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ITERATIVE REWEIGHTED LINEAR LEAST SQUARES FOR
EXACT PENALTY SUBPROBLEMS ON PRODUCT SETS∗
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Abstract. We present two matrix-free methods for solving exact penalty subproblems on prod-
uct sets that arise when solving large-scale optimization problems. The first approach is a novel
iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed
subproblems while automatically updating a relaxation vector. The second approach is based on
alternating direction augmented Lagrangian (ADAL) technology applied to our setting. The main
computational costs of each algorithm are the repeated minimizations of convex quadratic functions
which can be performed matrix-free. We prove that both algorithms are globally convergent un-
der loose assumptions and that each requires at most O(1/ε2) iterations to reach ε-optimality of
the objective function. Numerical experiments exhibit the ability of both algorithms to efficiently
find inexact solutions. However, in certain cases, these experiments indicate that IRWA can be
significantly more efficient than ADAL.
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iterative reweighting methods, augmented Lagrangian methods, alternating direction methods
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1. Introduction. The central focus of this paper is the numerical solution of
exact penalty subproblems, which we define to be any problem of the form

(1.1) min
x∈X

gTx+ 1
2x

THx+ dist (Ax+ b |C ) ,

where g ∈ R
n, H ∈ R

n×n is symmetric, A ∈ R
m×n, b ∈ R

m, X ⊂ R
n, C ⊂ R

m,
and dist (· |C ) measures distance to C. The set X is assumed to be simple; e.g., it
may represent box constraints, a trust-region constraint, or both. Subproblems of
this type arise in numerous contexts in optimization including nonlinear feasibility
problems and general nonlinear optimization [4, 8, 20]. In these applications, the
matrix H represents an approximation to the Hessian of the Lagrangian [6].

To approximately solve large-scale instances of (1.1) where C is a product set, we
discuss two solution methods based on linear least-squares subproblems. These solu-
tion methods are matrix-free in the sense that the least-squares subproblems—with
convex quadratic objective functions—can be solved in a matrix-free manner. The
first approach is an iterative reweighting strategy [2, 17, 19, 23, 27], while the second
is based on alternating direction augmented Lagrangian (ADAL) technology [3, 7, 24].
Greater emphasis is placed on the design of our first approach, which is novel in this
setting and provides an interesting and potentially powerful extension to the classical
theory for iterative reweighted least squares. In addition, we present an analysis for
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262 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

an ADAL approach applied in this setting for the purposes of comparison. The ADAL
methodology is well suited to problem (1.1) and is a natural choice for this purpose.
In addition, to the best of our knowledge, our implementation and analysis in this
context are unique in the literature on this topic and so are of independent interest.
We prove that both algorithms are globally convergent under loose assumptions and
that each requires at most O(1/ε2) iterations to reach ε-optimality of the objective of
(1.1). We conclude with numerical experiments that compare these two approaches.

Throughout the paper, we assume that the set C takes the product form

(1.2) C := C1 × · · · × Cl,

where, for each i ∈ I := {1, 2, . . . , l}, the set Ci ⊂ R
mi is nonempty, closed, and

convex. Under this assumption and with a particular distance function, problem
(1.1) can be reformulated as follows. First, we can conformally decompose A and b as

A =

⎡
⎢⎣
A1

...
Al

⎤
⎥⎦ and b =

⎛
⎜⎝
b1
...
bl

⎞
⎟⎠,

where, for each i ∈ I, we have Ai ∈ R
mi×n and bi ∈ R

mi . For example, if C :=
{0}s×R

l−s
+ , then dist (Ax+ b |C ) is an exact penalty term associated with a system

of linear equations and inequalities involving the affine function Ax + b. On the
product space R

m1 × · · · × R
ml , we define a norm adapted to this structure as

(1.3)
∥∥(yT1 , yT2 , . . . , yTl )T∥∥ :=

∑
i∈I

‖yi‖2 .

For future reference, we remark that the corresponding dual norm is

‖y‖∗ = sup
i∈I

‖yi‖2 .

With this notation, we may write

(1.4) dist (y |C ) =
∑
i∈I

dist2 (yi |Ci ) ,

where, for any set S, we define the distance function dist2 (y |S ) := infz∈S ‖y − z‖2.
Hence, with ϕ(x) := gTx+ 1

2x
THx, subproblem (1.1) takes the form

(1.5) min
x∈X

J0(x), where J0(x) := ϕ(x) +
∑
i∈I

dist2 (Aix+ bi |Ci ) .

Problems of the form (1.5) and algorithms for solving them have received a great
deal of study over the last 30 years [1, 5, 9]. In addition, applications where the set
C in (1.1) takes the form

⋂
i∈I Ci, where Ci ⊂ R

mi is nonempty, closed, and convex
for each i ∈ I, are easily modeled in our framework by setting Ai := A and bi := b
for each i ∈ I, and C := C1 × · · · × Cl.

1.1. Notation. Much of the notation that we use is standard, and, when it is
not, a definition is provided. For convenience, we review some of this notation here.
The set R

n is the real n-dimensional Euclidean space with R
n
+ being the positive

orthant in R
n and R

n
++ the interior of Rn

+. The set of real m × n matrices will be
denoted as R

m×n. The Euclidean norm on R
n is denoted ‖·‖2, and its closed unit
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ITERATIVE REWEIGHTED LINEAR LEAST SQUARES 263

ball is B2 := {x | ‖x‖2 ≤ 1}. Throughout the paper, it is important to keep in mind
that ‖y‖ �= ‖y‖2, where ‖y‖ is defined in (1.3), since we make heavy use of both of
these norms. The closed unit ball of the norm defined in (1.3) will be denoted by B.
Vectors in R

n will be considered as column vectors and so we can write the standard
inner product on R

n as 〈u, v〉 := uT v for all {u, v} ⊂ R
n. The set N is the set of

natural numbers {1, 2, . . .}. Given {u, v} ⊂ R
n, the line segment connecting them is

denoted by [u, v]. Given a set X ⊂ R
n, we define the convex indicator for X by

δ (x |X ) :=

{
0 if x ∈ X ,

+∞ if x /∈ X ,

and its support function by

δ∗ (y |X ) := sup
x∈X

〈y, x〉 .

A function f : Rn → R̄ := R ∪ {+∞} is said to be convex if its epigraph,

epi(f) := {(x, μ) | f(x) ≤ μ} ,
is a convex set. The function f is said to be closed (or lower semicontinuous) if epi(f)
is closed, and f is said to be proper if f(x) > −∞ for all x ∈ R

n and dom (f) :=
{x | f(x) < ∞} �= ∅. If f is convex, then the subdifferential of f at x̄ is given by

∂f(x̄) := {z | f(x̄) + 〈z, x− x̄〉 ≤ f(x) ∀x ∈ R
n } .

Given a closed convex X ⊂ R
n, the normal cone to X at a point x̄ ∈ X is given by

N (x̄ |X) := {z | 〈z, x− x̄〉 ≤ 0 ∀x ∈ X } .
It is well known that N (x̄ |X) = ∂δ (x̄ |X ); e.g., see [22, Exercise 8.14]. Given a set
S ⊂ R

m and a matrix M ∈ R
m×n, the inverse image of S under M is given by

M−1S := {x |Mx ∈ S } .
Since the set C in (1.2) is nonempty, closed, and convex, the distance function

dist (y |C ) is convex. Using the techniques of [22], it is easily shown that the subdif-
ferential of the distance function (1.4) is

(1.6) ∂dist (p |C ) = ∂dist2 (p1 |C1 )× · · · × ∂dist2 (pl |Cl ) [22, Proposition 10.5],

where, for each i ∈ I, we have

(1.7) ∂dist2 (pi |Ci ) =

⎧⎨
⎩

(I−PCi
)pi

‖(I−PCi
)pi‖

2

if i �∈ A(p),

B2 ∩N (pi |Ci) if i ∈ A(p)
[22, Example 8.53].

Here, we have defined

A(p) := {i ∈ I |dist2 (pi |Ci ) = 0} ∀ p ∈ R
m

and let PC(p) denote the projection of p onto the set C (see Theorem 2.1).
Since we will be working on the product space R

m1 × · · · × R
ml , we will need

notation for the components of the vectors in this space. Given a vector w ∈ R
m1 ×

· · · × R
ml , we denote the components in R

mi by wi and the jth component of wi by
wij for j = 1, . . . ,mi and i ∈ I so that w = (wT

1 , . . . , w
T
l )

T . Correspondingly, given
vectors wi ∈ R

mi for i ∈ I, we denote by w ∈ R
m the vector w = (wT

1 , . . . , w
T
l )

T .
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264 J. V. BURKE, F. E. CURTIS, H. WANG, AND J. WANG

2. An iterative reweighting algorithm. We now describe an iterative algo-
rithm for minimizing the function J0 in (1.5), where in each iteration one solves a
subproblem whose objective is the sum of ϕ and a weighted linear least-squares term.
An advantage of this approach is that the subproblems can be solved using matrix-
free methods, e.g., the conjugate gradient (CG), projected gradient, and Lanczos [13]
methods. The objectives of the subproblems are localized approximations to J0 based
on projections. In this manner, we will make use of the following theorem.

Theorem 2.1 (see [28]). Let C ⊂ R
m be nonempty, closed, and convex. Then,

to every y ∈ R
m, there is a unique ȳ ∈ C such that

‖y − ȳ‖2 = dist2 (y |C ) .

We call ȳ = PC(y) the projection of y onto C. Moreover, the following hold:
(1) ȳ = PC(y) if and only if ȳ ∈ C and (y − ȳ) ∈ N (ȳ |C).
(2) For all {y, z} ⊂ R

m, the operator PC yields

‖PC(y)− PC(z)‖22 + ‖(I − PC)y − (I − PC)z‖22 ≤ ‖y − z‖22 .
Since H is symmetric and positive semidefinite, there exists A0 ∈ R

m0×n, where
m0 := rank(H), such that H = AT

0 A0. We use this representation for H in order to
simplify our mathematical presentation; this factorization is not required in order to
implement our methods. Define b0 := 0 ∈ R

n, C0 := {0} ⊂ R
n, and I0 := {0} ∪ I =

{0, 1, . . . , l}. Using this notation, we define our local approximation to J0 at a given
point x̃ and with a given relaxation vector ε ∈ R

l
++ by

(2.1) Ĝ(x̃,ε)(x) := gTx+ 1
2

∑
i∈I0

wi(x̃, ε) ‖Aix+ bi − PCi(Aix̃+ bi)‖22 ,

where, for any x ∈ R
n, we define

w0(x, ε) := 1, wi(x, ε):=
(
dist22(Aix+ bi | Ci) + ε2i

)−1/2 ∀ i ∈ I,(2.2)

and W (x, ε):= diag(w0(x, ε)Im0 , . . . , wl(x, ε)Iml
).

Define

(2.3) Ã :=

[
A0

A

]
.

We now state the algorithm.
Iterative reweighting algorithm (IRWA).

Step 0. (Initialization) Choose an initial point x0 ∈ X , an initial relaxation vector
ε0 ∈ R

l
++, and scaling parameters η ∈ (0, 1), γ > 0, and M > 0. Let σ ≥ 0 and σ′ ≥ 0

be two scalars which serve as termination tolerances for the stepsize and relaxation
parameter, respectively. Set k := 0.

Step 1. (Solve the reweighted subproblem for xk+1) Compute a solution xk+1 to
the problem

(2.4) G(xk, εk) : min
x∈X

Ĝ(xk,εk)(x).

Step 2. (Set the new relaxation vector εk+1) Set

qki := Ai(x
k+1 − xk) and rki := (I − PCi)(Aix

k + bi) ∀ i ∈ I0.
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If

(2.5)
∥∥qki ∥∥2 ≤ M

[ ∥∥rki ∥∥22 + (εki )
2
] 1

2+γ

∀ i ∈ I,

then choose εk+1 ∈ (0, ηεk]; else, set εk+1 := εk.
Step 3. (Check stopping criteria) If

∥∥xk+1 − xk
∥∥
2
≤ σ and

∥∥εk∥∥
2
≤ σ′, then stop;

else, set k := k + 1 and go to Step 1.
Remark 2.2.In cases where Ci = {0} ⊂ R for all i ∈ I and φ ≡ 0, this algorithm

has a long history in the literature. Two early references are [2] and [23]. In such
cases, the algorithm reduces to the classical algorithm for minimizing ‖Ax + b‖1 using
iteratively reweighted least squares.

Remark 2.3.If there exists z0 such that AT
0 z0 = g, then, by setting b0 := z0, the

linear term in the definition of Ĝ, namely, gTx, can be eliminated.
Remark 2.4.It is often advantageous to employ a stopping criterion based on a

percent reduction in the duality gap rather than the stopping criteria given in Step
3 above [4, 5]. In such cases, one keeps track of both the primal objective values
Jk
0 := J0(x

k) and the dual objective values

Ĵk
0 := 1

2 (g +AT ũk)TH−1(g +AT ũk)− bT ũk +
∑
i∈I

δ∗
(
ũk
i |Ci

)
,

where the vectors ũk := Wkr
k are dual feasible (see (5.2) for a discussion of the dual

problem). Given σ ∈ (0, 1), Step 3 above can be replaced by the following:
Step 3′. (Check stopping criterion) If (J1

0 + Ĵk
0 ) ≤ σ(J1

0 − Jk
0 ), then stop; else, set

k := k + 1 and go to Step 1.
This is the stopping criterion employed in some of our numerical experiments. Nonethe-
less, for our analysis, we employ Step 3 as it is stated in the formal description of
IRWA for those instances when dual values Ĵk

0 are unavailable, such as when these
computations are costly or subject to error.

2.1. Smooth approximation to J0. Our analysis of IRWA is based on a
smooth approximation to J0. Given ε ∈ R

l
+, define the ε-smoothing of J0 by

(2.6) J(x, ε) := ϕ(x) +
∑
i∈I

√
dist22(Aix+ bi | Ci) + ε2i .

Note that J0(x) ≡ J(x, 0) and that J(x, ε) is jointly convex in (x, ε) since

J(x, ε) = ϕ(x) +
∑
i∈I

dist2

([
Ai 0
0 eTi

](
x
ε

)
+

(
bi
0

)
|Ci × {0}

)
,

where ei is the ith unit coordinate vector. By [22, Corollary 10.11], (1.6), and (1.7),

∂J0(x) = ∂xJ(x, 0) = ∇ϕ(x) +AT ∂dist (· |C ) (Ax+ b)(2.7)

= ∇ϕ(x)+
∑

i�∈A(Ax+b)

AT
i

(I−PCi)(Aix+bi)

‖(I−PCi)(Aix+bi)‖2
+

∑
i∈A(Ax+b)

AT
i (B2 ∩N (Aix+ bi |Ci)).

Given x̃ ∈ R
n and ε̃ ∈ R

l
++, we define a weighted approximation to J(·, ε̃) at x̃ by

G(x̃,ε̃)(x) := gTx+ 1
2

∑
i∈I0

wi(x̃, ε̃)dist
2
2 (Aix+ bi |Ci ) .
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Observe that G is defined similarly to Ĝ from (2.1), except that in Ĝ the distance
from Aix+ bi is taken to the projection of Aix̃+ bi, not to that of Aix+ bi itself.

We have the following fundamental fact about solutions of G(x̃, ε̃) defined by (2.4).
Lemma 2.5. Let x̃ ∈ X, ε̃ ∈ R

l
++, ε̂ ∈ (0, ε̃], and x̂ ∈ argminx∈X Ĝ(x̃,ε̃)(x). Set

w̃i := wi(x̃, ε̃) and qi := Ai(x̂ − x̃) for i ∈ I0, W̃ := W (x̃, ε̃), and q := (qT0 , . . . , q
T
l )

T .
Then,

(2.8) G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃) ≤ − 1
2q

T W̃ q

and

(2.9) J(x̃, ε̃)− J(x̂, ε̂) ≥ 1
2q

T W̃ q.

Proof. We first prove (2.8). Define r̂i := (I − PCi)(Aix̂ + bi) and r̃i := (I −
PCi)(Aix̃ + bi) for i ∈ I0, and set r̂ := (r̂T0 , . . . , r̂

T
l )

T and r̃ := (r̃T0 , . . . , r̃
T
l )

T . Since

x̂ ∈ argminx∈X Ĝ(x̃,ε̃)(x), there exists v̂ ∈ N (x̂ |X) such that

0 = g + ÃT W̃ (Ãx̂+ b− PC(Ãx̃+ b)) + v̂ = g + ÃT W̃ (q + r̃) + v̂,

or, equivalently,

(2.10) −v̂ = g + ÃT W̃ (q + r̃).

Moreover, by the definition of the projection operator PCi , we know that

‖r̂i‖2 = ‖(I − PCi)(Aix̂+ bi)‖2 ≤ ‖Aix̂+ bi − PCi(Aix̃+ bi)‖2 = ‖qi + r̃i‖2
so that

(2.11) ‖r̂i‖22 − ‖qi + r̃i‖22 ≤ 0 ∀ i ∈ I0.
Therefore,

G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃)

= gT (x̂− x̃) + 1
2

∑
i∈I0

w̃i[‖r̂i‖22 − ‖r̃i‖22]
= gT (x̂− x̃) + 1

2

∑
i∈I0

w̃i[(‖r̂i‖22 − ‖qi + r̃i‖22) + (‖qi + r̃i‖22 − ‖r̃i‖22)]
≤ gT (x̂− x̃) + 1

2

∑
i∈I0

w̃i[‖qi + r̃i‖22 − ‖r̃i‖22] (by (2.11))

= gT (x̂− x̃) + 1
2

∑
i∈I0

w̃i[‖qi‖22 + 2 〈qi, r̃i〉]
= gT (x̂− x̃) + 1

2

∑
i∈I0

w̃i[−‖qi‖22 + 2 〈qi, qi + r̃i〉]
= − 1

2q
T W̃ q + gT (x̂− x̃) + qT W̃ (q + r̃)

= − 1
2q

T W̃ q + (x̂− x̃)T (g + ÃT W̃ (q + r̃))

= − 1
2q

T W̃ q + (x̃− x̂)T v̂ (by (2.10))

≤ − 1
2q

T W̃ q,

where the final inequality follows since x̃ ∈ X and v̂ ∈ N (x̂ |X).
We now prove (2.9). Since

√
t is a concave function of t on R+, we have

√
t̂ ≤

√
t̃+

t̂− t̃

2
√
t̃

∀ {t̂, t̃} ⊂ R++,
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and so, for i ∈ I, we have√
dist22(Aix̂+ bi | Ci) + ε̃2i

≤
√
dist22 (Aix̃+ bi |Ci ) + ε̃2i +

dist22 (Aix̂+ bi |Ci )− dist22 (Aix̃+ bi |Ci )

2
√
dist22 (Aix̃+ bi |Ci ) + ε̃2i

.(2.12)

Hence,

J(x̂, ε̂)≤ J(x̂, ε̃) = ϕ(x̂) +
∑
i∈I

√
dist22(Aix̂+ bi | Ci) + ε̃2i

≤ J(x̃, ε̃) + (ϕ(x̂)− ϕ(x̃)) + 1
2

∑
i∈I

dist22 (Aix̂+ bi |Ci )− dist22 (Aix̃+ bi |Ci )√
dist22 (Aix̃+ bi |Ci ) + ε̃2i

= J(x̃, ε̃) + [G(x̃,ε̃)(x̂)−G(x̃,ε̃)(x̃)]

≤ J(x̃, ε̃)− 1
2q

T W̃ q,

where the first inequality follows from ε̂ ∈ (0, ε̃], the second inequality follows from
(2.12), and the third inequality follows from (2.8).

2.2. Coercivity of J. Lemma 2.5 tells us that IRWA is a descent method for the
function J . Consequently, both the existence of solutions to (1.5) and the existence of
cluster points to IRWA can be guaranteed by understanding conditions under which
the function J is coercive, or equivalently, conditions that guarantee the boundedness
of the lower level sets of J over X . For this, we need to consider the asymptotic
geometry of J and X .

Definition 2.6 (see [22, Definition 3.3]). Given Y ⊂ R
m, the horizon cone of

Y is

Y ∞ :=
{
z
∣∣ ∃ tk ↓ 0, {yk} ⊂ Y such that tkyk → z

}
.

We have the basic facts about horizon cones given in the following proposition.
Proposition 2.7. The following hold:
(1) [22, Theorem 3.5] The set Y ⊂ R

m is bounded if and only if Y ∞ = {0}.
(2) [22, Exercise 3.11] Given Yi ⊂ R

mi for i ∈ I, we have (Y1 × · · · × Yl)
∞ =

Y ∞
1 × · · · × Y ∞

l .
(3) [22, Theorem 3.6] If C ⊂ R

m is nonempty, closed, and convex, then

C∞ = {z |C + z ⊂ C } .
We now prove the following result about the lower level sets of J .
Theorem 2.8. Let α > 0 and ε ∈ R

l
+ be such that the set

L(α, ε) := {x ∈ X | J(x, ε) ≤ α}
is nonempty. Then,

(2.13) L(α, ε)∞ =
{
x̄ ∈ X∞ ∣∣ gT x̄ ≤ 0, Hx̄ = 0, Ax̄ ∈ C∞ }

.

Moreover, L(α, ε) is compact for all (α, ε) ∈ R
l+1
+ if and only if

(2.14)
[
x̄ ∈ X∞ ∩ ker(H) ∩A−1C∞ satisfies gT x̄ ≤ 0

] ⇐⇒ x̄ = 0.
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Proof. Let x ∈ L(α, ε) and let x̄ be an element of the set on the right-hand side of
(2.13). Then, by Proposition 2.7, for all λ ≥ 0 we have x+λx̄ ∈ X and λAix̄+Ci ⊂ Ci

for all i ∈ I, and so for each i ∈ I we have

dist (Ai(x+ λx̄) + bi |Ci ) ≤ dist (Ai(x+ λx̄) + bi |λAix̄+ Ci )

= dist ((Aix+ bi) + λAix̄ |λAix̄+ Ci )

= dist (Aix+ bi |Ci ) .

Therefore,

J(x+ λx̄, ε) = ϕ(x) + λgT x̄+
∑
i∈I

√
dist22 (Ai(x+ λx̄) + bi |Ci ) + ε2i

≤ ϕ(x) +
∑
i∈I

√
dist22 (Aix+ bi |Ci ) + ε2i = J(x, ε) ≤ α.

Consequently, x̄ ∈ L(α, ε)∞.
On the other hand, let x̄ ∈ L(α, ε)∞. We need to show that x̄ is an element of the

set on the right-hand side of (2.13). For this, we may as well assume that x̄ �= 0. By
the fact that x̄ ∈ L(α, ε)∞, there exists tk ↓ 0 and {xk} ⊂ X such that J(xk, ε) ≤ α
and tkxk → x̄. Consequently, x̄ ∈ X∞. Moreover,

gT (tkxk) = tk(gTxk) ≤ tkJ(xk, ε) ≤ tkα → 0

and so

0 ≤ ∥∥A0(t
kxk)

∥∥2 = (tkxk)TH(tkxk) = (tk)2(xk)THxk

≤ (tk)22(J(xk, ε)− gTxk) ≤ (tk)22α− tk2gT (tkxk) → 0.

Therefore, gT x̄ ≤ 0 and Hx̄ = 0. Now, define zk := PC(Ax
k + b) for k ∈ N. Then, by

Theorem 2.1(2), we have∥∥zk∥∥
2
≤ ∥∥(I − PC)(Ax

k + b)
∥∥
2
+
∥∥Axk + b

∥∥
2
≤ α+

∥∥Axk + b
∥∥
2
,

which, since A(tkxk) + tkb → Ax̄, implies that the sequence {tkzk} is bounded.
Hence, without loss of generality, we can assume that there is a vector z̄ such that
tkzk → z̄, where by the definition of zk we have z̄ ∈ C∞. But,

0 ≤ ∥∥A(tkxk) + tkb− (tkzk)
∥∥
2
= tkdist2

(
Axk + b |C )

≤ tkJ(xk, ε)− tkgTxk ≤ tkα− gT (tkxk) → 0,

while ∥∥A(tkxk) + b− (tkzk)
∥∥
2
→ ‖Ax̄− z̄‖2 .

Consequently, x̄ ∈ X∞, gT x̄ ≤ 0, Hx̄ = 0, and Ax̄ ∈ C∞, which together imply that
x̄ is in the set on the right-hand side of (2.13).

Corollary 2.9. Suppose that the sequence {(xk, εk)} is generated by IRWA with
initial point x0 ∈ X and relaxation vector ε0 ∈ R

l
++. Then, {xk} is bounded if (2.14)

is satisfied, which follows if at least one of the following conditions holds:
(1) X is compact.
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(2) H is positive definite.
(3) C is compact and X∞ ∩ ker(H) ∩ ker(A) = {0}.
Remark 2.10.For future reference, observe that

(2.15) ker(H) ∩ ker(A) = ker(Ã),

where Ã is defined in (2.3).

2.3. Convergence of IRWA. We now return to our analysis of the convergence
of IRWA by first proving the following lemma that discusses critical properties of the
sequence of iterates computed in the algorithm.

Lemma 2.11. Suppose that the sequence {(xk, εk)} is generated by IRWA with
initial point x0 ∈ X and relaxation vector ε0 ∈ R

l
++, and, for k ∈ N, let qki and rki

for i ∈ I0 be as defined in Step 2 of the algorithm with

qk := ((qk0 )
T , . . . , (qkl )

T )T and rk := ((rk0 )
T , . . . , (rkl )

T )T .

Moreover, for k ∈ N, define

wk
i := wi(x

k, εk) for i ∈ I0 and Wk := W (xk, εk),

and set S :=
{
k
∣∣ εk+1 ≤ ηεk

}
. Then, the sequence {J(xk, εk)} is monotonically de-

creasing. Moreover, either infk∈N J(xk, εk) = −∞, in which case infx∈X J0(x) = −∞,
or the following hold:

(1)
∑∞

k=0(q
k)TWkq

k < ∞.
(2) εk → 0 and H(xk+1 − xk) → 0.

(3) Wkq
k S→ 0.

(4) wk
i r

k
i = rki /

√∥∥rki ∥∥22 + εki ∈ B2 ∩N
(
PCi(Aix

k + bi) |Ci

)
, i ∈ I, k ∈ N.

(5) −ÃTWkq
k ∈ (∇ϕ(xk) +

∑
i∈I A

T
i w

k
i r

k
i ) +N

(
xk+1 |X)

, k ∈ N.

(6) If {dist (Axk + b |C )}k∈S is bounded, then qk
S→ 0.

Proof. The fact that {J(xk, εk)} is monotonically decreasing is an immediate
consequence of the monotonicity of the sequence {εk}, Lemma 2.5, and the fact that
Wk is positive definite for all k ∈ N. If J(xk, εk) → −∞, then infx∈X J0(x) = −∞
since J0(x) = J(x, 0) ≤ J(x, ε) for all x ∈ R

n and ε ∈ R
l
+. All that remains is to

show that parts (1)–(6) hold when infk∈N J(xk, εk) > −∞, in which case we may
assume that the sequence {J(xk, εk)} is bounded below. We define the lower bound
J̃ := infk∈N J(xk, εk) = limk∈N J(xk, εk) for the remainder of the proof.

(1) By Lemma 2.5, for every positive integer k̄ we have

1
2

k̄∑
k=0

(qk)TWkq
k ≤

k̄∑
k=0

[J(xk, εk)− J(xk+1, εk+1)]

= J(x0, ε0)− J(xk̄+1, εk̄+1)

≤ J(x0, ε0)− J̃ .

Therefore, as desired, we have

∞∑
k=0

(qk)TWkq
k ≤ 2(J(x0, ε0)− J̃) < ∞.
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(2) Since η ∈ (0, 1), if εk � 0, then there exists an integer k̄ ≥ 0 and a scalar
ε̄ > 0 such that εk = ε̄ for all k ≥ k̄. Part (1) implies that (qk)TWkq

k

is summable so that (wk
i

∥∥qki ∥∥2)(∥∥qki ∥∥2) = wk
i

∥∥qki ∥∥22 → 0 for each i ∈ I0.
In particular, since wk

0 := 1 for all k ∈ N, this implies that qk0 → 0, or
equivalently that H(xk+1 − xk) → 0. In addition, since for each i ∈ I both
sequences {∥∥qki ∥∥2} and {wk

i

∥∥qki ∥∥2} cannot be bounded away from 0, there is

a subsequence Ŝ ⊂ N and a partition {I1, I2} of I such that
∥∥qki ∥∥2 Ŝ→ 0 for

all i ∈ I1 and wk
i

∥∥qki ∥∥2 Ŝ→ 0 for all i ∈ I2. Hence, there exists k0 ∈ Ŝ such
that for all k ≥ k0 we have

∥∥qki ∥∥2 ≤ M
[ ∥∥rki ∥∥22 + ε̄2i

] 1
2+γ

∀ i ∈ I1
and wk

i

∥∥qki ∥∥2 ≤ M
[ ∥∥rki ∥∥22 + ε̄2i

]γ
∀ i ∈ I2.

Therefore, since wk
i = (‖rki ‖2 + (εki )

2)−1/2, we have for all k0 ≤ k ∈ Ŝ that

∥∥qki ∥∥2 ≤ M
[ ∥∥rki ∥∥22 + ε̄2i

] 1
2+γ

∀i ∈ I.

However, for every such k, Step 2 of the algorithm chooses εk+1 ∈ (0, ηεk].
This contradicts the supposition that εk = ε̄ > 0 for all k ≥ k̄, so we conclude
that εk → 0.

(3) It has just been shown in part (2) that wk
0q

k
0 = qk0 → 0, so we need only show

that wk
i

∥∥qki ∥∥2 S→ 0 for each i ∈ I.
Our first step is to show that for every subsequence Ŝ ⊂ S and i0 ∈ I, there is
a further subsequence S̃ ⊂ Ŝ such that wk

i0

∥∥qki0∥∥2 S̃→ 0. The proof uses a trick

from the proof of part (2). Let Ŝ ⊂ S be a subsequence and i0 ∈ I. Part (1)
implies that (wk

i

∥∥qki ∥∥2)(∥∥qki ∥∥2) = wk
i

∥∥qki ∥∥22 → 0 for each i ∈ I0. As in the

proof of part (2), this implies that there is a further subsequence S̃ ⊂ Ŝ and

a partition {I1, I2} of I such that
∥∥qki ∥∥2 S̃→ 0 for all i ∈ I1 and wk

i

∥∥qki ∥∥2 S̃→ 0
for all i ∈ I2. If i0 ∈ I2, then we would be done, so let us assume that
i0 ∈ I1. We can assume that S̃ contains no subsequence on which wk

i0

∥∥qki0∥∥2
converges to 0 since, otherwise, again we would be done. Hence, we assume

that wk
i0

∥∥qki0∥∥2 S̃
� 0. Since

∥∥qki0∥∥2 S̃→ 0 as i0 ∈ I1, this implies that there is a

subsequence S̃0 ⊂ S̃ such that wk
i0

S̃0→ ∞, i.e., (
∥∥rki0∥∥22 + (εki0)

2)
S̃0→ 0. But, by

Step 2 of the algorithm, for all k ∈ S,

∥∥qki ∥∥2 ≤ M
[ ∥∥rki ∥∥22 + (εki )

2
] 1

2+γ

∀ i ∈ I,

or, equivalently,

wk
i

∥∥qki ∥∥2 ≤ M
[ ∥∥rki ∥∥22 + (εki )

2
]γ

∀ i ∈ I,

giving the contradiction wk
i0

∥∥qki0∥∥2 S̃0→ 0. Hence, wk
i0

∥∥qki0∥∥2 S̃→ 0, and we have

shown that for every subsequence Ŝ ⊂ S and i0 ∈ I, there is S̃ ⊂ Ŝ such that

wk
i

∥∥qki ∥∥2 S̃→ 0.

D
ow

nl
oa

de
d 

05
/2

5/
15

 to
 1

28
.1

80
.7

1.
10

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE REWEIGHTED LINEAR LEAST SQUARES 271

Now, if Wkq
k S
� 0, then there would exist a subsequence Ŝ ⊂ S and an

index i ∈ I such that {wk
i

∥∥qki ∥∥2}k∈Ŝ remains bounded away from 0. But,

by what we have just shown in the previous paragraph, Ŝ contains a further

subsequence S̃ ⊂ Ŝ with wk
i

∥∥qki ∥∥2 S̃→ 0. This contradiction establishes the
result.

(4) By Theorem 2.1, we have

rki ∈ N
(
PCi(Aix

k + bi) |Ci

) ∀ i ∈ I0, k ∈ N,

from which the result follows.
(5) By convexity, the condition xk+1 ∈ argminx∈X Ĝ(xk,εk)(x) is equivalent to

0 ∈ ∇xĜ(xk,εk)(x
k+1) +N

(
xk+1 |X)

= g +
∑
i∈I0

AT
i w

k
i (q

k
i + rki ) +N

(
xk+1 |X)

= ÃTWkq
k +∇ϕ(xk) +

∑
i∈I

AT
i w

k
i r

k
i +N

(
xk+1 |X)

.

(6) Let i ∈ I. We know from part (3) that wk
i

∥∥qki ∥∥2 S→ 0. If
∥∥qki ∥∥2 S

� 0,

then there exists a subsequence Ŝ ⊂ S such that {∥∥qki ∥∥2}k∈Ŝ is bounded

away from 0, which would imply that (
∥∥rki ∥∥22 + (εki )

2)−1/2 = wk
i

Ŝ→ 0. But

then
∥∥rki ∥∥2 Ŝ→ ∞ since 0 ≤ εk ≤ ε0, which contradicts the boundedness of

{dist (Axk + b |C )}k∈S .

In the next result, we give conditions under which every cluster point of the
subsequence {xk}k∈S is a solution to minx∈X J0(x), where S is defined in Lemma 2.11.
Since J0 is convex, this is equivalent to showing that 0 ∈ ∂J0(x̄) +N (x̄ |X) .

Theorem 2.12. Suppose that the sequence {(xk, εk)} is generated by IRWA with
initial point x0 ∈ X and relaxation vector ε0 ∈ R

l
++ and that the sequence {J(xk, εk)}

is bounded below. Let S be defined as in Lemma 2.11. If either

(a) ker(A) ∩ ker(H) = {0} and {dist (Axk + b |C )}k∈S is bounded, or
(b) X = R

n,

then any cluster point x̄ of the subsequence {xk}k∈S satisfies 0 ∈ ∂J0(x̄) +N (x̄ |X).

Moreover, if (a) holds, then (xk+1 − xk)
S→ 0.

Proof. Let the sequences {qk}, {rk}, and {Wk} be defined as in Lemma 2.11,
and let x̄ be a cluster point of the subsequence {xk}k∈S . Let Ŝ ⊂ S be a subsequence

such that xk Ŝ→ x̄. Without loss of generality, due to the upper semicontinuity of the
normal cone operator, [22, Proposition 6.6], the continuity of the projection operator,
and Lemma 2.11(4), we can assume that for each i ∈ A(Ax̄ + b) there exists

(2.16) ūi ∈ B2 ∩N (Aix̄+ bi |Ci) such that wk
i r

k
i

Ŝ→ ūi.

Also due to the continuity of the projection operator, for each i /∈ I(Ax̄+ b) we have

(2.17) wk
i r

k
i

Ŝ→ (I − PCi)(Aix̄+ bi)

‖(I − PCi)(Aix̄+ bi)‖2
.
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Let us first suppose that (b) holds, i.e., that X = R
n so that N (x |X) = {0} for

all x ∈ R
n. By (2.16)–(2.17), Lemma 2.11 parts (3) and (5), and (2.7), we have

0 ∈ ∇ϕ(x̄) +
∑

i/∈A(Ax̄+b)

AT
i

(I − PCi)(Aix̄+ bi)

‖(I − PCi)(Aix̄+ bi)‖2
+

∑
i∈A(Ax̄+b)

AT
i (B2 ∩N (Aix̄+ bi |Ci))

= ∂J0(x̄).

Next, suppose that (a) holds, i.e., that ker(A) ∩ ker(H) = {0} and the set
{dist (Axk + b |C )}k∈S is bounded. This latter fact and Lemma 2.11(6) imply that

qk
S→ 0. We now show that (xk+1 − xk)

S→ 0. Indeed, if this were not the case,
then there would exist a subsequence Ŝ ⊂ S and a vector w̄ ∈ R

n with ‖w̄‖2 = 1

such that {∥∥xk+1 − xk
∥∥
2
}Ŝ is bounded away from 0 while xk+1−xk

‖xk+1−xk‖2

Ŝ→ w̄. But

then qk/
∥∥xk+1 − xk

∥∥
2

Ŝ→ 0 while qk/
∥∥xk+1 − xk

∥∥
2
= Ã xk+1−xk

‖xk+1−xk‖2

Ŝ→ Ãw̄, where

Ã is defined in (2.3). But then 0 �= w̄ ∈ ker(H) ∩ ker(A) = ker(Ã), a contradic-

tion. Hence, (xk+1 − xk)
S→ 0, and so xk+1 = xk + (xk+1 − xk)

S→ x̄. In par-
ticular, this and the upper semicontinuity of the normal cone operator impl that
lim supk∈S N

(
xk+1 |X) ⊂ N (x̄ |X). Hence, by (2.16)–(2.17), Lemma 2.11 parts (3)

and (5), and (2.7), we have

0 ∈ ∇ϕ(x̄) +
∑

i/∈I(Ax̄+b)

AT
i

(I − PCi)(Aix̄+ bi)

‖(I − PCi)(Aix̄+ bi)‖2
+

∑
i∈I(Ax̄+b)

AT
i (B2 ∩N (Aix̄+ bi |Ci))

+N (x̄ |X)

= ∂J0(x̄) +N (x̄ |X) ,

as desired.
The previously stated Corollary 2.9 provides conditions under which the sequence

{xk} has cluster points. One of these conditions is that H is positive definite. In such
cases, the function J0 is strongly convex and so the problem (1.5) has a unique global
solution x∗, meaning that the entire sequence converges to x∗. We formalize this
conclusion with the following theorem.

Theorem 2.13. Suppose that H is positive definite and the sequence {(xk, εk)} is
generated by IRWA with initial point x0 ∈ X and relaxation vector ε0 ∈ R

l
++. Then,

the problem (1.5) has a unique global solution x∗ and xk → x∗.
Proof. Since H is positive definite, the function J(x, ε) is strongly convex in x

for all ε ∈ R
l
+. In particular, J0 is strongly convex and so (1.5) has a unique global

solution x∗. By Corollary 2.9, the set L(J(x0, ε0), ε0) is compact, and, by Lemma 2.5,
the sequence J(xk, εk) is decreasing; hence, {xk} ⊂ L(J(x0, ε0), ε0). Therefore, the
set {dist (Axk + b |C )}k∈S is bounded and ker(H) ∩ ker(A) ⊂ ker(H) = {0}, and
so, by Theorem 2.12, the subsequence {xk}k∈S has a cluster point x̄ satisfying 0 ∈
∂J0(x̄) +N (x̄ |X). But the only such point is x̄ = x∗, and hence xk S→ x∗.

Since the sequence {J(xk, εk)} is monotonically decreasing and bounded below

by Corollary 2.9, it has a limit J̃ . Since xk S→ x∗, we have J̃ = minx∈X J0(x). Let
S̃ be any subsequence of N. Since {xk}k∈S̃ ⊂ L(J(x0, ε0), ε0) (which is compact

by Corollary 2.9(2)), this subsequence has a further subsequence S̃0 ⊂ S̃ such that

xk S̃0→ x̄ for some x̄ ∈ X . For this subsequence, J(xk, ε0)
S̃0→ J̃ , and, by continuity,

J(xk, ε0)
S̃0→ J(x̄, 0) = J0(x̄). Hence, x̄ = x∗ by uniqueness. Therefore, since every
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subsequence of {xk} has a further subsequence that converges to x∗, it must be the
case that the entire sequence converges to x∗.

2.4. Complexity of IRWA. A point x̃ ∈ X is an ε-optimal solution to (1.5) if

(2.18) J0(x̃) ≤ inf
x∈X

J0(x) + ε.

In this section, we prove the following result.
Theorem 2.14. Consider the problem (1.5) with X = R

n and H positive definite.
Let ε > 0 and ε ∈ R

l
++ be such that

(2.19) ‖ε‖1 ≤ ε/2 and ε ≤ 4lε̃,

where ε̃ := mini∈I εi. Suppose that the sequence {(xk, εk)} is generated by IRWA with
initial point x0 ∈ R

n and relaxation vector ε0 = ε ∈ R
l
++, and that the relaxation

vector is kept fixed so that εk = ε for all k ∈ N. Then, in at most O(1/ε2) iterations,
xk is an ε-optimal solution to (1.5), i.e., (2.18) holds with x̃ = xk.

The proof of this result requires a few preliminary lemmas. For ease of presenta-
tion, we assume that the hypotheses of Theorem 2.14 hold throughout this section.
Thus, in particular, Corollary 2.9 and the strict convexity and coercivity of J tell us
that there exists τ > 0 such that

(2.20)
∥∥xk − xε

∥∥
2
≤ τ ∀ k ∈ N,

where xε is the solution to minx∈Rn J(x, ε). Let wi for i ∈ I and Ã be given as in
(2.2) and (2.3), respectively. In addition, define

Ri(ri) :=
ri√

‖ri‖22 + ε2i

, ri(x) := (I − PCi)(Aix+ bi) for i ∈ I

and u(x, ε) := ∇ϕ(x) +
∑
i∈I

wi(x, ε)A
T
i ri(x).

Recall that

∂xJ(x, ε) = ∇ϕ(x)+
∑

i/∈A(Ax+b)

wi(x, ε)A
T
i ri(x)

+
∑

i∈A(Ax+b)

wi(x, ε)A
T
i (B2 ∩N(Aix+ bi|Ci)),

so that u(x, ε) ∈ ∂xJ(x, ε). It is straightforward to show that, for each i ∈ I, we have

∇riRi(ri) =
1√

‖ri‖22 + ε2i

(
I − rir

T
i

‖ri‖22 + ε2i

)

so that

(2.21) ‖∇riRi(ri)‖2 ≤ 1/εi ∀ ri.
Consequently, for each i ∈ I, the function Ri is globally Lipschitz continuous with
Lipschitz constant 1/εi. This allows us to establish a similar result for the mapping
u(x, ε) as a function of x, which we prove as our next result. For convenience, we use

ū := u(x̄, ε), û := u(x̂, ε), and uk := u(xk, ε)

and similar shorthand for wi(x, εi), W (x, ε), and ri(x).
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Lemma 2.15. Let the hypotheses of Theorem 2.14 hold. Moreover, let λ be
the largest eigenvalue of H and σ1 be an upper bound on all singular values of the
matrices Ai for i ∈ I. Then, as a function of x, the mapping u(x, ε) is globally
Lipschitz continuous with Lipschitz constant β := λ+ lσ2

1/ε̃.
Proof. By Theorem 2.1, for all {x̄, x̂} ⊂ R

n, we have

(2.22) ‖r̄i − r̂i‖2 ≤ ‖Ai(x̄− x̂)‖2 ≤ σ1 ‖x̄− x̂‖2 .

Therefore,

‖ū− û‖2 =

∥∥∥∥∥H(x̄− x̂) +
∑
i∈I

AT
i (Ri(r̄i)−Ri(r̂i))

∥∥∥∥∥
2

≤ ‖H‖2 ‖x̄− x̂‖2 + 1
ε̃

∑
i∈I

‖Ai‖2 ‖r̄i − r̂i‖2

≤ ‖H‖2 ‖x̄− x̂‖2 + 1
ε̃

∑
i∈I

‖Ai‖22 ‖x̄− x̂‖2

≤ (λ+ lσ2
1/ε̃) ‖x̄− x̂‖2 ,

where the first inequality follows from (2.21), the second from (2.22), and the last
from the fact that the 2-norm of a matrix equals its largest singular value.

By Lemma 2.15 and the subgradient inequality, we obtain the bound

(2.23) 0 ≤ J(x̄, ε)− J(x̂, ε)− 〈û, x̄− x̂〉 ≤ 〈ū− û, x̄− x̂〉 ≤ β ‖x̄− x̂‖22 .

Moreover, by part (5) of Lemma 2.11, we have

−ÃTWkq
k = −ÃTWkÃ(x

k+1 − xk) = uk ∈ ∂xJ(x
k, ε).

If we now define Dk := ÃTWkÃ, then xk − xk+1 = D−1
k uk and

(2.24) (qk)TWkq
k = (xk − xk+1)TDk(x

k − xk+1) = (uk)TD−1
k uk.

This gives the following bound on the decrease in J when going from xk to xk+1.
Lemma 2.16. Let the hypotheses of Lemma 2.15 hold. Then,

J(xk+1, ε)− J(xk, ε) ≤ −α‖uk‖22,

where α := ε̃/(2σ2
0) with σ0 the largest singular value of Ã.

Proof. By Lemma 2.5 and (2.24), we have

J(xk+1, ε)− J(xk, ε) ≤ − 1
2 (q

k)TWkq
k = − 1

2 (u
k)TD−1

k uk.

Since the ‖Dk‖2 ≤ ‖W 1/2
k ‖22‖Ã‖22, we have that the largest eigenvalue ofDk is bounded

above by σ2
0/ε̃. This implies 1

2 (u
k)TD−1

k uk ≥ α
∥∥uk

∥∥2
2
, which gives the result.

The following theorem is the main tool for proving Theorem 2.14.
Theorem 2.17. Let the hypotheses of Lemma 2.16 hold, and, as in (2.20), let xε

be the solution to minx∈Rn J(x, ε). Then,

(2.25) J(xk, ε)− J(xε, ε) ≤ 32l2σ2
0τ

2

kε

[ ‖uε‖2 ε+ τ(λε + lσ2
1)

‖uε‖2 ε+ τ(λε+ 4l2σ2
1) + 8lτσ2

0/k

]
.
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Therefore, IRWA requires O(1/ε2) iterations to reach ε-optimality for J(x, ε), i.e.,

J(xk, ε)− J(xε, ε) ≤ ε.

Proof. Set δj := J(xj , ε)− J(xε, ε) for all j ∈ N. Then, by Lemma 2.16,

0 ≤ δj+1 = J(xj+1, ε)− J(xε, ε)(2.26)

≤ J(xj , ε)− J(xε, ε)− α‖uj‖22 = δj − α‖uj‖22 ≤ δj .

If for some j < k we have δj = 0, then (2.26) implies that δk = 0 and uk = 0, which
in turn implies that xk+1 = xε and the bound (2.25) holds trivially. In the remainder
of the proof, we only consider the nontrivial case where δj > 0 for j = 0, . . . , k − 1.

Consider j ∈ {0, . . . , k − 1}. By the convexity of J and (2.20), we have

δj = J(xj , ε)− J(xε, ε) ≤ (uj)T (xj − xε) ≤ ‖uj‖2‖xj − xε‖ ≤ τ‖uj‖2.
Combining this with (2.26), gives

δj+1 ≤ δj − α

τ2
(δj)2.

Dividing both sides by δj+1δj and noting that δj

δj+1 ≥ 1 yields

(2.27)
1

δj+1
− 1

δj
≥ α

τ2
δj

δj+1
≥ α

τ2
.

Summing both sides of (2.27) from 0 to k − 1, we obtain

(2.28)
1

δk
≥ αk

τ2
+

1

δ0
=

αδ0k + τ2

δ0τ2
,

or, equivalently,

(2.29) δk ≤ δ0τ2

αδ0k + τ2
.

The inequality (2.23) implies that

δ0 = J(x0, ε)− J(xε, ε) ≤ (uε)T (x0 − xε) + β‖x0 − xε‖22 ≤ τ(‖uε‖2 + βτ),

which, together with (2.28), implies that

αδ0k + τ2

δ0τ2
≥ αk

τ2
+

1

τ(‖uε‖2 + βτ)
.

Rearranging, one has

τ2δ0

αkδ0 + τ2
≤ τ2(‖uε‖2 + βτ)

αk(‖uε‖2 + βτ) + τ
.

Substituting in β = λ + lσ2
1/ε̃ and α = ε̃/(2σ2

0) defined in Lemmas 2.15 and 2.16,
respectively, and then combining with (2.29) gives

δk ≤ τ2(‖uε‖2 + τ(λ+ lσ2
1/ε̃))

(ε̃/(2σ2
0))k(‖uε‖2 + τ(λ + lσ2

1/ε̃)) + τ

=
2σ2

0τ
2

kε̃

[ ‖uε‖2 ε̃+ τ(λε̃ + lσ2
1)

‖uε‖2 ε̃+ τ(λε̃ + lσ2
1) + 2τσ2

0/k

]
.
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Finally, using the inequalities ε ≤ 4lε̃ and ε̃ ≤ ε (recall (2.19)) gives

δk ≤ 32l2σ2
0τ

2

kε

[ ‖uε‖2 ε+ τ(λε+ lσ2
1)

‖uε‖2 ε+ τ(λε + 4l2σ2
1) + 8lτσ2

0/k

]
,

which is the desired inequality.
We can now prove Theorem 2.14.

Proof of Theorem 2.14. Let x∗ = argminx∈Rn J0(x). Then, by convexity in ε,

J(xε, ε)− J(x∗, 0) ≤ [∂εJ(x
ε, ε)]T (ε− 0)

=
∑
i∈I

ε2i√‖ri(xε)‖22 + ε2i
≤
∑
i∈I

εi = ‖ε‖1 ≤ ε/2.

By Theorem 2.17, IRWA needs O(1/ε2) iterations to reach

J(xk, ε)− J(xε, ε) ≤ ε/2.

Combining these two inequalities yields the result.

3. An alternating direction augmented Lagrangian algorithm. For com-
parison with IRWA, we now describe an alternating direction augmented Lagrangian
(ADAL) method for solving problem (1.5). This approach, like IRWA, can be solved
by matrix-free methods. Defining

Ĵ(x, p) := ϕ(x) + dist (p |C ) ,

where dist (p |C ) is defined as in (1.4), the problem (1.5) has the equivalent form

(3.1) min
x∈X,p

Ĵ(x, p) subject to Ax+ b = p,

where p := (pT1 , . . . , p
T
l )

T . In particular, note that J0(x) = Ĵ(x,Ax + b). Defining
dual variables (u1, . . . , ul), a partial Lagrangian for (3.1) is given by

L(x, p, u) := Ĵ(x, p) + 〈u, Ax+ b− p〉+ δ (x |X ) ,

and the corresponding augmented Lagrangian, with penalty parameter μ > 0, is

L(x, p, u, μ) := Ĵ(x, p) + 1
2μ ‖Ax + b− p+ μu‖22 − μ

2 ‖u‖22 + δ (x |X ) .

(Observe that due to their differing numbers of inputs, the Lagrangian value L(x, p, u)
and augmented Lagrangian value L(x, p, u, μ) should not be confused with each other,
nor with the level set value L(α, ε) defined in Theorem 2.8.)

We now state the algorithm.
ADAL algorithm.

Step 0. (Initialization) Choose an initial point x0 ∈ X , dual vectors u0
i ∈ R

mi

for i ∈ I, and penalty parameter μ > 0. Let σ ≥ 0 and σ′′ ≥ 0 be two scalars which
serve as termination tolerances for the stepsize and constraint residual, respectively.
Set k := 0.

Step 1. (Solve the augmented Lagrangian subproblems for (xk+1, pk+1)) Compute
a solution pk+1 to the problem

Lp(x
k, p, uk, μ) : min

p
L(xk, p, uk, μ)
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and a solution xk+1 to the problem

Lx(x, p
k+1, uk, μ) : min

x
L(x, pk+1, uk, μ).

Step 2. (Set the new multipliers uk+1) Set

uk+1 := uk + 1
μ (Ax

k+1 + b− pk+1).

Step 3. (Check stopping criteria) If
∥∥xk+1 − xk

∥∥
2
≤ σ and

∥∥Axk+1 + b− pk+1
∥∥
∗ ≤

σ′′, then stop; else, set k := k + 1 and go to Step 1.
Remark 3.1.As for IRWA, one can also replace the stopping criteria of Step 3 with

a criterion based on a percent reduction in duality gap; recall Remark 2.4.

3.1. Properties of the ADAL subproblems. Before addressing the conver-
gence properties of the ADAL algorithm, we discuss properties of the solutions to the
subproblems Lp(x, p, u, μ) and Lx(x, p, u, μ).

The subproblem Lp(x
k, p, uk, μ) is separable. Defining

ski := Aix
k + bi + μuk

i ∀ i ∈ I,
the solution of Lp(x

k, p, uk, μ) can be written explicitly, for each i ∈ I, as

(3.2) pk+1
i :=

{
PCi(s

k
i ) if dist2

(
ski |Ci

) ≤ μ,

ski − μ

dist2(ski |Ci )
(ski − PCi(s

k
i )) if dist2

(
ski |Ci

)
> μ.

Subproblem Lx(x, p
k+1, uk, μ), on the other hand, involves the minimization of a

convex quadratic over X , which can be solved by matrix-free methods.
Along with the dual variable estimates {uk

i }, we define the auxiliary estimates

ûk+1 := uk+1 − 1
μq

k, where qk := A(xk+1 − xk) as in IRWA Step 2.

First-order optimality conditions for (3.1) are then given by

0 ∈ ∂dist (p |C )− u,(3.3a)

0 ∈ ∇ϕ(x) +ATu+N(x|X),(3.3b)

0 = Ax+ b− p,(3.3c)

or, equivalently,

0 ∈ ∂J0(x) = ∇ϕ(x) +AT∂dist (· |C ) (Ax + b) +N (x |X).

The next lemma relates the iterates to these optimality conditions.
Lemma 3.2. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with

initial point x0 ∈ X. Then, for all k ∈ N, we have

(3.4) ûk+1 ∈ ∂dist
(
pk+1 |C )

and − 1
μA

T qk ∈ ∇ϕ(xk+1)+AT ûk+1 +N
(
xk+1 |X)

.

Therefore,

− 1
μA

T qk ∈ ∇ϕ(xk+1) +AT ∂dist
(
pk+1 |C )

+N
(
xk+1 |X)

.

Moreover, for all k ≥ 1, we have

(3.5)
∥∥ûk

∥∥
∗ ≤ 1,

∥∥sk∥∥∗ ≤ μ, and
∥∥pk∥∥∗ ≤ μ̂,
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where μ̂ := max{μ, sup‖s‖∗≤μ ‖PC(s)‖∗} < ∞.

Proof. By ADAL Step 1, the auxiliary variable pk+1 satisfies

0 ∈ ∂dist
(
pk+1 |C )− uk − 1

μ (Ax
k + b− pk+1),

which, along with ADAL Step 2, implies that

uk+1 ∈ ∂dist
(
pk+1 |C )

+ 1
μ (Ax

k+1 + b− pk+1)− 1

μ
(Axk + b− pk+1)

= ∂dist
(
pk+1 |C )

+ 1
μq

k.

Hence, the first part of (3.4) holds. Then, again by ADAL Step 1, xk+1 satisfies

0 ∈ ∇ϕ(xk+1) +
1

μ
AT (Axk+1 + b− pk+1 + μuk) +N(xk+1|X),

which, along with ADAL Step 2, implies that

(3.6) 0 ∈ ∇ϕ(xk+1) +ATuk+1 +N(xk+1|X).

Hence, the second part of (3.4) holds.
The first bound in (3.5) follows from the first part of (3.4). The second bound in

(3.5) follows from the first bound and the fact that for k ∈ N we have

sk = Axk + b+ μuk = μuk+1 − qk = μûk+1.

As for the third bound, note that if, for some i ∈ I, we have dist2
(
sk−1
i |Ci

) ≤ μ,

then, by (3.2), we have
∥∥pki ∥∥2 ≤ μ̂; on the other hand, if dist2

(
sk−1
i |Ci

)
> μ so that

0 < ξ := μ/dist2
(
sk−1
i |Ci

)
< 1, then, by (3.2) and the second bound in (3.5),∥∥pki ∥∥2 ≤ (1 − ξ)

∥∥sk−1
i

∥∥
2
+ ξμ̂ ≤ μ̂.

Consequently,
∥∥pk∥∥∗ = supi∈I

∥∥pki ∥∥2 ≤ μ̂.
For the remainder of our discussion of ADAL, we define the residuals

zk+1 := Axk+1 + b− pk+1.

Lemma 3.2 tells us that the deviation of (pk+1, ûk+1) from satisfying the first-order
stationary conditions for (3.3) can be measured by

(3.7) Ek+1 = max{∥∥qk∥∥ , ∥∥zk+1
∥∥
∗}.

3.2. Convergence of ADAL. In this section, we establish the global conver-
gence properties of the ADAL algorithm. The proofs in this section follow a standard
pattern for algorithms of this type (e.g., see [3]). We make use of the following stan-
dard assumption.

Assumption 3.3. There exists a point (x∗, p∗, u∗) satisfying (3.3).
Since (3.1) is convex, this assumption is equivalent to the existence of an optimal

solution. Moreover, the optimality conditions imply that (x∗, p∗) is a minimizer of
the convex function L(x, p, u∗) over X . We begin our analysis by providing bounds
on the optimal primal objective value.

Lemma 3.4. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with
initial point x0 ∈ X. Then, under Assumption 3.3, we have for all k ∈ N that

(3.8) (u∗)T zk+1 ≥ Ĵ(x∗, p∗)− Ĵ(xk+1, pk+1) ≥ (uk+1)T zk+1 − 1

μ
(qk)T (p∗ − pk+1).
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Proof. Since (x∗, p∗, u∗) is a saddle point of L, it follows that Ax∗ + b − p∗ = 0,
which implies by the fact that xk+1 ∈ X that

Ĵ(x∗, p∗) = L(x∗, p∗, u∗) ≤ L(xk+1, pk+1, u∗).

Rearranging, we obtain the first inequality in (3.8).
We now show the second inequality in (3.8). Recall that Steps 1 and 2 of ADAL

tell us that (3.6) holds for all k ∈ N. Therefore, by convexity, xk+1 is an optimal
solution to

min
x∈X

ϕ(x) + (uk+1)TAx.

Since this is a convex problem and x∗ ∈ X , we have

(3.9) ϕ(x∗) + (uk+1)TAx∗ ≥ ϕ(xk+1) + (uk+1)TAxk+1.

Similarly, by the first expression in (3.4) and convexity, pk+1 is an optimal solution
to

min
p

dist (p |C )− (ûk+1)T p.

Hence, by the convexity of this problem, we have

(3.10) dist (p∗ |C )− (ûk+1)T p∗ ≥ dist
(
pk+1 |C )− (ûk+1)T pk+1.

By adding (3.9) and (3.10), we obtain

Ĵ(x∗, p∗)− Ĵ(xk+1, pk+1)

≥ (ûk+1)T (p∗ − pk+1) + (uk+1)TA(xk+1 − x∗)
= (uk+1)T (p∗ − pk+1)− 1

μ (q
k)T (p∗ − pk+1) + (uk+1)TA(xk+1 − x∗)

= (uk+1)T
(
(p∗ −Ax∗)− b)− (pk+1 −Axk+1 − b)

)− 1
μ (q

k)T (p∗ − pk+1)

= (uk+1)T zk+1 − 1
μ (q

k)T (p∗ − pk+1),

which completes the proof.
Consider the measure of distance to (x∗, u∗) defined by

ωk := 1
μ

∥∥A(xk − x∗)
∥∥2
2
+ μ

∥∥uk − u∗∥∥2
2
.

In our next lemma, we show that this measure decreases monotonically.
Lemma 3.5. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL with

initial point x0 ∈ X. Then, under Assumption 3.3, we have for all k ≥ 1 that

(3.11) 1
μ (
∥∥zk+1

∥∥2
2
+
∥∥qk∥∥2

2
) + 2(xk+1 − xk)TH(xk+1 − xk) ≤ ωk − ωk+1.

Proof. By using the extremes of the inequality (3.8) and rearranging, we obtain

(uk+1 − u∗)T zk+1 − 1
μ (q

k)T (p∗ − pk+1) ≤ 0.

Since (x∗, p∗, u∗) is a saddle point of L, and so Ax∗ + b = p∗, this implies

(3.12) (uk+1 − u∗)T zk+1 − 1
μ (q

k)T zk+1 + 1
μ (x

k+1 − xk)TATA(xk+1 − x∗) ≤ 0.
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The update in Step 2 yields uk+1 = uk + 1
μz

k+1, so we have

(3.13) (uk+1 − u∗)T zk+1 =
[
(uk

i − u∗)T zk+1 + 1
2μ

∥∥zk+1
∥∥2
2

]
+ 1

2μ

∥∥zk+1
∥∥2
2
.

Let us now consider the first grouped term in (3.13). From ADAL Step 2, we have
zk+1 = μ(uk+1 − uk), which gives

(uk − u∗)T zk+1 + 1
2μ

∥∥zk+1
∥∥2
2
= μ(uk − u∗)T (uk+1 − uk) + μ

2 ‖uk+1 − uk‖22
= μ(uk − u∗)T (uk+1 − u∗)− μ(uk − u∗)T (uk − u∗)

+μ
2 ‖(uk+1 − u∗)− (uk − u∗)‖22

= μ
2 (‖uk+1 − u∗‖22 − ‖uk − u∗‖22).(3.14)

Adding the final term 1
2μ

∥∥zk+1
∥∥2
2
in (3.13) to the second and third terms in (3.12),

1
μ

(
1
2

∥∥zk+1
∥∥2
2
− (qk)T zk+1 + (xk+1 − xk)TATA(xk+1 − x∗)

)
= 1

μ

(
1
2

∥∥zk+1
∥∥2
2
− (qk)T zk+1 + (xk+1 − xk)TATA((xk+1 − xk) + (xk − x∗))

)
= 1

μ

(
1
2

∥∥zk+1 − qk
∥∥2
2
+ 1

2‖qk‖22 + (xk+1 − xk)TATA(xk − x∗)
)

= 1
μ (

1
2

∥∥zk+1 − qk
∥∥2
2
+ 1

2‖A((xk+1 − x∗)− (xk − x∗))‖22
+((xk+1 − x∗)− (xk − x∗))TATA(xk − x∗))

= 1
2μ

(∥∥zk+1 − qk
∥∥2
2
+ ‖A(xk+1 − x∗)‖22 − ‖A(xk − x∗)‖22

)
(3.15)

From (3.13), (3.14), and (3.15), we have that (3.12) reduces to

ωk+1 − ωk ≤ − 1

μ

∥∥zk+1 − qk
∥∥2
2
.

Since (3.6) holds for k ≥ 1, we have

−(vk+1 − vk) = H(xk+1 − xk) + AT (uk+1 − uk)

for some vk+1 ∈ N(xk+1|X) and vk ∈ N(xk|X). Therefore,

(uk+1 − uk)T qk = −(vk+1 − vk)T (xk+1 − xk)− (xk+1 − xk)TH(xk+1 − xk)

≤ −(xk+1 − xk)TH(xk+1 − xk),(3.16)
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where the inequality follows since the normal cone operator N (· |C) is a monotone
operator [22]. Using this inequality in the expansion of the right-hand side of (3.16)
along with the equivalence zk+1 = μ(uk+1 − uk) gives

ωk+1 − ωk ≤ − 1
μ

(‖zk+1‖22 − 2μ(uk+1 − uk)T qk + ‖qk‖22
)

≤ − 1
μ (‖zk+1‖22 + ‖qk‖22) + 2(uk+1

i − uk
i )

T qki

≤ − 1
μ (‖zk+1‖22 + ‖qk‖22)− 2(xk+1 − xk)TH(xk+1 − xk),

as desired.
We now state and prove our main convergence theorem for ADAL.
Theorem 3.6. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL

with initial point x0 ∈ X. Then, under Assumption 3.3, we have

lim
k→∞

qk = 0, lim
k→∞

zk+1 = 0, and so lim
k→∞

Ek = 0.

Moreover, the sequences {uk} and {Axk} are bounded and

lim
k→∞

Ĵ(xk, pk) = Ĵ(x∗, p∗) = J0(x
∗).

Proof. Summing (3.11) over all k ≥ 1 yields

∞∑
k=1

(
2(xk+1 − xk)TH(xk+1 − xk) + 1

μ (‖zk+1‖22 + ‖qk‖22)
)
≤ ω1,

which, since H � 0, implies that zk+1 → 0 and qk → 0. Consequently, Ek → 0.
The sequence {uk} is bounded since ûk+1 + (1/μ)qk = uk+1, where {ûk} is

bounded by (3.5) and qk → 0. Similarly, the sequence {Axk} is bounded since
μ(uk+1 − uk) + pk+1 − b = Axk+1, where the sequence {pk} is bounded by (3.5).
Finally, by (3.8), we have that Ĵ(xk, pk) → Ĵ(x∗, p∗) since both zk → 0 and qk → 0
while {pk} and {uk} are both bounded.

Corollary 3.7. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL
with initial point x0 ∈ X. Then, under Assumption 3.3, every cluster point of the
sequence {xk} is a solution to (1.5).

Proof. Let x̄ be a cluster point of {xk}, and let S ⊂ N be a subsequence such

that xk S→ x̄. By (3.5), {pk} is bounded so we may assume with no loss in generality

that there is a p̄ such that pk
S→ p̄. Theorem 3.6 tells us that Ax̄ + b = p̄ and

Ĵ(x̄, p̄) = J0(x
∗) so that J0(x̄) = Ĵ(x̄, Ax̄+ b) = Ĵ(x̄, p̄) = J0(x

∗).
We now address the question of when the sequence {xk} has cluster points. For the

IRWA of the previous section this question was answered by appealing to Theorem 2.8,
which provided necessary and sufficient conditions for the compactness of the lower
level sets of the function J(x, ε). This approach also applies to the ADAL algorithm,
but the assumptions of Theorem 2.8 in conjunction with Assumption 3.3 are more
than necessary. In the next result we consider two alternative approaches to this issue.

Proposition 3.8. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL
with initial point x0 ∈ X. If either

(a)
[
x̄ ∈ X∞ ∩ ker (H) ∩ A−1C∞ satisfies gT x̄ ≤ 0

] ⇐⇒ x̄ = 0, or
(b) Assumption 3.3 holds and

(3.17)
[
x̃ ∈ X∞ ∩ ker(H) ∩ ker(A) satisfies gT x̃ ≤ 0

] ⇐⇒ x̃ = 0,
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then {xk} is bounded and every cluster point of this sequence is a solution to (1.5).
Proof. Let us first assume that (a) holds. By Theorem 2.8, the condition in (a)

(recall (2.14)) implies that the set L(J(x0, 0), 0) is compact. Hence, a solution x∗

to (1.5) exists. By [21, Theorem 23.7], there exist p∗ and u∗ such that (x∗, p∗, u∗)
satisfies (3.3), i.e., Assumption 3.3 holds. Since

J(xk, 0) = ϕ(xk) + dist
(
Axk + b |C )

= ϕ(xk) +
∥∥(Axk + b)− PC(Ax

k + b)
∥∥

≤ ϕ(xk) +
∥∥(Axk + b)− pk

∥∥+
∥∥pk − PC(p

k)
∥∥+

∥∥PC(p
k)− PC(Ax

k + b)
∥∥

= Ĵ(xk, pk) + 2
∥∥zk∥∥ ,

the second inequality in (3.8) tells us that for all k ∈ N we have

J(xk+1, 0) ≤ Ĵ(x∗, p∗) + 2
∥∥zk∥∥− (uk+1)T zk+1 +

1

μ
(qk)T (p∗ − pk+1).

By Lemma 3.2 and Theorem 3.6, the right-hand side of this inequality is bounded for
all k ∈ N, and so, by Theorem 2.8, the sequence {xk} is bounded. Corollary 3.7 then
tells us that all cluster points of this sequence are solutions to (1.5).

Now assume that (b) holds. If the sequence {xk} is unbounded, then there is a

subsequence S ⊂ N and a vector x̄ ∈ X∞ such that
∥∥xk

∥∥
2

S→ ∞ and xk/
∥∥xk

∥∥
2

S→ x̄

with ‖x̄‖2 = 1. By Lemma 3.2, {pk} is bounded and, by Theorem 3.6, zk → 0.

Hence, (Axk + b − pk)/
∥∥xk

∥∥
2
= zk/

∥∥xk
∥∥
2

S→ 0 so that Ax̄ = 0. In addition, the

sequence {Ĵ(xk, pk)} is bounded, which implies Ĵ(xk, pk)/
∥∥xk

∥∥2
2

S→ 0 so that Hx̄ = 0.

Moreover, since H is positive semidefinite, gT (xk/
∥∥xk

∥∥
2
) ≤ Ĵ(xk, pk)/

∥∥xk
∥∥
2

S→ 0 so

that gT x̄ ≤ 0. But then (b) implies that x̄ = 0. This contradiction implies that the
sequence {xk} must be bounded. The result now follows from Corollary 3.7.

Note that, since ker(A) ⊂ A−1C∞, the condition given in (a) implies (3.17), and
(3.17) is strictly weaker whenever ker(A) is strictly contained in A−1C∞.

We conclude this section by stating a result for the case when H is positive
definite. As has been observed, in such cases, the function J0 is strongly convex and
so the problem (1.5) has a unique global solution x∗. Hence, a proof paralleling that
provided for Theorem 2.13 applies to give the following result.

Theorem 3.9. Suppose that H is positive definite and the sequence {(xk, pk, uk)}
is generated by ADAL with initial point x0 ∈ X. Then, the problem (1.5) has a unique
global solution x∗ and xk → x∗.

3.3. Complexity of ADAL. In this subsection, we analyze the complexity of
ADAL. As was done for IRWA in Theorem 2.14, we show that ADAL requires at
most O(1/ε2) iterations to obtain an ε-optimal solution to the problem (1.5). In
contrast to this result, some authors [10, 11] establish an O(1/ε) complexity for ε-
optimality for ADAL-type algorithms applied to more general classes of problems,
which includes (1.5). However, the ADAL decomposition employed by these papers
involves subproblems that are as difficult as our original problem (1.5), thereby ren-
dering these approaches unsuitable for our purposes. On the other hand, under mild
assumptions, the recent results in [26] (see also [25]) show that for a general class
of problems, which includes (3.1), the ADAL algorithm employed here has Ĵ(xk, pk)
converging to an ε-optimal solution to (3.1) with O(1/ε) complexity in an ergodic
sense and ‖Ax + b − p‖22 converging to a value less than ε with O(1/ε) complexity.
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This corresponds to an O(1/ε2) complexity for ε-optimality for problem (1.5). As of
this writing, we know of no result that applies to our ADAL algorithm that establishes
a better iteration complexity bound for obtaining an ε-optimal solution to (1.5).

We use results in [26] to establish the following result.
Theorem 3.10. Consider the problem (1.5) with X = R

n and suppose that
the sequence {(xk, pk, uk)} is generated by ADAL with initial point x0 ∈ X. Then,
under Assumption 3.3, in at most O(1/ε2) iterations we have an iterate xk̄ with
k ≤ k̄ ≤ 2k − 1 that is ε-optimal to (1.5), i.e., such that (2.18) holds with x̃ = xk̄.

The key results from [26] used to prove this theorem follow.
Lemma 3.11 (see [26, Lemma 2]). Suppose that the sequence {(xk, pk, uk)} is gen-

erated by ADAL with initial point x0 ∈ X, and, under Assumption 3.3, let (x∗, p∗, u∗)
be the optimal solution of (3.1). Then, for all k ∈ N, we have

Ĵ(xk+1, pk+1)− Ĵ(x∗, p∗) ≤ μ
2 (
∥∥uk

∥∥2
2
− ∥∥uk+1

∥∥2
2
)− 1

2μ

∥∥Axk + b− pk+1
∥∥2
2

+ 1
2μ (

∥∥Ax∗ −Axk
∥∥2
2
− ∥∥Ax∗ −Axk+1

∥∥2
2
).

Lemma 3.12 (see [26, Theorem 2]). Suppose that the sequence {(xk, pk, uk)}
is generated by ADAL with initial point x0 ∈ X, and, under Assumption 3.3, let
(x∗, p∗, u∗) be the optimal solution of (3.1). Then, for all k ∈ N, we have

∥∥Axk + b− pk
∥∥2
2
+
∥∥Axk −Axk−1

∥∥2
2
≤ 1

k

(∥∥A(x0 − x∗)
∥∥2
2
+ μ2

∥∥u0 − u∗∥∥2
2

)
,

i.e., in particular, we have

∥∥Axk + b− pk
∥∥2
2
≤ 1

k

(∥∥A(x0 − x∗)
∥∥2
2
+ μ2

∥∥u0 − u∗∥∥2
2

)
.

Remark 3.13.To see how the previous two lemmas follow from the stated results
in [26], the table below provides a guide for translating between our notation and that
of [26], which considers the problem

(3.18) min
x,z

f(x) + g(z) subject to Ax +Bz = c.

Problem (3.1) Problem (3.18)
(x, p) (z, x)
ϕ g

dist (· |C ) f
A B
−I A
−b c

For the results corresponding to our Lemmas 3.11 and 3.12, [26] requires f and g
in (3.18) to be closed, proper, and convex functions. In our case, the corresponding
functions dist (· |C ) and ϕ satisfy these assumptions.

By Lemma 3.5, the sequence {ωk} is monotonically decreasing, meaning that
{‖Axk − Ax∗‖22} and {‖uk‖22} are bounded by some τ1 > 0 and τ2 > 0, respectively.
The proof of Theorem 3.10 now follows as a consequence of the following lemma.

Lemma 3.14. Suppose that the sequence {(xk, pk, uk)} is generated by ADAL
with initial point x0 ∈ X, and, under Assumption 3.3, let (x∗, p∗, u∗) be the optimal
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solution of (3.1). Moreover, let k̄ ∈ K := {k, k+1, . . . , 2k−1} be such that Ĵ(xk̄, pk̄) =
mink∈K Ĵ(xk, pk). Then,

J0(x
k̄)− J0(x

∗) ≤
√

l(‖A(x0 − x∗)‖22 + μ2 ‖u0 − u∗‖22)
k

+
μτ2 + τ1/μ

k
.

Proof. Summing the inequality in Lemma 3.11 for j = k − 1, . . . , 2(k − 1) yields⎛
⎝ 2k−2∑

j=k−1

Ĵ(xj+1, pj+1)

⎞
⎠− kĴ(x∗, p∗)

≤ μ
2 (
∥∥uk−1

∥∥2
2
− ∥∥u2k−1

∥∥2
2
) + 1

2μ (
∥∥Ax∗ −Axk−1

∥∥2
2
− ∥∥Ax∗ −Ax2k−1

∥∥2
2
)

≤ μτ2 + τ1/μ.(3.19)

Therefore,

Ĵ(xk̄, pk̄)− Ĵ(x∗, p∗) = min
k≤j≤2k−1

Ĵ(xj , pj)− Ĵ(x∗, p∗)

≤ 1
k

2k−2∑
j=k−1

Ĵ(xj+1, pj+1)− Ĵ(x∗, p∗)

≤ 1
k (μτ2 + τ1/μ),(3.20)

where the last inequality follows from (3.19).
Next, observe that for any x ∈ R

n and p, we have

J0(x) − Ĵ(x, p) = ϕ(x) + dist (Ax+ b |C )− (ϕ(x) + dist (p |C ))

= dist (Ax+ b |C )− dist (p |C )

≤ ‖Ax + b− p‖
=

∑
i∈I

‖Aix+ bi − pi‖2

≤
√
l ‖Ax+ b− p‖2 ,(3.21)

where the first inequality follows since |dist (z |C )− dist (w |C ) | ≤ ‖z−w‖, and the
second follows by Jensen’s inequality. Combining (3.20) and (3.21) gives

J0(x
k̄)− J0(x

∗) = J0(x
k̄)− Ĵ(x∗, p∗)

= J0(x
k̄)− Ĵ(xk̄, pk̄) + Ĵ(xk̄, pk̄)− Ĵ(x∗, p∗)

≤
√
l
∥∥∥Axk̄ + b− pk̄

∥∥∥
2
+

μτ2 + τ1/μ

k

≤
√

l(‖A(x0 − x∗)‖22 + μ2 ‖u0 − u∗‖22)
k

+
μτ2 + τ1/μ

k
,

where the second inequality follows by Lemma 3.12 and the fact that k̄ ≥ k.

4. Nesterov acceleration. In order to improve the performance of both IRWA
and ADAL, one can use an acceleration technique due to Nesterov [16]. For the
ADAL algorithm, we have implemented the acceleration as described in [12], and for
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the IRWA algorithm the details are given below. We conjecture that each accelerated
algorithm requires O(1/ε) iterations to produce an ε-optimal solution to (1.5), but
this remains an open issue.

IRWA with Nesterov acceleration.

Step 0. (Initialization) Choose an initial point x0 ∈ X , an initial relaxation vector
ε0 ∈ R

l
++, and scaling parameters η ∈ (0, 1), γ > 0, and M > 0. Let σ ≥ 0 and σ′ ≥ 0

be two scalars which serve as termination tolerances for the stepsize and relaxation
parameter, respectively. Set k := 0, y0 := x0, and t1 := 1.

Step 1. (Solve the reweighted subproblem for xk+1) Compute a solution xk+1 to
the problem

G(yk, εk) : min
x∈X

Ĝ(yk,εk)(x).

Let

tk+1 :=
1+

√
1+4(tk)2

2

and yk+1 := xk+1 + tk−1
tk+1

(xk+1 − xk).

Step 2. (Set the new relaxation vector εk+1) Set

q̃ki := Ai(x
k+1 − yk) and r̃ki := (I − PCi)(Aiy

k + bi) ∀ i ∈ I0.

If

∥∥q̃ki ∥∥2 ≤ M
[ ∥∥r̃ki ∥∥22 + (εki )

2
] 1

2+γ

∀ i ∈ I,

then choose εk+1 ∈ (0, ηεk]; else, set εk+1 := εk. If J(yk+1, εk+1) > J(xk+1, εk+1),
then set yk+1 := xk+1.

Step 3. (Check stopping criteria) If
∥∥xk+1 − xk

∥∥
2
≤ σ and

∥∥εk∥∥
2
≤ σ′, then stop;

else, set k := k + 1 and go to Step 1.

In this algorithm, the intermediate variable sequence {yk} is included. If yk+1

yields an objective function value worse than xk+1, then we reset yk+1 := xk+1.
This modification preserves the global convergence properties of the original version
since

J(xk+1, εk+1)− J(xk, εk)

= J(xk+1, εk+1)− J(yk, εk) + J(yk, εk)− J(xk, εk)

≤ J(xk+1, εk)− J(yk, εk)

≤ − 1
2 (x

k+1 − yk)T ÃTWkÃ(x
k+1 − yk)

= − 1
2 (q̃

k)TWk q̃
k,(4.1)

where the inequality (4.1) follows from Lemma 2.5. Hence, 1
2 (q̃

k)TWk q̃
k is summable,

as was required for Lemma 2.11 and Theorem 2.12.

5. Application to systems of equations and inequalities. In this section,
we discuss how to apply the general results from sections 2 and 3 to the particular
case when H is positive definite and the system Ax + b ∈ C corresponds a system
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of equations and inequalities. Specifically, we take l = m, X = R
n, Ci = {0} for

i ∈ {1, . . . , s} and Ci = R− for i ∈ {s+ 1, . . . ,m} so that C := {0}s × R
m−s
− and

J0(x) = ϕ(x) + dist1 (Ax+ b |C )

= ϕ(x) +
s∑

i=1

|Aix+ bi|+
m∑

i=s+1

(Aix+ bi)+.(5.1)

The numerical performance of both IRWA and ADAL on problems of this type will
be compared in the following section. For each algorithm, we examine performance
relative to a stopping criterion based on percent reduction in the initial duality gap.
It is straightforward to show that, since H is positive definite, the Fenchel–Rockafellar
dual [21, Theorem 31.2] to (1.5) is

minimize
u

1

2
(g +ATu)TH−1(g +ATu)− bTu+

∑
i∈I

δ∗ (ui |Ci )

subject to ui ∈ B2 ∀ i ∈ I,(5.2)

which in the case of (5.1) reduces to

minimize
u

1

2
(g +ATu)TH−1(g +ATu)− bTu

subject to − 1 ≤ ui ≤ 1, i = 1, . . . , s,

0 ≤ ui ≤ 1, i = s+ 1, . . . ,m.

In the case of linear systems of equations and inequalities, IRWA can be modified
to improve the numerical stability of the algorithm. Observe that if both of the
sequences |rki | and εki are driven to zero, then the corresponding weight wk

i diverges to
+∞, which may slow convergence by unnecessarily introducing numerical instability.
Hence, we propose a modification that addresses those iterations and indices i ∈
{s + 1, . . . ,m} for which (Aix

k + bi)− < 0, i.e., those inequality constraint indices
corresponding inequality constraints that are strictly satisfied (inactive). For such
indices, it is not necessary to set εk+1

i < εki . There are many possible approaches to
address this issue, one of which is given in the algorithm below.

IRWA for systems of equations and inequalities.

Step 0. (Initialization) Choose an initial point x0 ∈ X , initial relaxation vectors
ε̂0 = ε0 ∈ R

l
++, and scaling parameters η ∈ (0, 1), γ > 0, and M > 0. Let σ ≥ 0

and σ′ ≥ 0 be two scalars which serve as termination tolerances for the stepsize and
relaxation parameter, respectively. Set k := 0.

Step 1. (Solve the reweighted subproblem for xk+1) Compute a solution xk+1 to
the problem

G(xk, εk) : min
x∈X

Ĝ(xk,εk)(x).

Step 2. (Set the new relaxation vector εk+1) Set

qki := Ai(x
k+1 − xk) and rki := (I − PCi)(Aix

k + bi) ∀ i = 0, . . . ,m.

If

(5.3)
∥∥qki ∥∥2 ≤ M

[ ∥∥rki ∥∥22 + (εki )
2
] 1

2+γ

∀ i = 1, . . . ,m,
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then choose ε̂k+1 ∈ (0, ηε̂k] and, for i = 1, . . . ,m, set

εk+1
i :=

⎧⎪⎨
⎪⎩
ε̂k+1
i , i = 1, . . . , s,

εki , i > s and (Aix
k + bi)− ≤ −ε̂ki ,

ε̂k+1
i , otherwise.

Otherwise, if (5.3) is not satisfied, then set ε̂k+1 := ε̂k and εk+1 := εk.
Step 3. (Check stopping criteria) If

∥∥xk+1 − xk
∥∥
2
≤ σ and

∥∥ε̂k∥∥
2
≤ σ′, then stop;

else, set k := k + 1 and go to Step 1.
Remark 5.1.In Step 2 of the algorithm above, the updating scheme for ε can be

modified in a variety of ways. For example, one can also take εk+1
i := εki when i > s

and (Aix
k + bi)− < 0.

This algorithm yields the following version of Lemma 2.11.
Lemma 5.2. Suppose that the sequence {(xk, εk)} is generated by IRWA for

systems of equations and inequalities with initial point x0 ∈ X and relaxation vector
ε0 ∈ R

l
++, and, for k ∈ N, let qki and rki for i ∈ I0 be as defined in Step 2 of the

algorithm with

qk := ((qk0 )
T , . . . , (qkl )

T )T and rk := ((rk0 )
T , . . . , (rkl )

T )T .

Moreover, for k ∈ N, define

wk
i := wi(x

k, εk) for i ∈ I0 and Wk := W (xk, εk),

and set S :=
{
k
∣∣ εk+1 ≤ ηεk

}
. Then, the sequence {J(xk, εk)} is monotonically de-

creasing. Moreover, either infk∈N J(xk, εk) = −∞, in which case infx∈X J0(x) = −∞,
or the following hold:

(1)
∑∞

k=0(q
k)TWkq

k < ∞.
(2) ε̂k → 0 and H(xk+1 − xk) → 0.

(3) Wkq
k S→ 0.

(4) wk
i r

k
i = rki /

√∥∥rki ∥∥22 + εki ∈ B2 ∩N
(
PCi(Aix

k + bi) |Ci

)
, i ∈ I, k ∈ N.

(5) −ÃTWkq
k ∈ (∇ϕ(xk) +

∑
i∈I A

T
i w

k
i r

k
i ) +N

(
xk+1 |X)

, k ∈ N.

(6) If {dist (Axk + b |C )}k∈S is bounded, then qk
S→ 0.

Proof. Note that Lemma 2.5 still applies since it is only concerned with properties
of the functions Ĝ and J . In addition, note that

ε̂k+1 ≤ ε̂k and ε̂k+1 ≤ εk+1 ≤ εk ∀ k ≥ 1.

With these observations, the proof of this lemma follows in precisely the same way as
that of Lemma 2.11, except that in part (2) {ε̂k} replaces {εk}.

With Lemma 5.2, it is straightforward to show that the convergence properties
described in Theorems 2.12 and 2.13 also hold for the version of IRWA in this section.

6. Numerical comparison of IRWA and ADAL. In this section, we com-
pare the performance of our IRWA and ADAL algorithms in a set of three numerical
experiments. The first two experiments involve cases where H is positive definite and
the desired inclusion Ax + b ∈ C corresponds to a system of equations and inequal-
ities. Hence, for these experiments, we employ the version of IRWA as tailored for
such systems given in the previous section. In the first experiment, we fix the problem
dimensions and compare the behavior of the two algorithms over 500 randomly gen-
erated problems. In the second experiment, we investigate how the methods behave
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when we scale up the problem size. For this purpose, we compare performance over
20 randomly generated problems of increasing dimension. The algorithms were imple-
mented in Python using the NumPy and SciPy packages; in particular, we used the
versions Python 2.7, Numpy 1.6.1, and SciPy 0.12.0 [15, 18]. In both experiments,
we examine performance relative to a stopping criterion based on percent reduc-
tion in the initial duality gap. In IRWA, the variables ũk := Wkr

k are always dual
feasible, i.e.,

ũi ∈ B2 ∩ dom (δ∗ (· |Ci )) ∀ i ∈ I
(recall Lemma 2.11(4)), and these variables constitute our kth estimate to the dual
solution. On the other hand, in ADAL, the variables ûk = uk − 1

μq
k are always dual

feasible (recall Lemma 3.2), so these constitute our kth estimate to the dual solution
for this algorithm. The duality gap at any iteration is the sum of the primal and dual
objectives at the current primal-dual iterates.

In both IRWA and ADAL, we solve the subproblems using CG, which is termi-
nated when the �2-norm of the residual is less than 10% of the norm of the initial
residual. At each iteration, the CG algorithm is initiated at the previous step xk−1.
In both experiments, we set x0 := 0, and in ADAL we set u0 := 0. It is worthwhile to
note that we have observed that the performance of IRWA is sensitive to the initial
choice of ε0 while ADAL is sensitive to μ. We do not investigate this sensitivity in
detail when presenting the results of our experiments, and we have no theoretical jus-
tification for our choices of these parameters. However, we empirically observe that
these values should increase with dimension. For each method, we have chosen an
automatic procedure for initializing these values that yields good overall performance.
The details are given in the experimental descriptions. A more principled method for
initializing and updating these parameters is the subject of future research.

In the third experiment, we apply both algorithms to an l1 support vector machine
(SVM) problem. Details are given in the experimental description. In this case, we
use the stopping criteria as stated along with the algorithm descriptions in the paper,
i.e., not a criterion based on a percent reduction in duality gap. In this experiment,
the subproblems are solved as in the first two experiments with the same termination
and warm-start rules.

First experiment. In this experiment, we randomly generated 500 instances
of problem (5.1). For each, we generated A ∈ R

600×1000 and chose C so that the
inclusion Ax+b ∈ C corresponded to 300 equations and 300 inequalities. Each matrix
A is obtained by first randomly choosing a mean and variance from the integers
on the interval [1, 10] with equal probability. Then the elements of A are chosen
from a normal distribution having this mean and variance. Similarly, each of the
vectors b and g are constructed by first randomly choosing integers on the intervals
[−100, 100] for the mean and [1, 100] for the variance with equal probability and
then obtaining the elements of these vectors from a normal distribution having this
mean and variance. Each matrix H had the form H = 0.1I + LLT , where the
elements of L ∈ R

n×n are chosen from a normal distribution having mean 1 and
variance 2. For the input parameters for the algorithms, we chose η := 0.6, M :=
104, γ := 1

6 , μ := 100, and ε0i := 2000 for each i ∈ I. Efficiency curves for both
algorithms are given in Figure 1, which illustrates the percentage of problems solved
versus the total number of CG steps required to reduce the duality gap by 50, 75,
90, and 95 percent. The greatest number of CG steps required by IRWA was 460
when reducing the duality gap by 95%. ADAL stumbled at the 95% level on 8
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IRWA Efficiency Curve

CG steps

%
 o

f p
ro

bl
em

s 
so

lv
ed

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400

0.5
0.75

0.9
0.95

ADAL Efficiency Curve

CG steps

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400

0.5
0.75

0.9
0.95

Fig. 1. Efficiency curves for IRWA (left panel) and ADAL (right panel). The percentage of
the 500 problems solved is plotted versus the total number of CG steps. IRWA terminated in fewer
than 460 CG steps on all problems. ADAL required over 460 CG steps on 8 of the problems.

CG Comparison
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Fig. 2. Box plot of CG steps for IRWA (light gray) and ADAL (dark gray) for each duality
gap threshold.

problems, requiring 609, 494, 628, 674, 866, 467, 563, 856, 676, and 911 CG steps for
these problems. Figure 2 contains a box plot for the log of the number of CG iterations
required by each algorithm for each of the selected accuracy levels. Overall, in this
experiment, the methods seem comparable with a slight advantage to IRWA in both
the mean and variance of the number of required CG steps.

Second experiment. In the second experiment, we randomly generated 20
problems of increasing dimension. The numbers of variables were chosen to be
n = 200 + 500(j − 1), j = 1, . . . , 20, where for each we set m := n/2 so that the
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CG comparison
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Fig. 3. Increase in CG steps for each duality gap (left panel) and CPU time (right panel) for
IRWA and ADAL as dimension is increased.

inclusion Ax + b ∈ C corresponds to equal numbers of equations and inequalities.
The matrix A was generated as in the first experiment. Each of the vectors b and g
were constructed by first choosing integers on the intervals [−200, 200] for the mean
and [1, 200] for the variance with equal probability and then obtaining the elements of
these vectors from a normal distribution having this mean and variance. Each matrix
H had the form H = 40I +LDLT , where L ∈ R

n×k with k = 8 and D was diagonal.
The elements of L were constructed in the same way as those of A, and those ofD were
obtained by sampling from the inverse gamma distribution f(x) := ba

Γ(a)x
−a−1e−b/x

with a = 0.5, b = 1. We set η := 0.5, M := 104, and γ := 1
6 , and for each j = 1, . . . , 20

we set ε0i := 102+1.3 ln(j+10) for each i = 1, . . . ,m, and μ := 500(1+j). In Figure 3, we
present two plots showing the number of CG steps and the log of the CPU times ver-
sus variable dimensions for the two methods. The plots illustrate that the algorithms
performed similarly in this experiment.

Third experiment. In this experiment, we solve the l1-SVM problem as intro-
duced in [14]. In particular, we consider the exact penalty form

(6.1) min
β∈Rn

m∑
i=1

⎛
⎝1− yi

⎛
⎝ n∑

j=1

xijβj

⎞
⎠
⎞
⎠

+

+ λ ‖β‖1 ,

where {(xixixi, yi)}mi=1 are the training data points with xxxi ∈ R
n and yi ∈ {−1, 1} for

each i = 1, . . . ,m, and λ is the penalty parameter. In this experiment, we randomly
generated 40 problems in the following way. First, we sampled an integer on [1, 5] and
another on [6, 10], both from discrete uniform distributions. These integers were taken
as the mean and standard deviation of a normal distribution, respectively. We then
generated anm×s componentwise normal random matrix T , where s was chosen to be
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19+2j, j = 0, 1, . . . , 39, and m was chosen to be 200+10j, j = 0, 1, . . . , 39. We then
generated an s-dimensional integer vector β̂ whose components were sampled from
the discrete uniform distribution on the integers between −100 and 100. Then, yi was
chosen to be the sign of the ith component of T β̂. In addition, we generated an m× t
independent and identically distributed standard normal random matrix R, where t
was chosen to be 200 + 30j, j = 0, 1, . . . , 39. Then, we let [xxx1,xxx2, . . . ,xxxm]T := [T,R].
For all 40 problems, we fixed the penalty parameter at λ = 50. In this application,
the problems need to be solved exactly, i.e., a percent reduction in duality gap is
insufficient. Hence, in this experiment, we use the stopping criteria as described in
Step 3 of both IRWA and ADAL. For IRWA, we set ε0i := 104 for all i ∈ I, η := 0.7,
M := 104, γ := 1

6 , σ := 10−4, and σ′ := 10−8. For ADAL, we set μ := 1, σ := 0.05,
and σ′′ := 0.05. We also set the maximum iteration limit for ADAL to 150. Both
algorithms were initialized at β := 0. Figure 4 has two plots showing the objective
function values of both algorithms at termination and the total CG steps taken by
each algorithm. These two plots show superior performance for IRWA when solving
these 40 problems.

Based on how the problems were generated, we would expect the nonzero coef-
ficients of the optimal solution β to be among the first s = 19 + 2j, j = 0, . . . , 39,
components corresponding to the matrix T . To investigate this, we considered “zero”
thresholds of 10−3, 10−4, and 10−5; i.e., we considered a component as being “equal”
to zero if its absolute value was less than a given threshold. Figure 5 shows a summary
of the number of unexpected zeros for each algorithm. These plots show that IRWA
has significantly fewer false positives for the nonzero components, and in this respect
returned preferable sparse recovery results over ADAL in this experiment.

Finally, we use this experiment to demonstrate Nesterov’s acceleration for IRWA.
The effect on ADAL has already been shown in [12], so we only focus on the effect of
accelerating IRWA. The 40 problems were solved using both IRWA and accelerated
IRWA with the parameters stated above. Figure 6 shows the differences between the

Problem
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Fig. 4. In all 40 problems, IRWA obtains smaller objective function values with fewer CG steps.
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E
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IRWA

Fig. 5. For both thresholds 10−4 and 10−5, IRWA yields fewer false positives in terms of the
numbers of “zero” values computed. The numbers of false positives are similar for the threshold
10−3. At the threshold 10−5, the difference in recovery is dramatic with IRWA always having fewer
than 14 false positives while ADAL has a median of about 1000 false positives.

Effect of Nesterov Acceleration
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Fig. 6. Differences in objective function values (left panel) obtained by normal and accelerated

IRWA (normal−accelerated
accelerated

×100), and differences in numbers of CG steps (right panel) required to

converge to the objective function value in the left panel (normal − accelerated). Accelerated IRWA
always converged to a point with a smaller objective function value, and accelerated IRWA typically
required fewer CG steps. (There was only one exception, the last problem, where accelerated IRWA
required two more CG steps.)
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objective function values (normal−accelerated
accelerated

× 100) and the number of CG steps

(normal − accelerated) needed to converge. The graphs show that accelerated IRWA
performs significantly better than unaccelerated IRWA in terms of both objective
function values obtained and CG steps required.

7. Conclusion. In this paper, we have proposed, analyzed, and tested two
matrix-free solvers for approximately solving the exact penalty subproblem (1.5).
The primary novelty of our work is the newly proposed IRWA for solving such prob-
lems involving arbitrary convex sets of the form (1.2). In each iteration of our IRWA
algorithm, a quadratic model of a relaxed problem is formed and solved to deter-
mine the next iterate. Similarly, the ADAL algorithm that we present also has as its
main computational component the minimization of a convex quadratic subproblem.
Both solvers can be applied in large-scale settings, and both can be implemented
matrix-free.

Variations of our algorithms were implemented and the performance of these im-
plementations were tested. Our test results indicate that both types of algorithms
perform similarly on many test problems. However, a test on an �1-SVM problem
illustrates that in some applications the IRWA algorithms can have superior perfor-
mance. Overall, our investigation leads to a variety of open questions:

• How should the relaxation vector ε in IRWA and the penalty parameter μ
in ADAL be initialized and updated in order for the methods to be most
effective when solving a particular problem instance?

• Are there certain problem classes for which one should expect superior per-
formance of IRWA over ADAL, or vice versa? If so, then what feature(s) of a
given problem class leads to the different levels of performance? For example,
although IRWA was superior on the l1-SVM problem presented in our third
experiment (see Figures 4 and 5), we do not have a clear understanding of
why this was the case. Conversely, are there instances within the problem
class (1.5) where ADAL is clearly superior to IRWA?

• We have observed that, although IRWA and ADAL performed similarly on
many of the problems in our first experiment, IRWA seemed to perform bet-
ter as greater accuracy was requested, whereas ADAL occasionally stumbled
under these requests (see Figures 1 and 2). Further numerical testing did
not reveal a strategy for consistently improving the performance of ADAL
when higher accuracy was desired. Is there a way to tune ADAL to over-
come this drawback, or is this perceived drawback simply an artifact of our
experimental design?

• Our implementation of both IRWA and ADAL uses the Nesterov acceleration,
and this innovation can have a dramatic impact on the performance of these
methods (see Figure 6). However, we have not been successful in providing a
complexity analysis for these implementations. We conjecture that the accel-
erated algorithms require O(1/ε) iterations to produce an ε-optimal solution
to (1.5).
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