
AAP BP: A COIN/BCP Branch and Price Example

Matthew V. Galati∗

Revised November 30, 2003

Abstract

COmputational INfrastructure for Operations Research - Lehigh University

This document will serve as a simple example for using COIN/BCP to solve an integer linear
program (ILP) using branch and price (BP).

Topic: Integer Linear Program, Column Generation
Modules: BCP, OSI, Coin, CLP
Source: AAP BP.tar.gz

Data: AAP Data - included in AAP BP.tar.gz

Author: Matthew Galati
Document: AAP BP: A COIN/BCP Branch and Price Example

1 Introduction

This document will serve as a simple example for using COIN/BCP to solve an integer linear program
(ILP) using branch and price (BP). The problem we will focus on is the Axial Assignment Problem
[2]. The descriptions in this paper are for illustrative purposes only and are not meant to be
computationally efficient.

2 Branch and Price for the Axial Assignment Problem

2.1 Axial Assignment Problem

The Axial Assignment Problem (AAP) is that of finding a minimum-weight clique cover of the
complete tri-partite graph Kn,n,n. Let I, J and K be three disjoint sets with |I| = |J | = |K| = n
and set H = I × J ×K. Then, AAP can be formulated as the following binary integer program:
∗Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, magh@lehigh.edu,

http://sagan.ie.lehigh.edu/mgalati

1

min
∑

(i,j,k)∈H
cijkxijk

∑

(j,k)∈J×K
xijk = 1 ∀i ∈ I

∑

(i,k)∈I×K
xijk = 1 ∀j ∈ J (1)

∑

(i,j)∈I×J
xijk = 1 ∀k ∈ K (2)

xijk ∈ {0, 1} ∀(i, j, k) ∈ H (3)

2.2 Dantzig-Wolfe Formulation

Balas and Saltzman [1] consider the use of the classical Assignment Problem (AP) as a relaxation
of AAP in the context of Lagrangian Relaxation. We will use these same ideas in the context of
column generation or Dantzig-Wolfe decomposition.

Define the AP polytope by removing constraint (1) as P ′ = conv(F ′), where F ′ = {x ∈ RH :
x satisfies (1)− (3)}. Observe, that the cost of an assignment is cs =

∑
(i,j,k)∈H sijkcijk, ∀s ∈ F ′.

Then, the Dantzig Wolfe (DW) LP can be written as:

zDW = min
∑

s∈F ′
csλs

∑

s∈F ′

∑

(j,k)∈J×K
sijkλs = 1 ∀i ∈ I (4)

∑

s∈F ′
λs = 1 (5)

λs ≥ 0 ∀s ∈ F ′

where
xijk =

∑

s∈F ′
sijkλs (6)

2.3 Column Generation Algorithm

Since there is an exponential number of possible columns in the Dantzig-Wolfe LP, we will use a
column generation algorithm. Let F ′t ⊆ F ′ represent a subset of the feasible points in P ′, i.e.
assignment points. At iteration t, the restricted master problem is the Dantzig-Wolfe LP above
with F ′ = F ′t. Associate a vector of dual variables u with constraint (4) and α with the convexity
constraint (5). Let (û, α̂) be the optimal dual solution to the restricted master problem. We then
solve a subproblem to search for the column from F ′ \F ′t with the most negative reduced cost. The
reduced cost of a variable xijk is calculated as

rijk = cijk − ûi − α̂ (7)

2

Hence, we can write the column generation subproblem as an optimization problem over the AP
polytope as

zSP (û, α̂)) = min
∑

(j,k)∈J×K
c′jkxjk

∑

k∈K
xjk = 1 ∀j ∈ J (8)

∑

j∈J
xjk = 1 ∀k ∈ K (9)

xjk ∈ {0, 1} ∀(j, k) ∈ J ×K

where c′jk = mini∈I{cijk − ûi}. Then, if zSP (û, α̂) ≥ α̂, then no columns in F ′ \ F ′t have negative
reduced cost and the solution to the restricted master is optimal. Otherwise, we add the column
xijk, corresponding to the optimal solution of zSP (û, α̂), to F ′t+1 and iterate.

3 BCP Implementation

BCP provides a framework for doing branch, cut and price. The user is responsible for describing the
structure of the application to be solved, as well as, routines for doing variable and/or cut generation.

In order to implement a branch and price algorithm using BCP, there are a minimal set of
functions that must be written by the user. In the following section we will describe each of these
functions as they have been used in the AAP BP example. The application source code is divided into
the following directories:

• LP: methods used by the linear programming process,

• TM: methods used by the tree manager,

• Member: miscellaneous or common methods shared by processes,

• include: the source header files,

• Data: some data instances for AAP,

• Run: a run directory which includes a sample parameter file.

3.1 Data Structures

BCP is written to allow for running in parallel. The serial version emulates a parallel environment.
Because of this, every data structure that is passed between processes must be packed into a buffer.
For most built-in types, BCP buffer has an overloaded pack and unpack routine. For every user-
defined class, we must write our own pack and unpack routine. Typically, these consist of a collection
of calls to BCP buffer::(un)pack() on each data member of the class.

• Member/AAP.cpp
The AAP class simply defines a storage container for an instance of AAP. This includes the
dimension of the problem n and the costs cijk. It also includes some helper functions for
indexing and debugging.

3

• include/AAP user data.hpp
This class, AAP user data, is derived from BCP user data and is meant to store extra infor-
mation that is to be sent between nodes after branching. In our case, since we branch on
the original variables xijk and not the master variables λs, we need to keep track of which
variables have been fixed to 0 or 1 at a particular node. We need this information so that we
can enforce these conditions in our column generation subproblem.

• include/AAP var.hpp
Each variable (a member of F ′), represents an assignment between sets J and K. This class,
AAP var, is derived from BCP var algo, which is a generic class for algorithmic variables. We
use algorithmic variables (as opposed to indexed variables) since there are potentially too many
to give an index to each assignment point. The storage of an assignment is done using a vector
of the (i, j, k) indices and its cost.

3.2 Initialization

• Member/AAP init.cpp
In order to initialize the interface to BCP, we have to create an instance of each process that
will be used. In this case we simply initialize:

– BCP user init(): the user interface,

– lp init(): the LP process, and

– tm init(): the TM process.

In tm init(), in addition to initializing the TM process, we read in the parameter file and
any additional command line arguments. We also read in the datafile which describes the AAP
instance.

3.3 Parameters

• BCP Parameters
A description of the various BCP parameters that can be used for the LP process and the TM
process can be found in the Doxygen notes on the COIN website. In Run/par.par there is a
list of those parameters which must be set for our application.

– BCP LpValueIsTrueLowerBound is set to 0, since we are generating columns and cannot
say that the intermediate LP solutions give a true lower bound.

– BCP SolveLpToOptimality is set to 1, since we need the optimal dual variables to generate
columns. We do not want the LP solver to stop once it has reached the dual objective
limit.

– BCP DoReducedCostFixingAtZero is set to 0, since we do not want to allow for reduced
cost fixing while we are generating columns.

– BCP DoReducedCostFixingAtAnything is set to 0, since we do not want to allow for
reduced cost fixing while we are generating columns.

• TM/AAP tm param.cpp - AAP datafile: The location of the AAP instance data file.

• LP/AAP lp param.cpp - AAP StrongBranch Can: The number of candidates to produce for
strong branching.

4

3.4 Tree Manager

• TM/AAP tm.cpp::initialize core():
In this method, we describe which variables and which constraints will be core. If a variable
or constraint is core, then it can never be removed from the LP. We have no core variables.
The core constraints for the restricted master problem are (4) and (5).

• TM/AAP tm.cpp::create root():
In this method, we describe those variables that will be used to construct the initial LP. In
order to do this, we need to start with an initial set of feasible columns. To keep it simple, we
choose the columns xiii = 1 ∀i ∈ I.

• TM/AAP tm.cpp::init new phase():
This method tells BCP that we will be generating columns.

3.5 Linear Program

• LP/AAP lp.cpp::initialize solver interface():
This method returns an instance of an OsiSolverInterface. This is an interface to the LP
solver that will be used to solve the linear programming relaxations. The decision for which
LP solver to use is done at compile time (see the section on Build Process and Execution).

• LP/AAP lp.cpp::compute lower bound():
In this method, we generate a valid lower bound on the master LP. In order to do this, we
need to solve the column generation subproblem zSP (û, α̂). The subproblem is an instance
of the Assignment Problem (AP). In the helper function generate vars(), we calculate the
reduced costs and construct an instance of AP. In addition, we use a bigM -method with the
information contained in AAP user data to enforce the bounds determined by branching. We
then solve the subproblem by calling solve assignment problem(), which constructs the AP
as an LP using OSI. Then, any variables generated with negative reduced cost are saved as an
AAP var for use in the next method generate vars in lp().

• LP/AAP lp.cpp::generate vars in lp()
In this method, we look for variables with negative reduced cost to add into the master LP.
The work has already been done in compute lower bound().

• LP/AAP lp.cpp::restore feasibility()
This method is invoked before fathoming a search tree node if the LP has been found infeasible
and no new variables were generated. Upon finding the LP infeasible, BCP attempts to produce
a set of certificates, or dual rays. These are sent as arguments to restore feasibility(),
which we then use in generate vars() in an attempt to find variables that restore feasibility.

• LP/AAP lp.cpp::vars to cols()
This method takes a variable (an assignment point) and expands it into a column in the LP.
The assignment point is stored as a vector of (i, j, k) indices in an AAP var. From this, we
construct a BCP col.

Another method that a user typically needs to derive is test feasibility. In our case, however,
the default implementation, which checks for integrality is sufficient.

5

3.6 Branching

• LP/AAP lp branch.cpp::select branching candidates()
We branch using a disjunction on the original variables xijk. The choice for which variables
to select as candidates for branching is determined in the function branch close to half(),
in which we pick variables with high cost that are closest to 0.5. The number of branching
candidates is determined by the parameter AAP StrongBranch Can.

In the function append branching vars(), for each candidate we construct a BCP lp branching object.
For our case, the branching object simply contains information about which variables we will
change the bounds on. Since we are branching on the original variables xijk =

∑
s∈F ′ sijkλs,

we have to reset a set of variables in the master formulation. In one child, we set xijk = 0,
which forces λs = 0 for all s ∈ F ′ that contain index (i, j, k). In the other child, we set
xijk = 1, which forces λs = 0 for all s ∈ F ′ that do not contain index (i, j, k).

• LP/AAP lp branch.cpp::set user data for children()
In this method, we update the user data with the branching information.

4 Build Process and Execution

On most systems, the default Makefile should be sufficient. The COIN makefiles can be found in
COIN/Makefiles. The AAP BP makefile is Makefile.aap. In order to select which LP solver to use,
simply set the SOLVER flag. The current setup uses COIN/CLP as the LP solver.

The typical steps to build AAP BP are as follows:

1. Download the COIN source from here,

2. Download the AAP BP source from here,

3. Edit COIN/Makefiles/Makefile.location, if necessary,

4. Edit Makefile.aap, if necessary,

5. Run make.

This should build BCP and AAP BP, creating an executable bcps in the directory $(uname)-$(USER OPT),
e.g., Linux-g. Then, in order to run the example (from the Run subdir), type ../Linux-g/bcps
ParamFile par.par. Any of the parameters can also be overridden on the command line as
well. For example, if you want to run with the settings in the parameter file par.par, but you
want to use 10 branching candidates, instead of 5, type ../Linux-g/bcps ParamFile par.par
AAP StrongBranch Can 10.

References

[1] Balas, E., and Saltzman, M. An algorithm for the three-index assignment problem. Opera-
tions Research 39 (1991), 150–161.

[2] Qi, L., and Sun, D. Polyhedral method for solving three index assignment problems. Working
Paper.

6

