SSD
φ are finite. We begin with the set SADD

φ .

Lemma 3.7. The set SADD
φ is finite, i.e., |SADD

φ | <∞.

Proof. To derive a contradiction, suppose that |SADD
φ | = ∞, which in particular

means that Algorithm 1 does not terminate finitely. Since Lemma 3.6 shows that Sβ
is finite, we may also conclude that there exists an iteration k1 such that k ∈ Sφ =
SADD
φ ∪ SSD

φ for all k ≥ k1.
We proceed by making two observations. First, if the ith component of xk be-

comes zero for some iteration k ≥ k1, it will remain zero for the remainder of the
iterations. This can be seen by using lines 11 and 7 of Algorithm 1 and the definition
of φ(xk) to deduce that if [dk]i 6= 0, then i ∈ Ik ⊆ {` : [φ(xk)]` 6= 0} ⊆ I+(xk)∪I−(xk)
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for all k ≥ k1; equivalently, if i ∈ I0(xk), then [dk]i = 0. The second observation is
that at least one nonzero component of xk becomes zero at xk+1 for each k ∈ SADD

φ .
This can be seen by construction of Algorithm 2 when it is called in line 12 of Algo-
rithm 1. Together, these observations contradict |SADD

φ | =∞ since at most n variables
may become zero. Thus, we must conclude that |SADD

φ | <∞.

To establish that SSD
φ is finite, we require the following two lemmas. The first

lemma gives a bound on the size of d̄k that holds whenever k ∈ Sφ.

Lemma 3.8. If k ∈ Sφ, then ‖d̄k‖ ≤ (2/θmin)‖gk‖, where θmin > 0 is defined in
Assumption 3.1.

Proof. Let k ∈ Sφ so that d̄k is computed in line 10 of Algorithm 1 and let
dN
k be the Newton step satisfying Hkd

N
k = −gk with Hk and gk defined in line 8 of

Algorithm 1. It follows that

(8) ‖dN
k‖ ≤ ‖H−1

k ‖‖gk‖.

Let us also define the quadratic function m̄k(d) := mk(dN
k + d) and the associated

level set Lk := {d : m̄k(d) ≤ 0}. We then see that

(9) (d̄k − dN
k) ∈ Lk

since m̄k(d̄k−dN
k) = mk(d̄k) ≤ mk(0) = 0, where we have used the condition mk(d̄k) ≤

mk(0) that is required to hold in line 10 of Algorithm 1.
We are now interested in finding a point in Lk with largest norm. To characterize

such a point, we consider the optimization problem

(10) maximize
d∈Rn

1
2‖d‖

2 subject to d ∈ Lk.

It is not difficult to prove that a global maximizer of problem (10) is d∗ := α∗v with
α2
∗ := (−gTkdN

k)/θ, where (v, θ) with ‖v‖ = 1 is an eigenpair corresponding to the left-
most eigenvalue θ ≥ θmin of Hk. (This can also be seen to hold since the level curves
of m̄k are ellipses, d = 0 is the minimizer of m̄k, and the eigenvector corresponding
to the left-most eigenvalue of Hk is the direction of least positive curvature.) Thus,
it follows that ‖d‖2 ≤ ‖d∗‖2 for all d ∈ Lk. Combining this with (9), the definition of
d∗, and (8) shows that

‖d̄k − dN
k‖2 ≤ ‖d∗‖2 = α2

∗‖v‖2 =
−gTkdN

k

θ
≤ ‖gk‖‖d

N
k‖

θ
≤
‖H−1

k ‖‖gk‖2

θ
=
(
‖gk‖
θ

)2

.

By combining the previous inequality with the triangle inequality and (8), we obtain

‖d̄k‖ ≤ ‖d̄k − dN
k‖+ ‖dN

k‖ ≤
‖gk‖
θ

+
‖gk‖
θ

=
2‖gk‖
θ
≤ 2‖gk‖

θmin
,

which complete the proof.

The next result establishes a bound on the decrease in F when k ∈ SSD
φ .

Lemma 3.9. If k ∈ SSD
φ , then xk+1 satisfies

(11) F (xk+1) ≤ F (xk)− κφ max{γ−2‖β(xk)‖2, ‖φ(xk)‖2},

where κφ := η2
φ min

{
η

θmax
,
ηξ(1−η)θ2min

2θ3max

}
> 0.
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Proof. Let k ∈ SSD
φ . We consider two cases. First, suppose that j = 0 when line 7

in Algorithm 2 is reached. In this case, it follows by construction of Algorithm 2
that sgn(y0) = sgn(xk + dk) = sgn(xk); i.e., the full step dk and the vector xk are
contained in the same orthant. Consequently, the loop that starts in line 12 is simply
a backtracking Armijo line search. Thus, if

(12) ξj ∈
(

0,
2(η − 1)∇IkF (xk)T [dk]Ik

θmax‖[dk]Ik‖2

]
≡
(

0,
2(η − 1)gTkd̄k
θmax‖d̄k‖2

]
,

then, by well-known properties of twice continuously differentiable functions with
Lipschitz continuous gradients, we have that

F (xk + ξjdk) ≤ F (xk) + ξj∇IkF (xk)T [dk]Ik + 1
2ξ

2jθmax‖[dk]Ik‖2

≤ F (xk) + ξj∇IkF (xk)T [dk]Ik + ξj(η − 1)∇IkF (xk)T [dk]Ik
= F (xk) + ηξj∇IkF (xk)T [dk]Ik ;

i.e., the inequality in line 13 will hold whenever (12) holds. On the other hand,
suppose that j > 0 when line 7 in Algorithm 2 is reached. Then, since k ∈ SSD

φ , we
may conclude that

(13) F (xk + αBdk) > F (xk) + ηαB∇IkF (xk)T [dk]Ik = F (xk) + ηαBg
T
k d̄k

in line 10 because otherwise we would have k ∈ SADD
φ = Sφ \ SSD

φ . Since no points
of nondifferentiability of ‖ · ‖1 exist on the line segment connecting xk to xk + αBdk
(which follows by the definition of αB in line 8 of Algorithm 2), we can conclude for
the same reason that we acquired (12) that (13) implies

αB >
2(1− η)|gTkd̄k|
θmax‖d̄k‖2

.

Combining these two cases, we have that the line search procedure in Algorithm 2
will terminate with xk+1 = xk + ξjdk, where

(14) ξj ≥ min
{

1,
2ξ(1− η)|gTkd̄k|
θmax‖d̄k‖2

}
and F (xk+1) ≤ F (xk) + ηξjgTk d̄k.

Let us now consider two cases. First, suppose that ξj = 1 is returned from the line
search, i.e., j = 0. Then, it follows from (14), lines 10 and 9 of Algorithm 1, the
Cauchy-Schwarz inequality, and Assumption 3.1 that

F (xk)− F (xk+1) ≥ −ηξjgTk d̄k = η|gTkd̄k| ≥ η|gTkdRk |

= ηαk‖gk‖2 = η
‖gk‖4

gTkHkgk
≥ η

θmax
‖gk‖2.(15)

Now suppose that ξj < 1. Then, it follows from (14), the inequality |gTkd̄k| ≥
‖gk‖2/θmax established while deriving (15), and Lemma 3.8 that

F (xk)− F (xk+1) ≥ −ηξjgTk d̄k = ηξj |gTkd̄k| ≥
2ηξ(1− η)|gTkd̄k|2

θmax‖d̄k‖2

≥ 2ηξ(1− η)θ2min‖gk‖4

4θ3max‖gk‖2
=
(
ηξ(1− η)θ2min

2θ3max

)
‖gk‖2.(16)
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Combining (15) and (16) for the two cases establishes that

F (xk)− F (xk+1) ≥ min
{

η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖gk‖2

= min
{

η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖∇IkF (xk)‖2

≥ min
{

η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖[φ(xk)]Ik‖2

≥ η2
φ min

{
η

θmax
,
ηξ(1− η)θ2min

2θ3max

}
‖φ(xk)‖2 for k ∈ SSD

φ ,

where we have also used the condition in line 7 of Algorithm 1 and the definition
of φ(xk). The inequality (11) follows from the previous inequality and the fact that
‖β(xk)‖ ≤ γ‖φ(xk)‖ for all k ∈ Sφ ⊆ SSD

φ as can be seen by line 6 of Algorithm 1.

We may now establish finiteness of the index set SSD
φ .

Lemma 3.10. The index set SSD
φ is finite, i.e., |SSD

φ | <∞.

Proof. To derive a contradiction, suppose that |SSD
φ | = ∞, which means that

Algorithm 1 does not terminate finitely. Thus, it follows from line 4 of Algorithm 1
that max{‖β(xk)‖, ‖φ(xk)‖} > ε for all k ≥ 0. Also, it follows from Lemmas 3.6 and
3.7 that there exists an iteration number k1 such that k ∈ SSD

φ for all k ≥ k1. Thus,
with Lemma 3.9, we have for all ` ≥ k1 that

F (xk1)− F (x`+1) =
∑̀
k=k1

[
F (xk)− F (xk+1)

]
=

∑
k∈SSD

φ ,k1≤k≤`

[
F (xk)− F (xk+1)

]
≥

∑
k∈SSD

φ ,k1≤k≤`

κφ max{γ−2‖β(xk)‖2, ‖φ(xk)‖2}

≥
∑

k∈SSD
φ ,k1≤k≤`

κφ min{γ−2, 1}ε2.

Rearranging the previous inequality shows that

lim
l→∞

F (x`+1) ≤ lim
`→∞

[
F (xk1)−

∑
k∈SSD

φ ,k1≤k≤`

κφ min{γ−2, 1}ε2
]

= F (xk1)−
∑

k∈SSD
φ ,k1≤k

κφ min{γ−2, 1}ε2 = −∞,

which contradicts Assumption 3.1. Thus, we conclude that |SSD
φ | <∞.

We now prove our first main convergence result.

Theorem 3.11. Algorithm 1 terminates finitely.

Proof. Since each iteration number k generated in the algorithm is an element of
Sβ ∪ SADD

φ ∪ SSD
φ , the result follows by Lemmas 3.6, 3.7, and 3.10.

Our final convergence result states what happens when the finite termination
criterion is removed from Algorithm 1.
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Theorem 3.12. Let x∗ be the unique solution to problem (1). If ε in the finite
termination condition in line 4 of Algorithm 1 is replaced by zero, then either:

(i) there exists an iteration k such that xk = x∗; or
(ii) infinitely many iterations {xk} are computed and they satisfy

lim
k→∞

xk = x∗, lim
k→∞

ϕ(xk) = 0, and lim
k→∞

β(xk) = 0.

Proof. If case (i) occurs, then there is nothing left to prove. Thus, for the re-
mainder of the proof, we assume that case (i) does not occur. Since case (i) does not
occur, we know that Algorithm 1 performs an infinite sequence of iterations. Let us
then define the set S := Sβ∪SSD

φ , which must be infinite (since any consecutive subse-
quence of iterations in SADD

φ must be finite by the finiteness of n). It follows from (7)
for k ∈ Sβ , (11) for k ∈ SSD

φ , and Assumption 3.1 (specifically, the assumption that f
is bounded below over L) that

lim
k∈S

max{‖β(xk)‖, ‖ϕ(xk)‖} = 0.

Combining this with Assumption 3.1 and Lemma 2.1 gives

(17) lim
k∈S

xk = x∗.

Now, we claim that the previous limit holds over all iterations. To prove this by
contradiction, suppose that there exists an infinite K ⊆ SADD

ϕ and a scalar ε > 0 with

(18) ‖xk − x∗‖ ≥ ε for all k ∈ K.

From Assumption 3.1, we conclude that there exists δ > 0 such that

(19) if F (x) ≤ F (x∗) + δ, then ‖x− x∗‖ < ε.

Moreover, from (17) and Assumption 3.1, there exists a smallest kS ∈ S such that

(20) F (xkS ) ≤ F (x∗) + δ.

There then exists a smallest kK ∈ K such that kK > kS . Since, by construction,
{F (xk)}k≥0 is monotonically decreasing, we may conclude with (20) that

(21) F (xkK ) ≤ F (xkS ) ≤ F (x∗) + δ.

Combining (21) and (19), we deduce that ‖xkK − x∗‖ < ε, which contradicts (18)
since kK ∈ K. This completes the proof.

4. Numerical Results. In this section, we present results when employing an
implementation of FaRSA to solve a collection of `1-norm regularized logistic regres-
sion problems that take the form

(22) minimize
x∈Rn

1
N

N∑
i=1

log
(
1 + e−yix

Tdi
)

+ λ‖x‖1,

where di ∈ Rn is the ith data vector, N is the number of data vectors in the data set,
yi ∈ {−1, 1} is the class label for the ith data vector, and λ = 1/N is the weighting
parameter; we refer to D ∈ RN×n, whose ith row is dTi , as the data set matrix. Such
problems routinely arise in the context of model prediction, making the design of
advanced optimization algorithms that efficiently and reliably solve them paramount
in big data applications. We first describe the data sets considered in our experiments,
then describe some details of our implementation (henceforth simply referred to as
FaRSA), and finally present the results of our experiments.
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Table 1
Data sets.

Data set N n Unscaled Scaling used
fourclass 862 2 X into [−1,1]

svmguide1 3089 4 X into [−1,1]
cod-rna 59535 8

breast-cancer 683 10
australian 690 14

skin-nonskin 245057 3 X into [−1,1]
SUSY 5000000 18 X into [−1,1]
splice 1000 60
heart 270 13

german.numer 1000 24 X into [−1,1]
diabetes 768 8 X into [−1,1]
madelon 2000 500 X into [−1,1]

w8a 49749 300
a9a 32561 123

mnist 30001 784 X into [0,1)
liver-disorders 345 6 X into [−1,1]

sonar 208 60
ijcnn1 49990 22

svmguide3 1243 22
synthetic 5000 5000
gisette 6000 5000

pathway-ad 278 71
real-sim 72309 20958

mushrooms 8124 112
covtype.binary 581012 54

rcv1.binary 20242 47236
colon-cancer 62 2000 X into [−1,1]

leukemia 34 7129
duke-breast-cancer 38 7129 X into [−1,1]

gene-ad 71 17375 X into [−1,1]
news20 19996 1355191

4.1. Data sets. We tested FaRSA on the `1-norm regularized logistic regression
problem (22) using 31 data sets (see Table 1), 19 of which are available only after
standard scaling practices have been applied. For the remaining 12 data sets, we
considered both unscaled and scaled versions, where, for each, the scaling technique
employed is described in the last column of Table 1. A check mark in the “Unscaled”
column indicates that we were able to obtain an unscaled version of that data set.

Most of the data sets in Table 1 can be obtained from the LIBSVM repository.1

From this repository, we excluded all regression and multiple-class (greater than two)
instances, except for mnist since it is such a commonly used data set. Since mnist
is for digit classification, we transformed it for binary classification by assigning the
digits 0–4 to the label −1 and the digits 5–9 to the label 1. The remaining data sets
were binary classification examples from which we removed HIGGS, kdd2010(algebra),
kdd2010(bridge to algebra), epsilon, url, and webspam since insufficient computer
memory was available. (All experiments were conducted on a 64-bit machine with
an Intel I7 4.0-GHz CPU and 16 GB of main memory.) Finally, for the adult data
(a1a–a9a) and webpage data (w1a–w8a), we used only the largest instances, namely,
problems a9a and w8a. This left us with our final subset of data sets from LIBSVM.

In addition, we also tested FaRSA on three other data sets: synthetic, gene-ad,
and pathway-ad. The synthetic set is a randomly generated nondiagonally dominant

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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data set created by the authors of OBA. The sets gene-ad and pathway-ad are data sets
related to Alzheimer’s disease. They were obtained by preprocessing the sets GSE42262

and GSE42273 using the method presented in [36] and merging the results into the
single data set: gene-ad. The gene data (gene-ad) was converted to pathway data
(pathway-ad) using the ideas described in [36]. The union of these three data sets
and those from the LIBSVM repository comprised our complete test set.

For the unscaled data sets (see columns 4 and 5 in Table 1), we adopted standard
scaling techniques. For problems scaled into [−1, 1], we used the normalization

(23) dci ←
dci −mean(dci ) · e
‖dci −mean(dci ) · e‖∞

for all i ∈ {1, 2, · · · , n},

where dci denotes the ith column of the data set matrix D and e ∈ RN is a vector of all
ones. For problem mnist, which was scaled into [0, 1), we used a common converting
method in image processing. Specifically, we defined

(24) I(i, j) =
P (i, j)

2b
,

where P (i, j) is the given unscaled integer pixel value satisfying

P (i, j) ∈ {0, 1, 2, . . . , 2b − 1},

b is the intensity resolution (b = 8 for the mnist data set), and (i, j) range over the
size of the image. The scaled pixel values are then given by the values I(i, j) ∈ [0, 1).

4.2. Implementation details. We developed a preliminary Matlab imple-
mentation of FaRSA that we are happy to provide on request. In this section, we
describe the algorithm-specific choices made to obtain the results that we present.

For determining the iteration type, we chose γ = 1 in line 6 of Algorithm 1 so
that no preference was given to iterations being in either Sφ or Sβ . For any k ∈ Sφ,
we made the simple choice of Ik = {i : [φ(xk)]i 6= 0}. This made the inequality in
line 7 satisfied for any ηφ ∈ (0, 1], making the choice of this parameter irrelevant.
(In a more sophisticated implementation, one might consider other choices of Ik,
say, to adaptively control |Ik|, to improve efficiency.) With this choice for Ik made,
Algorithm 1 allows for great flexibility in obtaining a search direction that satisfies
the conditions in line 10 (see (iii) in section 1.1 for additional comments). For our
tests, we applied the CG method to the system Hkd = −gk defined by the terms
constructed in line 8, except that we added a diagonal matrix with entries 10−8 to
Hk (an approach also adopted by OBA and LIBLINEAR). As discussed in section 2,
the conditions that are required to be satisfied by the trial step will hold if CG is
terminated during any iteration. To help limit the number of backtracking steps
required by the subsequent backtracking line search, we terminated CG as soon as
one of three conditions was satisfied. To describe these conditions, we let dj denote
the jth CG iteration, rj = ‖Hkdj + gk‖ denote the jth CG residual, and vj denote
the number of components in xk + dj that fall into a different orthant than xk. With
these definitions, we terminated CG as soon as one of the following was satisfied:

rj ≤ max{10−1r0, 10−12};
vj ≥ max{103, 10−1|Ik|}; or

‖dj‖ ≥ δk,φ := max{10−3,min{103, 10‖xkφ(k)+1 − xkφ(k)‖}},

2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4226.
3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4227.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4226
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4227
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where kφ(k) := max{k̄ : k̄ ∈ Sφ and k̄ < k}. This first condition is a standard
requirement of asking the residual to be reduced by a fraction of the initial residual.
We used the second condition to trigger termination when a CG iterate predicted that
“too many” of the variables at xk + dj are in the “wrong” orthant. Finally, the third
condition ensured that the size of the trial step was moderate, thus functioning as an
implicit trust-region constraint; this condition was motivated by the well-known fact
that CG iterations {dj} are monotonically increasing in norm.

When k ∈ Sβ , we made the simplest choice of Ik = {i : [β(xk)]i 6= 0}, making the
choice of ηβ ∈ (0, 1] irrelevant in our tests (though adaptive choices of Ik might be
worthwhile in a more sophisticated implementation). Since there is no natural scaling
for the direction β(xk) because it is based on first-derivative information only, it is
important from a practical perspective to adaptively scale the direction. Therefore,
in line 15, we used the alternative safeguarded direction defined by

(25) [dk]Ik = −δk,β
[β(xk)]Ik
‖[β(xk)]Ik‖

,

where δk,β := max{10−5,min{1, ‖xkβ(k)+1 − xkβ(k)‖}} with kβ(k) := max{k̄ : k̄ ∈
Sβ and k̄ < k}. Since this is a safeguarded scaling of the dk defined in line 15, it is
fully covered by the theory that we developed in section 3.

The values η = 10−2 and ξ = 0.5 were used in the line search regardless of whether
it was the line search performed by Algorithm 2 when called by Algorithm 1 (line 12)
or the line search performed by Algorithm 3 when called by Algorithm 1 (line 16). The
starting point x0 was chosen as the zero vector for all problems, and the termination
tolerance, maximum allowed number of iterations, and maximum allowed time limit
values were chosen to be ε = 10−6, 1000, and 10 minutes, respectively.

4.3. Test results. The output from FaRSA for the problems corresponding to
the scaled and unscaled data sets in our experiments are summarized in Tables 2
and 3 and Tables 4 and 5, respectively. Tables 2 and 4 focus on the computational
time in seconds (Time) and sparsity (% of zeros) required to obtain the computed
solutions, while Tables 3 and 5 provide the number of required objective function eval-
uations (Fevals), Hessian-vector products (Hv), and iterations (Iterations); iterations
for FaRSA are in the format (|Sφ|, |Sβ |), so that the total iterations are |Sφ| + |Sβ |.
For comparison purposes, we also provide the output from the OBA solver whose
Matlab implementation was graciously provided by the authors. For a fair compar-
ison, we used the same stopping tolerance value of ε = 10−6 for OBA and made no
modifications to their code, but we mention that the stopping criteria used in their
software is

‖max{min{∇f(xk) + λe, xk},∇f(xk)− λe}‖∞ ≤ ε,

where e ∈ Rn is a vector of all ones. The run time reported for each problem (named
according to the corresponding data set) are the averages from running each problem
instance 10 times. We do not provide the final objective values since they were the
same to at least 5 digits of accuracy for FaRSA and OBA on all problems that were
successfully solved by both algorithms.

In the tables we use “max iter” to denote that the maximum number of itera-
tions 1000 was reached, “max time” to denote that the maximum time limit of 10
minutes was reached, “Inf” to denote that Matlab returned an infinite objective
function value during the solution process, and “ascent” to mean that the objective
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Table 2
CPU time and sparsity for FaRSA and OBA on scaled problem variants.

Time (seconds) % of zeros
Problems FaRSA OBA OBA/FaRSA FaRSA OBA
fourclass 0.00326 0.00705 2.1626 0 0

svmguide1 0.0384 0.06457 1.6815 0 0
cod-rna 0.48762 0.18618 0.3818 0 0

breast-cancer 0.0089 0.0174 1.9674 0 0
australian 0.01443 0.03769 2.6119 0 0

skin-nonskin 3.20594 ascent Inf 0 —
SUSY 241.2437 205.1242 0.8502 0 0
splice 0.0101 0.01982 1.9624 5 5
heart 0.00706 0.01357 1.9221 7.7 7.7

german.numer 0.01159 0.02111 1.8214 8.3 8.3
diabetes 0.00581 0.00979 1.6850 12.5 12.5
madelon 0.26604 0.37497 1.4094 19.8 19.8

w8a 0.97079 0.99154 1.0214 21.3 18.7
a9a 0.78203 3.26994 4.1813 22.0 20.3

mnist 18.78034 54.432 3.0545 37.7 37.8
liver-disorders 0.016955 0.078115 4.6221 40.0 40.0

sonar 0.02012 0.02938 1.4602 41.7 41.7
ijcnn1 0.06153 0.08178 1.3291 45.5 45.5

svmguide3 0.01856 0.03478 1.8739 45.5 45.5
synthetic 45.82688 20.42464 0.4457 57.4 49.5

gisette 13.30533 28.22136 2.1211 84.6 84.6
pathway-ad 0.16054 1.30585 8.1341 87.4 87.4

real-sim 2.3221 2.43764 1.0214 91.9 91.8
mushrooms 0.03089 0.05815 1.8825 97.3 97.3

covtype.binary 1.04162 ascent Inf 98.2 —
rcv1.binary 0.39186 0.80563 1.7427 98.8 98.8
colon-cancer 0.04069 0.03905 0.9597 99.0 99.0

leukemia 0.09151 0.12086 1.3207 99.7 99.7
duke-breast-cancer 0.06227 0.10628 1.7068 99.7 99.7

gene-ad 0.21525 0.15943 0.7407 99.8 99.8
news20 6.09086 19.77945 3.2474 99.9 99.9

function increased. In theory, ascent is possible for OBA only when their estimate
(108 in their code) of the Lipschitz constant for the gradient of f is not large enough.
Although simple adaptive strategies could be used to avoid such issues, we made no
such attempts because we did not want to make any edits to their code.

Table 2 shows that FaRSA performed better than OBA in terms of computational
time on 26 of the 31 (83.87%) scaled test problems. OBA is faster than FaRSA only
on problems cod-rna, SUSY, synthetic, gene-ad, and colon-cancer. However, FaRSA
is between 3 and 8 times faster than OBA on problems a9a, mnist, pathway-ad, liver-
disorders, and news20 and between 1 and 3 times faster than OBA on the remaining
21 problems. In terms of sparsity, the two algorithms are comparable. Table 3 shows
that OBA usually requires fewer objective function evaluations but a greater number
of Hessian-vector products, which explains OBA’s higher run time. Also, since |Sβ |
is consistently small in the iteration column, we know that FaRSA quickly identifies
the orthant that contains the optimal solution.

By turning our attention to Tables 4 and 5, we see that the performance of both
FaRSA and OBA deteriorates when the problems are unscaled. OBA fails on prob-
lems skin-nonskin, gene-ad, and mnist because it generates iterates that increase the
objective function. Overall, FaRSA was able to solve 10 of the 12 unscaled problems,
and OBA performed better than FaRSA in terms of run time on only a single test
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Table 3
Number of objective function evaluations (Fevals), Hessian-vector products (Hv), and iterations

(Iterations) for FaRSA and OBA on scaled problem variants. Iterations for FaRSA are in the format
(|Sφ|, |Sβ |); the total iterations are |Sφ|+ |Sβ |.

Fevals Hv Iterations
Problems FaRSA OBA FaRSA OBA FaRSA OBA
fourclass 6 6 7 12 (4, 1) 5

svmguide1 7 7 17 23 (5, 1) 6
cod-rna 43 16 90 67 (30, 3) 15

breast-cancer 14 11 36 44 (8, 3) 9
australian 14 11 62 63 (8, 3) 9

skin-nonskin 364 — 531 — (180, 2) —
SUSY 54 35 661 482 (48, 5) 34
splice 14 10 24 36 (6, 3) 9
heart 9 9 40 49 (6, 2) 8

german.numer 8 9 45 65 (5, 2) 8
diabetes 8 7 19 23 (5, 2) 6
madelon 36 14 82 171 (10, 4) 13

w8a 41 15 516 455 (19, 4) 14
a9a 65 26 483 2237 (28, 6) 25

mnist 50 44 1597 4536 (33, 6) 43
liver-disorders 6 8 10 22 (4, 1) 6

sonar 27 12 140 149 (13, 4) 11
ijcnn1 10 11 43 38 (7, 2) 8

svmguide3 25 19 75 122 (11, 4) 16
synthetic 717 31 290 510 (241, 7) 30

gisette 185 74 933 55798 (78, 10) 69
pathway-ad 479 89 654 12806 (128, 19) 88

real-sim 26 11 248 293 (14, 4) 10
mushrooms 27 16 23 110 (13, 1) 15

covtype.binary 40 — 8 — (4, 1) —
rcv1.binary 17 7 102 189 (13, 3) 6
colon-cancer 80 10 128 192 (21, 3) 9

leukemia 100 16 153 346 (26, 3) 15
duke-breast-cancer 70 11 107 356 (20, 3) 11

gene-ad 97 10 155 369 (29, 3) 9
news20 23 9 133 403 (14, 4) 8

problem (colon-cancer). Finally, the trend that OBA performs better in terms of the
number of required objective function evaluations but worse in terms of the number
of needed Hessian-vector products still holds.

The previous tables show that FaRSA efficiently and reliably obtains solutions
that satisfy the stopping tolerance value of ε = 10−6. In practice, one sometimes only
requests a low accuracy solution, often motivated by problems that may arise due
to overfitting. To explore the performance of FaRSA for various stopping tolerance
levels, we created Figures 1–3 in Appendix B. Each plot shows the run time (y-axis)
required to achieve the desired optimality accuracy (x-axis) for the stated problem.
These figures show that the superior performance, measured in terms of computational
time, previously displayed by FaRSA for the stopping tolerance 10−6 also generally
holds for larger stopping tolerances.

Finally, we note that additional test results, which compare the performance of
FaRSA to the highly successful bound-constrained solver ASA-CG [15] when applied
to a bound-constrained reformulation of problem (1), may be found in Appendix C.

5. Conclusion. We presented a new reduced-space algorithm, FaRSA, for mini-
mizing an `1-norm regularized convex function. The method uses an adaptive
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Table 4
CPU time and sparsity for FaRSA and OBA on unscaled problem variants.

Time (seconds) % of zeros
Problems FaRSA OBA OBA/FaRSA FaRSA OBA
fourclass 0.00486 0.00775 1.5946 0 0

svmguide1 0.05641 0.13327 2.3625 0 0
diabetes 0.01964 0.02159 1.0993 0 0

german.numer 0.03168 0.0564 1.7803 0 0
skin-nonskin 0.11661 ascent Inf 0 —

liver-disorders 0.00571 0.03277 5.7391 0 0
madelon 6.55674 41.9519 6.3983 8 8

colon-cancer 0.08429 0.05364 0.6364 98.7 98.7
duke-breast-cancer 0.08936 0.12487 1.3973 99.7 99.7

gene-ad 4.62839 ascent Inf 99.8 —
mnist max time ascent — — —
SUSY max iter max iter — — —

Table 5
Number of objective function evaluations (Fevals), Hessian-vector products (Hv), and iterations

(Iterations) for FaRSA and OBA on unscaled problem variants. Iterations for FaRSA are in the
format (|Sφ|, |Sβ |); the total iterations are |Sφ|+ |Sβ |.

Fevals Hv Iterations
Problems FaRSA OBA FaRSA OBA FaRSA OBA
fourclass 15 6 10 14 (5, 2) 5

svmguide1 15 11 25 39 (8, 2) 10
diabetes 37 10 72 67 (17, 5) 9

german.numer 31 18 140 175 (18, 5) 17
skin-nonskin 15 — 18 — (7, 1) —

liver-disorders 15 11 24 38 (7, 2) 8
madelon 255 140 2624 18418 (155, 7) 139

colon-cancer 165 11 168 304 (36, 12) 10
duke-breast-cancer 95 16 108 424 (25, 3) 15

gene-ad 3909 — 2525 — (444, 37) —
mnist — — — — — —
SUSY — — — — — —

condition to determine when the current reduced-space should be updated, which
is itself based on measures of optimality in the current reduced space and its com-
plement. Global convergence was established for our method, and numerical exper-
iments on `1-norm regularized logistic problems exhibited its practical performance.
In particular, the experiments showed that FaRSA was generally better in terms of
computational time than a recently proposed reduced-space orthant-based algorithm
called OBA, regardless of the solution accuracy requested. FaRSA was also shown to
be better than OBA in terms of requiring fewer Hessian-vector products but worse in
terms of requiring a greater number of objective function evaluations. Since OBA was
shown in [18] to be better than the state-of-the-art solver used in LIBLINEAR when
the second-derivative matrices were not diagonally dominant, we expect that FaRSA
will serve as a valuable data analysis tool. OBA and our preliminary implementation
of FaRSA will often be outperformed by LIBLINEAR when the second-derivative
matrices are diagonally dominant. However, FaRSA was designed with great flexi-
bility in how the subproblem solutions are obtained. Although our preliminary im-
plementation invoked linear-CG as the subproblem solver, our framework also allows
for coordinate-descent–based algorithms to be used, such as those used in LIBLIN-
EAR. We expect to provide such options as well as include features that control the
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subproblem size in a future release of our solver. We believe that once these enhance-
ments have been made, FaRSA will be competitive with LIBLINEAR on all classes
of problems and superior when the second-derivative matrices are not diagonally
dominant.

Appendix A. Relationship between FaRSA and ISTA. The step in line 16
of Algorithm 1 may be interpreted as a reduced ISTA [2] step. The next lemma makes
this relationship precise.

Lemma A.1. For any k, let sk be the full ISTA step defined by

sk := shrink
(
xk −∇f(xk)

)
− xk, where

[shrink
(
xk −∇f(xk)

)
− xk]i :=


−[∇f(xk)]i + λ if [xk −∇f(xk)]i < −λ,
−[xk]i if [xk −∇f(xk)]i ∈ [−λ, λ],
−[∇f(xk)]i − λ if [xk −∇f(xk)]i > λ.

Then, sk = −(β(xk) + φ(xk)).

Proof. Recall the definitions of the components of β(xk) and φ(xk), which may
be rewritten in a slightly more convenient form as follows:

[β(xk)]i :=


∇if(xk) + λ if [xk]i = 0 and ∇if(xk) + λ < 0,
∇if(xk)− λ if [xk]i = 0 and ∇if(xk)− λ > 0,
0 otherwise,

[φ(xk)]i

:=


0 if [xk]i = 0,
min{∇if(xk) + λ,max{[xk]i,∇if(xk)− λ}} if [xk]i > 0 and ∇if(xk) + λ > 0,
max{∇if(xk)− λ,min{[xk]i,∇if(xk) + λ}} if [xk]i < 0 and ∇if(xk)− λ < 0,
∇if(xk) + λ · sgn([xk]i) otherwise.

For any component i, we proceed by considering various cases and subcases.

Case 1. Suppose that

(26) [xk −∇f(xk)]i > λ, meaning that [xk]i > ∇if(xk) + λ.

Subcase 1a. Suppose that [xk]i > 0 and ∇if(xk)+λ > 0, so ∇if(xk) > −λ. Then,
[β(xk)]i = 0 and

(27) [φ(xk)]i = min{∇if(xk) + λ,max{[xk]i,∇if(xk)− λ}}.

By (26), it follows that [xk]i > ∇if(xk)+λ > ∇if(xk)−λ, which with [xk]i > 0 means
the max in (27) evaluates as [xk]i. Then, again with (26), the min in (27) yields

(28) [φ(xk)]i = ∇if(xk) + λ = −[sk]i.

Subcase 1b. Suppose that [xk]i > 0 and ∇if(xk)+λ ≤ 0, so ∇if(xk) ≤ −λ. Then,
[β(xk)]i = 0 and

(29) [φ(xk)]i = ∇if(xk) + λ = −[sk]i.
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Subcase 1c. Suppose that [xk]i = 0 and ∇if(xk)+λ ≤ 0, so ∇if(xk) ≤ −λ. Then,
[φ(xk)]i = 0 and

(30) [β(xk)]i = ∇if(xk) + λ = −[sk]i.

Subcase 1d. Suppose that [xk]i < 0 and ∇if(xk)+λ < 0, so ∇if(xk) < −λ. Then,
[β(xk)]i = 0 and

(31) [φ(xk)]i = max{∇if(xk)− λ,min{[xk]i,∇if(xk) + λ}}.

By (26), it follows that [xk]i > ∇if(xk) +λ, which along with ∇if(xk) +λ < 0 means
that the min in (31) evaluates as ∇if(xk)+λ. Then, since ∇if(xk)+λ > ∇if(xk)−λ,
the max in (31) yields

(32) [φ(xk)]i = ∇if(xk) + λ = −[sk]i.

Since Subcases 1a–1d exhaust all possibilities under (26), we conclude from the results
in (28), (29), (30), and (32) that for Case 1 we have [sk]i = −[β(xk) + φ(xk)]i.

Case 2. Suppose that

(33) [xk −∇f(xk)]i < −λ, meaning that [xk]i < ∇if(xk)− λ.

We claim that the analysis for this case is symmetric to that in Case 1 above, from
which we may conclude that for this case we again have [sk]i = −[β(xk) + φ(xk)]i.

Case 3. Suppose that

(34) [xk −∇f(xk)]i ∈ [−λ, λ], meaning that [xk]i ∈ ∇if(xk) + [−λ, λ].

Subcase 3a. Suppose that [xk]i > 0. Then, [β(xk)]i = 0 and, since [xk]i > 0 and
(34) imply ∇if(xk) > −λ,

(35) [φ(xk)]i = min{∇if(xk) + λ,max{[xk]i,∇if(xk)− λ}}.

Since (34) also implies [xk]i > ∇if(xk) − λ, it follows along with [xk]i > 0 that the
max in (35) evaluates as [xk]i. Then, since (34) implies [xk]i < ∇if(xk) + λ, the min
in (35) yields

(36) [φ(xk)]i = [xk]i = −[sk]i.

Subcase 3b. Suppose that [xk]i = 0. Then, [φ(xk)]i = 0 and, along under (34),

(37) [β(xk)]i = −[sk]i = 0.

Subcase 3c. Suppose that [xk]i < 0. We claim that the analysis for this case is
symmetric to that in Subcase 3a, from which we may conclude that for this subcase
we again have

(38) [φ(xk)]i = [xk]i = −[sk]i.

Since Subcases 1a–1d exhaust all possibilities under (34), we conclude from the results
in (36), (37), and (38) that for Case 3 we have [sk]i = −[β(xk) + φ(xk)]i. The result
follows, as we have proved the desired result under all cases.
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Appendix B. Additional numerical experiments for FaRSA and OBA.
To explore the performance of FaRSA for various stopping tolerance levels, we created
Figures 1–3. Each plot shows the run time (y-axis) required to achieve the desired
optimality accuracy (x-axis) for the stated problem. These figures show that the
superior performance of FaRSA displayed for the stopping tolerance 10−6 in section 4.3
also generally holds for larger stopping tolerances.

Fig. 1. CPU time comparison between FaRSA and OBA for various stopping tolerances on
problems fourclass through a9a with scaled data.
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Fig. 2. CPU time comparison between FaRSA and OBA for various stopping tolerances on
problems mnist through news20 with scaled data.
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Fig. 3. CPU time comparison between FaRSA and OBA for various stopping tolerances on the
set of problems with unscaled data.

Appendix C. Numerical experiments comparing FaRSA and ASA-CG.
In this section, we compare the performance of FaRSA to the highly successful bound-
constrained solver ASA-CG [15] when applied to a bound-constrained reformulation
of problem (1). Specifically, problem (1) is equivalent to

minimize
u∈Rn,v∈Rn

f(u− v) + λeT (u+ v) subject to u ≥ 0, v ≥ 0,

which has a continuously differentiable objective function and simple bound con-
straints. The results of solving this optimization problem, with f being the logistic
function as described in the beginning of section 4, are given in Table 6. The problems
tested include those from Table 1, except that problems mnist, synthetic, pathway-ad,
and gene-ad were removed since they would require the creation of special subroutines
to interface with the ASA-CG code because they are not part of the LIBSVM repos-
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Table 6
Number of objective function evaluations (Fevals), object gradient evaluations (Gevals), and

CPU time (Time) measured in seconds for FaRSA and ASA-CG.

FaRSA ASA-CG
Problems N × n Fevals Gevals Time Fevals Gevals Time
fourclass 1.7e+3 15 8 0.0049 23 14 0.0033

liver-disorders 2.1e+3 15 9 0.0057 66 32 0.0037
heart 3.5e+3 9 9 0.0071 49 35 0.0025

diabetes 6.1e+3 37 23 0.0196 320 184 0.0424
breast-cancer 6.8e+3 14 12 0.0090 48 29 0.0047

australian 9.7e+3 14 12 0.0144 143 88 0.0172
svmguide1 1.2e+4 15 11 0.0564 148 76 0.0719

sonar 1.2e+4 27 18 0.0201 310 198 0.0171
german.numer 2.4e+4 31 24 0.0317 1122 624 0.2004

svmguide3 2.7e+4 25 16 0.0186 335 204 0.0778
splice 6.0e+4 14 10 0.0101 33 25 0.0088

colon-cancer 1.2e+5 165 49 0.0843 231 168 0.0504
leukemia 2.4e+5 100 30 0.0915 247 156 0.1189

duke-breast-cancer 2.7e+5 95 29 0.0894 205 151 0.1170
cod-rna 4.83+5 43 34 0.4876 254 143 2.2957

skin-nonskin 7.4e+5 15 9 0.1166 15 12 0.4279
mushrooms 9.1e+5 27 15 0.0309 87 61 0.1441
madelon 1.0e+6 255 163 6.5567 85545 49956 179.08
ijcnn1 1.1e+6 10 10 0.0615 238 139 2.1032
a9a 4.0e+6 65 35 0.7820 1616 952 9.6969
w8a 1.5e+7 41 24 0.9708 564 362 5.1881

gisette 3.0e+7 185 89 13.305 4585 2666 263.12
covtype.binary 3.1e+7 40 6 1.0416 51 31 4.1737

SUSY 9.0e+7 — — max iter 10 7 9.6931
rcv1.binary 9.6e+8 17 17 0.3919 269 166 2.3506

real-sim 1.5e+9 26 19 2.3221 271 145 5.8905
news20 2.7e+10 23 19 6.0909 652 376 35.004

itory. Here, we have placed the test problems in increasing order according to the
value N×n, i.e., the product of the data set size (N) with the number of features (n).
We used the same experimental setup for FaRSA as described in section 4.2 and used
the default setup provided by the ASA-CG software package.

We can clearly observe that FaRSA becomes better compared to ASA-CG as
N × n increases in terms of function evaluations, gradient evaluations, and time. We
suspect that an implementation of FaRSA in a computer language such as C (the
same language that ASA-CG is written in) would allow FaRSA to outperform ASA-
CG on every test problem except for problem SUSY, which FaRSA failed to solve.
However, it is also important to remark that ASA-CG only uses first derivatives in
its implementation.
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