
Industrial and
Systems Engineering

Valid Inequalities for Mixed Integer Bilevel Linear
Optimization Problems

Sahar Tahernejad

Lindo Systems, Inc., Chicago, IL

Ted K. Ralphs

Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA

COR@L Technical Report 20T-013

Valid Inequalities for Mixed Integer Bilevel Linear Optimization

Problems

Sahar Tahernejad∗1 and Ted K. Ralphs†2

1Lindo Systems, Inc., Chicago, IL
2Department of Industrial and System Engineering, Lehigh University, Bethlehem, PA

October 30, 2020

Abstract

Despite the success of branch-and-cut methods for solving mixed integer bilevel linear op-
timization problems (MIBLPs) in practice, there have remained some gaps in the theory sur-
rounding these methods. In this paper, we take a first step towards laying out a theory of valid
inequalities and cutting-plane methods for MIBLPs that parallels the existing theory for mixed
integer linear optimization problems (MILPs). We provide a general scheme for classifying valid
inequalities and illustrate how the known classes of valid inequalities fit into this categorization.
We also introduce new classes of valid inequalities—one based on a generalization of Chvátal
inequalities for MILPs and several more based on a notion of parametric inequality similar to
subadditive inequalities for MILPs. Finally, we compare the performance of all classes discussed
in the paper using the open source solver MibS.

1 Introduction

Bilevel optimization (and multilevel optimization, more generally) provides a framework for mod-
eling and solution of optimization problems in which decisions are made in multiple time stages
by multiple (possibly competing) decision-makers (DMs). Such optimization problems arise in a
wide array of applications, with ever more coming to light as computational tools for solution
of such problems become more widely available. For an overview of bilevel optimization and its
applications, we refer the reader to Dempe [2002].

Bilevel optimization problems are difficult to solve both in an empirical and theoretical sense,
even in the simple case of (continuous) bilevel linear optimization problems (BLPs), in which the
constraints and objective functions must all be linear and the variables are all continuous. The
class of problems known as mixed integer bilevel linear optimization problems (MIBLPs) is that

∗sahar@lindo.com
†ted@lehigh.edu

2

in which the constraints and objective functions must be linear, but some variables may also be
required to take on integer values. While BLPs are hard for the complexity class NP, MIBLPs
are hard for the class Σp

2, one level higher in the so-called polynomial time hierarchy [Stockmeyer,
1976].

The first algorithm proposed for solution of MIBLPs was the (pure) branch-and-bound algorithm
of Bard and Moore [1990]. Two decades later, DeNegre and Ralphs [2009] introduced the idea
that this basic framework could be used successfully as the basis for a branch-and-cut algorithm
much like those that revolutionized the solution of mixed integer linear optimization problems
(MILPs). Just as in the MILP case, approximation of the convex hull of feasible solutions by
valid inequalities has since proved to be an effective means by which to improve bounds obtained
by the (typically very weak) linear optimization problem (LP) relaxation employed in the original
branch-and-bound algorithm. The key component necessary for any branch-and-cut algorithm to
be effective is a method of separating the solution to the LP relaxation from the convex hull of
feasible solutions by the dynamic generation of strong valid inequalities [Gomory, 1958, Cook et al.,
1990, Balas et al., 1993a].

Much of the theory that has been developed for the MILP case and has been exploited so successfully
in the development of MILP solvers can be generalized to the MIBLP case. Naturally, however,
these is no free lunch—the separation problem for the convex hull of feasible solutions of an MIBLP
is both theoretically and practically much more difficult than in the MILP case. The computational
results do in fact bear this conclusion out, as will be discussed in the last section of the paper.

The main contributions of this paper are as follows. In Section 2, we lay the foundations for a
theory of valid inequalities paralleling the one that already exists in the MILP case. Building on
this foundation, Section 3 provides an overview of the known techniques for generation of valid
inequalities for MIBLPs and describes how they fit into the basic framework. Section 4 introduces
methods for strengthening valid inequalities using principles of duality and introduces new classes of
strong valid inequalities generated using these principles. Finally, Section 6 describes computational
experiments carried out to test the relative effectiveness of these inequalities using the purpose-built
open-source solver MibS [DeNegre et al., 2019], described in [Tahernejad et al., 2020].

1.1 Mixed Integer Bilevel Optimization

To describe the class of MIBLPs more formally, let x ∈ X represent the set of variables controlled
by the first-level DM or leader and y ∈ Y denote the set of variables controlled by the second-level
DM or follower, where X = Zr1+ ×Rn1−r1

+ and Y = Zr2+ ×Rn2−r2
+ . The general form of an MIBLP is

min
x∈X
{cx+ Ξ(x)} , (MIBLP)

where the function Ξ is a risk function that encodes the part of the objective value of x that depends
on the response to x in the second level. This function may have different forms, depending on
the precise variant of the bilevel problem being solved. In this paper, we focus on the so-called
optimistic case [Loridan and Morgan, 1996], in which

Ξ(x) = min
{
d1y

∣∣ y ∈ P1(x), y ∈ argmin{d2y
∣∣ y ∈ P2(x) ∩ Y }

}
, (RF)

where
P1(x) =

{
y ∈ Rn2

+

∣∣ G1y ≥ b1 −A1x
}

3

is a parametric family of polyhedra containing points satisfying the linear constraints of the first-
level problem with respect to a given x ∈ Rn1 and

P2(x) =
{
y ∈ Rn2

+

∣∣ G2y ≥ b2 −A2x
}

is a second parametric family of polyhedra containing points satisfying the linear constraints of
the second-level problem with respect to a given x ∈ Rn1 . The input data is A1 ∈ Qm1×n1 ,
G1 ∈ Qm1×n2 , b1 ∈ Qm1 , A2 ∈ Qm2×n1 , G2 ∈ Qm2×n2 and b2 ∈ Qm2 . As is customary, we define
Ξ(x) = ∞ when either x /∈ X or the problem on the right-hand side of (RF) is infeasible. We
consider the general formulation that allows participation of the second-level variables in the first-
level constraints. The matrix G1 is defined as a matrix of zeros (with appropriate dimensions) in
the case in which the first-level constraints are independent of the second-level variables.

Another formulation for MIBLPs involves the value function of the second-level problem instead
of the risk function. This formulation is given by

min
{
cx+ d1y

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y, d2y ≤ φ(b2 −A2x)
}
, (MIBLP-VF)

where φ represents the value function of the second-level problem and is defined as

φ(β) = min
{
d2y

∣∣ G2y ≥ β, y ∈ Y
}
∀β ∈ Rm2 . (VF)

This MILP yields the optimal value of the second-level problem corresponding to each right-hand
side β ∈ Rm2 .

A wide variety of special cases of MIBLPs have been studied in the literature. Interdiction problems
are one of the most important classes among these special cases. In these problems, with respect
to each second-level variable, there exists a binary first-level variable (i.e., n1 = n2 = n) whose sole
responsibility is preventing the second-level variable from getting a non-zero value to promote the
second-level objective value. This class of problems can be formulated as

min
{
d1y

∣∣ x ∈ PINT1 ∩ Bn, y ∈ argmax{d1y
∣∣ y ∈ PINT2 (x) ∩ Y }

}
, (MIPINT)

where
PINT1 =

{
x ∈ Rn+

∣∣ A1x ≥ b1
}
,

PINT2 (x) =
{
y ∈ Rn+

∣∣ G2y ≥ b2, y ≤ diag(u)(e− x)
}
,

u ∈ Rn+ represents the upper bound vector for the second-level variables and e is the n-dimensional
vector of ones. As we will explain in Section 3, MibS has specialized methods for (MIPINT) and
other special classes of MIBLPs.

We now introduce notation used in the remainder of the paper. Dropping the integrality constraints
and the optimality constraint of the second-level problem from (MIBLP-VF) results in an LP with
feasible region

P =
{

(x, y) ∈ Rn1×n2
+

∣∣ y ∈ P1(x) ∩ P2(x)
}
.

This set includes all (x, y) ∈ Rn1×n2
+ that satisfy the linear constraints of the first- and second-level

problems. The subset of P containing points that also satisfy the integrality constraints in both
levels is

S = P ∩ (X × Y).

4

 optimal solution

1 2 3 4 5 6 7 8

1

2

3

4

5

objective

F

x

y

min
x∈Z+

− x− 10y

s.t. y ∈ argmin {y :

−5x+ 4y ≤ 6

x+ 2y ≤ 10

2x− y ≤ 15

2x+ 10y ≥ 15

y ∈ Z+ }

Figure 1: The feasible region and optimal solution of the the example from [Moore and Bard, 1990].

With respect to a given x ∈ Rn1
+ , the rational reaction set is defined as

R(x) = argmin
{
d2y

∣∣ y ∈ P2(x) ∩ Y
}

and contains all y ∈ Y that are optimal to the second-level problem arising from fixing the first-level
variables to x. Note that (x, y) may not be bilevel feasible, even if y ∈ R(x) if either x 6∈ X or
y 6∈ P1(x). As such, the conditions for bilevel feasibility of (x, y) ∈ Rn1×n2

+ can be stated as

Feasibility Condition 1. x ∈ X.

Feasibility Condition 2. y ∈ P1(x) ∩R(x).

Based on these conditions, the bilevel feasible region is

F = {(x, y) ∈ X × Y | y ∈ P1(x) ∩R(x)} .

The problem (MIBLP) can thus be re-cast as the optimization problem

min
(x,y)∈F

cx+ d1y. (MIBLP-F)

The bilevel feasible region and optimal solution of the well-known example from [Moore and Bard,
1990], shown in Figure 1, illustrates these concepts.

The sets F , P and S can also be defined for each node t of the tree resulting from employing the
branch-and-cut algorithm for solving (MIBLP). The feasible region of node t differs from the root
node by

1. changes to the bounds of variables; and

2. addition of valid inequalities.

5

Hence, the sets F , P and S corresponding to node t are defined as

F t =
{

(x, y) ∈ F ∩Πt
∣∣ ltx ≤ x ≤ utx, lty ≤ y ≤ uty} , (1)

Pt =
{

(x, y) ∈ P ∩Πt
∣∣ ltx ≤ x ≤ utx, lty ≤ y ≤ uty}

and
St = Pt ∩ (X × Y),

where Πt represents the polyhedron that is the intersection of the added valid inequalities at node
t (which may possibly remove points in F) and possibly at its ancestors. The vectors ltx (lty) and
utx (uty) denote, respectively, the vectors of lower and upper bounds for the first-level (second-level)
variables.

In what follows, we make the following assumptions.

Assumption 1. P is bounded.

This assumption ensures the boundedness of (MIBLP), but it is made primarily for ease of presen-
tation and can be straightforwardly relaxed.

Assumption 2.
{
r ∈ Rn2

+

∣∣ G2r ≥ 0, d2r < 0
}

= ∅.

This second assumption prevents the unboundedness of the second-level problem (regardless of the
first-level solution) and can be checked in a pre-processing step.

Assumption 3. All first-level variables with at least one non-zero coefficient in the second-level
problem (so-called linking variables) are integer, i.e.,

L =
{
i ∈ {1, . . . , n1}

∣∣ A2
i 6= 0

}
⊆ {1, ..., r1} ,

where A2
i represents the ith column of matrix A2.

This third assumption guarantees that the optimal solution of (MIBLP) is attainable whenever
the optimal solution value is finite [Vicente et al., 1996]. The linking variables are structurally
important and recognition of this can streamline the process of solving MIBLPs in several ways.
Theorem 1 formally states the special role played by the linking variables.

Theorem 1. For the vectors x1 and x2 ∈ Rn1
+ with x1L = x2L ∈ ZL, we have

φ(b2 −A2x1) = φ(b2 −A2x2),

where x1L and x2L represent the subvector of x1 and x2, respectively, corresponding to the linking
variables.

The importance of this theorem is that it shows that when the linking variables are fixed, (MIBLP)
(which is a non-linear optimization problem in general, due to the non-linearity of the optimality
constraint of the second-level problem) becomes an MILP. This is because φ(b2−A2x) is a constant
whenever the linking variables are fixed. Corollary 1 states this formally.

6

Corollary 1. For γ ∈ ZL, we have

min
{
cx+ d1y

∣∣ (x, y) ∈ F , xL = γ
}

= min
{
cx+ d1y

∣∣ (x, y) ∈ S, d2y ≤ φ(b2 −A2x), xL = γ
}
.

(UB)

Hence, the best bilevel feasible solution (x, y) ∈ F with xL = γ ∈ ZL can be obtained by solving
the problem (UB) which can be solved by using an MILP solver.

2 Theoretical Foundations

The theory of valid inequalities for polyhedra and other closed convex sets is well-known and
supported by deep foundations developed over several decades (see, e.g., Grötschel et al. [1993]).
Although much of the theory was developed specifically with the case of MILPs in mind, it can
be applied in other contexts, such as to the solution of MIBLPs. The main tools used in applying
this theory to MILPs are convexification and the well-known result of Grötschel et al. [1993] that
optimization over a closed convex set is polynomially equivalent to the so-called separation problem
associated with the set. Essentially, we optimize over the convex hull of feasible solutions rather
than the original feasible region, thereby transforming the original non-convex problem into an
equivalent convex one.

2.1 Convexification

It may not be immediately obvious that convexification and separation can be employed in the
context of MIBLPs, so we first show that MIBLPs can, in theory, be solved by a so-called cutting
plane method. Showing this formally involves showing that convexifying the feasible region does
not change the optimal solution value. This can be done in several steps.

Proposition 1. Under Assumption 3, F is closed.

Proof. Let Sγ be the feasible region of the problem (UB) for γ ∈ ZL. Under Assumption 3, F is
the union of (possibly infinite) disjoint sets Sγ for γ ∈ FxL = projxL(F), i.e.,

F =
⋃

γ∈FxL

Sγ . (2)

Furthermore, under Assumption 3, for all (x̂, ŷ) ∈ Rn1+n2 , there is at least one neighborhood that
intersects at most one of the sets Sγ with γ ∈ FxL . The radius r̄ of this neighborhood can be
defined as 0 < r̄ < min

{
||xL − x̂L||2

∣∣ xL 6= x̂L, xL ∈ FxL
}

(such r̄ exists due to Assumption 3).
This results that the collection of sets Sγ for γ ∈ FxL is a locally finite collection of Rn1+n2 under
Assumption 3. This and (2) follow that [Munkres, 2014]

cl(F) = cl

 ⋃
γ∈FxL

Sγ

 =
⋃

γ∈FxL

cl (Sγ) . (3)

7

We have cl (Sγ) = Sγ since this set is the feasible region of (UB), which is an MILP. Therefore,
from (3), we have

cl(F) =
⋃

γ∈FxL

Sγ = F .

Closedness of F follows.

Theorem 2. Under Assumptions 1 and 3, conv(F) is a rational polyhedron.

Proof. Basu et al. [2018] showed that when input data are rational, the closure of F can be
written as the finite union of MILP representable sets (with rational data). Since F is closed by
Proposition 1, we have that

F = cl (F) =
k⋃
i=1

L (Si) , (4)

where k is a scalar, L denotes a linear transformation (specifically projection) and Si is the feasible
region of an MILP for i = 1, ..., k.

From the fundamental theorem of integer programming [Meyer, 1974] and (4), it follows that

conv (F) = conv

(
k⋃
i=1

L (Si)

)
= conv

(
k⋃
i=1

conv (L (Si))

)

= conv

(
k⋃
i=1

L (conv (Si))

)
= conv

(
k⋃
i=1

Qi

)
,

(5)

where Qi = L(conv (Si)) is a rational polyhedron for i = 1, ..., k.

Furthermore, since Qi is bounded for i = 1, ...k by Assumption 1, the result follows from the fact
that the convex hull of the union of a finite number of bounded polyhedra is a polyhedron [Balas,
1985, 1998].

Theorem 3. Under Assumption 3, we have that

min
(x,y)∈F

cx+ d1y = min
(x,y)∈conv(F)

cx+ d1y. (6)

Proof. Since the objective function is linear, we have [Conforti et al., 2014]

inf
(x,y)∈F

cx+ d1y = inf
(x,y)∈conv(F)

cx+ d1y

and the infimum of cx + d1y is attained over F if and only if it is attained over conv(F). This
follows the result because the infimum of cx+ d1y is attained over F under Assumption 3.

The problem (6) would be an LP in principle, if we knew a complete description of conv(F). In
such case, a solution of the MIBLP could be obtained by producing an extremal solution to this
LP by, e.g., the simplex algorithm. Since we generally do not know a complete description of
conv(F) and cannot construct one efficiently (this would be at least as difficult as solving the
original optimization problem), the cutting plane method is to employ the well-known technique
of generating an approximation of conv(F) by solving the separation problem to generate valid
inequalities, as described next.

8

2.2 Cutting Plane Method

Although they are well-known, we first review several standard definitions and results for conve-
nience before describing the cutting plane method in broad outline.

Definition 1. A valid inequality for the set F is a triple (αx, αy, β), where (αx, αy) ∈ Qn1+n2 is
the coefficient vector and β ∈ Q is a right-hand side, such that

F ⊆
{

(x, y) ∈ Rn1×n2
∣∣ αxx+ αyy ≥ β

}
.

It is easy to see that any inequality valid for F is also valid for the convex hull of F . The so-called
separation problem for conv(F) is to generate an inequality valid for conv(F), but violated by a
given vector (x̂, ŷ) /∈ conv(F) or to show that the vector is actually a member of conv(F). Formally,
we define the problem as follows.

Definition 2. The separation problem for conv(F) with respect to a given (x̂, ŷ) ∈ Rn1+n2 is
to determine whether or not (x̂, ŷ) ∈ conv(F) and if not, to produce an inequality (αx, αy, β) ∈
Qn1+n2+1 valid for conv(F) and for which αxx̂+ αyŷ < β.

The process of solving an MIBLP by a standard cutting plane method is initiated by solving a
convex relaxation of the original problem (MIBLP). In contrast to MILPs, the problem obtained
by removing integrality constraints at both levels is not a relaxation (its feasible region does not
necessarily contain F). On the other hand, we have that F ⊆ S ⊆ P, so the problem of optimizing
over either P or S is a valid relaxation. In MibS, P is used as the feasible region of that starting
relaxation and the relaxation problem is

min
(x,y)∈P

cx+ d1y. (LR)

In the remainder of the paper, we take this as the initial relaxation.

A valid inequality for F that is violated by an infeasible point of the relaxation is called a cut (or
cutting plane).

Definition 3. A cut is an inequality valid for F , but violated by some (x̂, ŷ) ∈ P \F (typically the
optimal solution to a relaxation defined with respect to P).

Let (x̂, ŷ) be an extremal optimal solution of (LR). Then the cutting plane method consists of the
following loop.

1. Determine whether (x̂, ŷ) ∈ conv(F) or not. Although determining whether a given arbitrary
point is in conv(F) is difficult in general, we exploit the fact that (x̂, ŷ) is an extremal member
of P. Such a point must be a member of F in order to be a member of conv(F). Therefore,
we need only determine whether it satisfies the constraints that were relaxed. In this case,
we must check whether (x̂, ŷ) ∈ X × Y and ŷ ∈ R(x̂). If so, then (x̂, ŷ) ∈ F (and (x̂, ŷ) is an
optimal solution), so the solution process is terminated. Otherwise (x̂, ŷ) 6∈ F and we move
to Step 2.

9

2. Separate (x̂, ŷ) 6∈ F from F . To do so, we generate a cut (αx, αy, β) ∈ Qn1+n2+1 which
separates (x̂, ŷ) from F . The existence of such an inequality is guaranteed when (x̂, ŷ) is
an extreme point of P. It is possible that such inequality is not found in cases where the
separation problem is being solved approximately. If no inequality is found, the method
terminates with a lower bound. Otherwise, move to Step 3.

3. Add the constraint αxx+αyy ≥ β to the relaxation, thereby strengthening it, and repeat the
previous steps until either the method terminates or until one of a specified set of termination
criteria, e.g., the number of iterations exceeds some pre-defined limit, is satisfied.

Whether or not this method converges finitely depends on exactly how the valid inequalities are
generated and what properties they are guaranteed to have. In the case of MILPs, finite cutting
plane algorithms for the pure integer and general cases under mild assumptions were, respectively,
given by Gomory [1958] and Del Pia and Weismantel [2012] (see [Gade and Küçükyavuz, 2011]
for more detailed discussion on the convergence of the cutting plane algorithm). Since the feasible
region P of our assumed initial relaxation is a polyhedron, the bounding problem (LR) is an LP
and can be solved by standard algorithms. Any extremal optimal solution of P is either a member
of F or is not contained in conv(F) and can be separated from it by an inequality valid for conv(F),
as described above. Hence, MIBLPs can, in principle, be solved by a cutting plane method.

2.3 Improving Valid Inequalities

Traditionally, cutting plane methods have been described theoretically as generating only inequal-
ities valid for the entire feasible set. In practice, however, it is well-known that the addition of
inequalities removing feasible solutions is not problematic, as long as this does not change the
optimal solution value of the original problem. In the case of MIBLP, inequalities removing subsets
of F are used routinely and we thus formally define a notion of valid inequality that allows this.

When (x∗, y∗) ∈ F and we have that cx∗+ d1y∗ ≤ min
(x,y)∈(G∩F)

cx+ d1y for some set G ⊆ Rn1+n2 , the

optimal solution of (MIBLP-F) will be

min
(x,y)∈conv(F)

cx+ d1y = min

{
cx∗ + d1y∗, min

(x,y)∈conv(F)\G
cx+ d1y

}
.

In this case, although G ∩ conv(F) may contain a subset of the feasible region, it can be removed
because it does not include any improving solutions relative to (x∗, y∗). Based on this discussion,
the definition of valid inequality can be generalized as follows.

Definition 4 (Improving Valid Inequality). An improving valid inequality for the set F with respect
to an incumbent (x∗, y∗) ∈ F , is a triple (αx, αy, β) ∈ Rn1+n2+1 such that{

(x, y) ∈ F
∣∣ cx+ d1y < cx∗ + d1y∗

}
⊆
{

(x, y) ∈ Rn1×n2
∣∣ αxx+ αyy ≥ β

}
.

In the remainder of paper, the term “valid inequality” is taken to mean “improving valid inequality”
unless otherwise stated.

10

2.4 General Classes

Although many of the classes of valid inequalities for MILPs that have been proposed are for a
particular subclass of MILP and exploit specific combinatorial structure, there exist a variety of
methods that produce inequalities valid for general MILPs. The reader is referred to Marchand
et al. [2002], Wolter [2006], and Cornuéjols [2008] for broad overviews of these approaches and the
relationships between the various classes.

Although the general classes employed in solving generic MILPs were conceived specifically for
that purpose, the theoretical basis for many of the classes does not actually depend on any specific
properties of MILP and they can thus be easily employed in other settings. Disjunctive inequalities
and intersection cuts are two such families of valid inequalities for MILPs that can be easily
generalized to the MIBLP case. We describe each of these classes here at a high level in the context
of MIBLPs and then discuss specific applications in Section 3.

Disjunctive Inequalities. Disjunctive programming is both a modeling paradigm and a set of
algorithmic technique introduced by Balas [1979] based on the concept of what we call a valid
disjunction.

Definition 5 (Valid Disjunction). A collection of disjoint sets Xi ⊆ Rn1+n2 for i = 1, ..., k repre-
sents a valid disjunction for F if

F ⊆
k⋃
i=1

Xi.

In this context, the collection {Xi}1≤i≤k is called a disjunctive set. The branch-and-cut algorithm
depends crucially on the identification of valid disjunctions that are violated by the solution to
some relaxation. The identified disjunctions are used both for branching and cutting, two essential
elements of the branch-and-cut algorithm.

Just as with valid inequalities, the basic notion of valid disjunction can be modified to allow for
the possibility that the disjunction does not contain the entire set F , but possibly eliminates some
solutions known to be suboptimal. This yields the concept of an improving valid disjunction.

Definition 6 (Improving Valid Disjunction). A collection of disjoint sets Xi ⊆ Rn1+n2 for i =
1, ..., k represents an improving valid disjunction for F with respect to (x∗, y∗) ∈ F if

{
(x, y) ∈ F

∣∣ cx+ d1y < cx∗ + d1y∗
}
⊆

k⋃
i=1

Xi.

In the remainder of paper, the term “valid disjunction” is taken to mean “improving valid disjunc-
tion” unless otherwise stated.

Definition 7 (Disjunctive Inequality). A disjunctive (valid) inequality for the set F with respect
to Q ⊇ F and a valid disjunction {Xi}1≤i≤k is a triple (αx, αy, β) ∈ Rn1+n2+1 such that

Q
⋂ (

k⋃
i=1

Xi

)
⊆
{

(x, y) ∈ Rn1×n2
∣∣ αxx+ αyy ≥ β

}
.

11

A subclass of the disjunctive inequalities arises from the disjunctions known as split disjunctions
that have only two terms and are defined as follows.

Definition 8 (Split Disjunction). Let (πx, πy, π0) ∈ Zn1+n2+1 be such that πxi = 0 for i ≥ r1 + 1
and πyi = 0 for i ≥ r2 + 1 (the coefficients of the continuous variables in both first and second levels
are zero). Then when

X1 =
{

(x, y) ∈ Rn1×n2
∣∣ πxx+ πyy ≤ π0 − 1

}
andX2 =

{
(x, y) ∈ Rn1×n2

∣∣ πxx+ πyy ≥ π0
}
, (7)

{X1, X2} is a valid disjunction for F called a split disjunction.

The validity of the above disjunction arises from the fact that the inner product of any member of
F with the coefficient vector is an integer and thus all members of F must belong to either X1 or
X2. The disjunctive inequalities derived from such a disjunction are known as split inequalities.

Definition 9 (Split Inequality). A split inequality for the set F with respect to Q ⊇ F and a split
disjunction {X1, X2} is any inequality valid for Q∩ (X1 ∪X2).

The usual Chvátal inequalities, as defined in the theory of MILPs, are a subclass of the split
inequalities in which X1 ∩ Q = ∅. We introduce here a class we refer to as generalized Chvátal
inequalities that differ slightly in form, but are similar in spirit to the usual Chvátal inequalities.

Definition 10 (Generalized Chvátal Inequality). Let a split disjunction {X1, X2} for set F be
given such that X1 ∩ Q = {(x̂, ŷ)} and (x̂, ŷ) 6∈ F for some given Q ⊇ F . Then (πx, πy, π0) in (7)
is itself a valid inequality for the set F known as a generalized Chvátal inequality with respect to
set Q.

The connection to the Chvátal inequalities in MILP should be clear. In the MILP case, the usual
Chvátal inequalities are split inequalities for which we have a proof that X1 does not contain any
feasible solutions to the LP relaxation of the MILP (and hence does not contain any solutions to
the MILP itself). We can thus easily conclude that the MILP feasible region is contained in X2

and derive the associated valid inequality. Here, we extend this idea to allow that X1 may contain
a (single) solution to the relaxation (whose feasible region we can think of as being Q), but that we
have an independent proof that the single solution to the relaxation is not contained in the feasible
region F of the MIBLP itself. We thus have a similar proof that F is contained in the set X2,
yielding a valid inequality as in the MILP case. Note that we could further extend this definition
to include cases where X1 contains a set of feasible solutions to the relaxation, all of which can be
proven not to be in F . However, as we currently have no practical application of such a definition,
we use the simpler one here.

An obvious question that we address below is how to obtain a split disjunction (πx, πy, π0) satisfying
the requirements of the above definition in a practical way. In MILP, a relevant split disjunction
can be derived from the tableau using the procedure of Gomory [Gomory, 1960]. One way of
viewing this procedure is that we first derive an inequality valid for the feasible region of the LP
relaxation by taking a combination of the inequalities in the original formulation. We ensure that
the coefficients of the left-hand side satisfy the integrality requirements for a split disjunction either
by rounding in some other fashion. When the right-hand side of an inequality derived in this way
is fractional, we can round it up to obtain a valid inequality (see Gomory [1960], for more details).

12

A very similar procedure is possible in the case of MIBLP by taking Q in Definition 10 to be the
LP relaxation P of (MIBLP) and (x̂, ŷ) ∈ (X × Y) \ F to be an extremal optimum to the LP
relaxation. By taking a combination of the constraints binding at (x̂, ŷ), we can derive a split
disjunction satisfying Definition 10, as detailed later in Theorems 4 and 5.

Intersection Cuts. Another well-known procedure for deriving valid inequalities for MILPs that
can be generalized to the MIBLP setting is that of generating a so-called intersection cut, originally
suggested by Balas [1971]. This procedure has already been extended to more general classes of
optimization problems by Bienstock et al. [2016] and was extended to MIBLPs by Fischetti et al.
[2018, 2017]. In general, an intersection cut is an inequality valid for for the convex hull of a discrete
set D contained within a polyhedral radial cone V(v) with vertex v 6∈ D. Given a closed convex
set C containing v, but no member of D, in its interior, the intersection points of the extreme
rays of V(v) with the set C lie on a uniquely defined hyperplane that defines an inequality valid
for conv(D). Typically, v arises as an extremal optimum of an LP relaxation of some discrete
optimization problem and V is then the polyhedral cone described by only those inequalities in the
description of the feasible region of the LP relaxation that are binding at v.

In the context of MIBLPs, improving valid inequalities can be generated by considering intersection
cuts valid for the convex hull of just those feasible solutions that are improving with respect to a
current incumbent. We typically wish to separate an extreme point (x̂, ŷ) of P, which is either not
a member of F or is non-improving with respect to the incumbent. The radial cone is described by
the inequalities in the description of P that are binding at (x̂, ŷ) and we denote the cone by V(x̂, ŷ).
This is the case, for example, when the LP relaxation has been solved by a simplex algorithm and
(x̂, ŷ) is an optimal basic feasible solution of the LP relaxation over P (usually, this LP will have
been re-cast in standard form by introducing slack variables, but we describe the procedure here
in the original space for simplicity).

Definition 11 (Intersection Cut). Let V(x̂, ŷ) ⊇ P be a radial cone with vertex (x̂, ŷ), an extreme
point of P and let C ⊆ Rn1+n2 be a convex set such that (x̂, ŷ) ∈ int(C) and int(C) ∩ F = ∅. Then
the triple (αx, αy, β) ∈ Rn1+n2+1 represents an intersection cut with respect to a radial cone when
{(x, y) ∈ Rn1+n2 | αxx+αyy = β} is the unique hyperplane containing the points of intersection of
C with the extreme rays of V(x̂, ŷ).

Note that the size of the defined set C can impact the strength of the generated intersection cut,
so the desire is to find the largest set C possible.

3 Valid Inequalities for MIBLPs

As in MILP, the main aim of generating a valid inequality is to remove from the feasible region of
the relaxation a solution which is not feasible for the original problem, along with as much of the
surrounding region as possible. In the case of MILP, all such solutions that arise in a typical cutting
plane method violate integrality conditions and we have simple methods of generating violated valid
inequalities.

In the context of MIBLPs, the infeasible solutions that arise can violate either Feasibility Con-
ditions 1 or 2 and we may hence want to remove any of the following types of points or set of

13

points.

C1. An extreme point (x̂, ŷ) of P such that (x̂, ŷ) /∈ X × Y .

C2. An extreme point (x̂, ŷ) of P such that (x̂, ŷ) ∈ X × Y , but ŷ /∈ R(x̂).

C3. All (x, y) ∈ Rn1×n2 such that x ∈ Fx and xL = γ ∈ ZL, where Fx = projx(F).

The cases C1 and C2 occur when the extreme point (x̂, ŷ) resulting from solving the relaxation
problem (LR) is not bilevel feasible. Note that case C1 also arises in cutting plane methods for
MILPs, but case C2 is unique to MIBLPs and involves removing a point that is already integral.
Case C3 arises when solving the problem (UB), after which all (x, y) ∈ conv(F) with xL = γ ∈ ZL
can be removed because they must be non-improving feasible solutions.

With respect to the goals of generating valid inequalities stated above, the set of applicable valid
inequalities for MIBLPs can be classified roughly as follows, where U is a global upper bound on
the optimal solution value

1. Feasibility cuts: Inequalities that are violated by an extreme point of P of the form described
in C1, but are valid for

conv
({

(x, y) ∈ S
∣∣ cx+ d1y < U

})
.

2. Optimality cuts: Inequalities that are violated by an extreme point of P of the form described
in C2 (and possibly special cases of C1), but are valid for

conv
({

(x, y) ∈ F
∣∣ cx+ d1y < U

})
.

3. Projected optimality cuts: Inequalities that are violated by the set of bilevel feasible solutions
described in C3, but are valid for

conv
({

(x, y) ∈ Rn1×n2
∣∣ x ∈ Fx, cx+ Ξ(x) < U

})
.

Note that the presented classification is just to provide a rough idea about different classes of valid
inequalities and the classes are not entirely distinct.

3.1 Feasibility Cuts

This set includes all inequalities valid for S, the feasible region of the MILP relaxation

min
(x,y)∈S

cx+ d1y.

These are the very same cuts that are used in solving MILPs and include all general families, as well
as any specialized MILP cuts valid for set S with particular structure. Since MibS utilizes the COIN-
OR Cut Generation Library (CGL) [Cgl], all available separation routines in this package can also
be employed in MibS. Most of these cuts are themselves derived based on the principles described
earlier in Section 2.4 and fall into those general categories described there. The disjunctions utilized
are typically split disjunctions, often those involving a single variable.

14

3.2 Optimality Cuts

Whereas the feasibility cuts are meant to restore the strength lost due to relaxation of integrality
conditions, i.e., enforce the requirement that (x, y) ∈ S, the optimality cuts are meant to approxi-
mately enforce the optimality condition for the second-level problem. It is this optimality condition
that is relaxed (in addition to the integrality conditions) in order to obtain a tractable bounding
problem. Optimality cuts are so named exactly because they approximate this non-linear inequal-
ity with linear inequalities. Note that because φ is non-convex and non-concave in general, this
constraint cannot be approximated exactly by linear inequalities (all discussed optimality cuts in
this section are linear). When combined with branching in a branch-and-cut algorithm, however,
we can restrict the feasible region to areas in which this function is linear.

In the remainder of the section, we describe the optimality cuts implemented in MibS.

3.2.1 Integer No-Good Cut

Assumptions.

• r1 = n1 and r2 = n2.

• Vectors b1 and b2 and all matrices A1, A2, G1 and G2 are integer.

Theorem 4 ([DeNegre and Ralphs, 2009]). Let (x̂, ŷ) ∈ S \F be the optimal solution of (LR) and
H1 and H2 denote the set of indices of the first- and second-level constraints, respectively, binding
at (x̂, ŷ). Then, under the stated assumptions, we have

αxx+ αyy ≥ β ∀(x, y) ∈ F ,

where

αx =
∑
i∈H1

a1i +
∑
i∈H2

a2i , α
y =

∑
i∈H1

g1i +
∑
i∈H2

g2i , β =
∑
i∈H1

b1i +
∑
i∈H2

b2i + 1

and a1i , a
2
i , g

1
i , g

2
i , b1i and b2i represent the ith rows of A1, A2, G1, G2, b1 and b2, respectively. Fur-

thermore, we have
αxx̂+ αyŷ = β − 1,

so the inequality is violated by (x̂, ŷ).

Proof. Let (αx, αy, β) ∈ Zn1+n2+1 be such that

1. {(x, y) ∈ P | αxx+ αyy = β − 1} = {(x̂, ŷ)} and

2. {(x, y) ∈ Rn1×n2 | αxx+ αyy ≥ β − 1} ⊇ P.

We have that αxx+ αyy ∈ Z for all (x, y) ∈ X × Y . Furthermore,

αxx+ αyy > β − 1 ∀(x, y) ∈ (P \ {(x̂, ŷ)}) ⊇ F .

It follows that αxx + αyy ≥ β for all (x, y) ∈ F and that αxx̂ + αyŷ < β. Then, we need only
observe that (αx, αy, β) as chosen in the theorem satisfy the conditions 1 and 2 above.

15

Illustrative Example. Figure 2 shows the generated integer no-good cut for removing the bilevel
infeasible extreme point (2, 4) of P in the example shown in Figure 1. The cut is obtained in two
steps, as described above. We first sum the first two inequalities in the formulation (which are the
ones binding at (2, 4)) to obtain the inequality −2x + 3y ≤ 8, valid for P. We then subtract one
from the right-hand side to obtain the final cut −2x + 3y ≤ 7. As one can observe, this cut does
not remove any integer points from P except (2, 4).

Figure 2: The generated integer no-good cut for the example shown in Figure 1

Discussion. This cut is a valid inequality for F with respect to the split disjunction (note that
αx, αy and β are integer)

X1 =
{

(x, y) ∈ Rn1×n2
∣∣ αxx+ αyy ≤ β − 1

}
X2 =

{
(x, y) ∈ Rn1×n2

∣∣ αxx+ αyy ≥ β
}
,

and since F ∩ X1 = ∅, it is a generalized Chvátal inequality. The utilized split disjunction is
defined by considering a combination of constraints of P binding at (x̂, ŷ), as described earlier. The
combination is guaranteed to yield a split disjunction because of our assumption that the constraint
matrix is integral.

Application. This cut can be applied to remove the optimal solution (x̂, ŷ) ∈ S \ F of (LR)
under the above assumptions, but it does not eliminate any other bilevel infeasible members of S.
It is easy to generate such cut because all required information for its generation can be obtained
from the optimal tableau obtained when solving (LR).

3.2.2 Generalized Chvátal Inequality

Assumptions. None

Theorem 5. Let (x̂, ŷ) ∈ S \ F be the optimal solution of (LR) and H1 and H2 denote the set
of indices of the first- and second-level constraints, respectively, binding at (x̂, ŷ). Let u ∈ Qm1+m2

16

be such that ui = 0 for i 6∈ H1 ∪ H2, ui > 0 for i ∈ H1 ∪ H2, and such that (αx, αy, β) is a split
disjunction where

• αx = u(A1 +A2),

• αy = u(G1 +G2), and

• β = u(b1 + b2) + 1.

Then
αxx+ αyy ≥ β ∀(x, y) ∈ F ,

Furthermore, we have
αxx̂+ αyŷ = β − 1,

so the inequality is violated by (x̂, ŷ).

Proof. The inequality (αx, αy, β − 1) is valid for P, since it is derived as a positive combination of
inequalities valid for P. Furthermore, (αx, αy, β) is a split disjunction for which X1 ∩ P = (x̂, ŷ),
since there is a positive weight on all inequalities in P that are binding at (αx, αy, β). Hence,
X1 ∩ F = ∅ and αx, αy, β) is valid for F .

Discussion. This cut is a form of the generalized Chvátal inequality introduced in Definition 10.
In the stated form, it is not obvious how to generate the weight vector u, but the integer no-good
inequality already introduced provides one possibility. Another possibility is discussed next.

Application. A potential way to generate such cuts systematically would be through the use of an
auxiliary optimization problem similar to the cut-generating LP used in the case of lift-and-project
for MILPs [Balas et al., 1993b], as follows.

min
u∈Qm1+m2

αxx̂+ αyŷ − β

αx = u(A1
H1

+A2
H2

)

αy = u(G1
H1

+G2
H2

)

β = u(b1 + b2)

u ≥ ε(> 0)

αx ∈ Zr1 × {0}n1−r1

αy ∈ Zr2 × {0}n2−r2

As written, the above problem is unbounded, so some kind of normalization would also be needed,
but the appropriate normalization would probably be problem-specific.

17

3.2.3 Increasing Objective Cut

Assumptions.

• xL ⊆ BL.

• A2 ≤ 0.

Theorem 6 ([DeNegre, 2011]). Let x̂ ∈ X and ŷ ∈ R(x̂). Then, under the above assumptions, we
have

d2y ≤ d2ŷ +M

 ∑
i∈L:x̂i=0

xi

 ∀(x, y) ∈ F , (8)

where M ≥ max{d2y | (x, y) ∈ F}−d2ŷ. Furthermore, this inequality is violated by all (x, y) ∈ S\F
with xi = 0 for {i ∈ L | x̂i = 0}.

Discussion. This cut is a disjunctive inequality for F with respect to the valid disjunction defined
by

X1 =

{
(x, y) ∈ Rn1×n2

∣∣∣ ∑
i∈L:x̂i=0

xi = 0, d2y ≤ d2ŷ
}

and

X2 =

{
(x, y) ∈ Rn1×n2

∣∣∣ ∑
i∈L:x̂i=0

xi ≥ 1, d2y ≤ d2ŷ +M

 ∑
i∈L:x̂i=0

xi

}.
The validity of this disjunction for F arises from

φ(b2 −A2x) ≤ φ(b2 −A2x̂) ∀x ∈ X such that ŷ ∈ P2(x).

Application. Under the desired assumptions, the optimal solution (x̂, ŷ) ∈ S \ F of (LR) can
be removed by generating the inequality (8) with respect to x̂ and ŷ ∈ R(x̂). Moreover, this cut
removes all bilevel infeasible solutions (x, y) ∈ S with xi = 0 for {i ∈ L | x̂i = 0}. Note that in
addition to the increasing objective cut, there may be stronger disjunctive inequalities, which can
be generated with respect to the same valid disjunction.

3.2.4 Benders Cut

Assumptions.

• xL ⊆ BL.

• Corresponding to each linking variable xi, there exists yi so that xi = 1 results yi = 0 and
this is the only restriction from the second-level constraints in which the linking variables
participate.

• The second-level variables coefficients are not greater than 0 in the second-level constraints
in which the linking variables do not participate.

18

Theorem 7. Let (x̂, ŷ) ∈ F . Then, under the above assumptions, we have

d2y ≤
∑
i/∈L

d2i ŷi +
∑
i∈L

d2i ŷi(1− xi) ∀(x, y) ∈ F . (9)

Furthermore, this inequality is violated by all (x, y) ∈ S \ F with xL = x̂L.

Proof. Let (x̃, ỹ) ∈ F and y′ ∈ Y such that y′i = ŷi if i /∈ L and

y′i = ŷi(1− x̃i) =

{
0 if i ∈ L and x̃i = 1,

ŷi if i ∈ L and x̃i = 0.

By the definition of y′, we have y′ ≤ ŷ, which results that y′ satisfies the second-level constraints
in which the linking variables are not present. It also satisfies the other constraints with respect to
x̃ because for i ∈ L, y′i = 0 if x̃i = 1. Hence, y′ ∈ P2(x̃) ∩ Y and since ỹ ∈ R(x̃), we have

d2ỹ ≤ d2y′ =
∑
i/∈L

d2i ŷi +
∑
i∈L

d2i ŷi(1− x̃i).

This follows that the inequality (9) is valid for all bilevel feasible solutions. Moreover, since (x̂, ŷ) ∈
F , we have ŷi = 0 for all {i ∈ L | x̂i = 1}. It follows that

d2ŷ =
∑
i/∈L

d2i ŷi +
∑
i∈L

d2i ŷi(1− x̂i). (10)

Furthermore, for (x, y) ∈ S \ F with xL = x̂L, we have

d2y > d2ŷ. (11)

(10) and (11) result that the inequality (9) is violated by all (x, y) ∈ S \ F with xL = x̂L.

Discussion. Caprara et al. [2016] proposed this cut for the knapsack interdiction problems, but
the benders cut can be employed for more general problems as was illustrated in Theorem 7. This
cut is a disjunctive inequality for F with respect to the valid disjunction

X1 =

{
(x, y) ∈ Rn1×n2

∣∣∣ ∑
i∈L:x̂i=0

xi +
∑

i∈L:x̂i=1

(1− xi) = 0, d2y ≤ d2ŷ
}

X2 =

{
(x, y) ∈ Rn1×n2

∣∣∣ ∑
i∈L:x̂i=0

xi +
∑

i∈L:x̂i=1

(1− xi) ≥ 1, d2y ≤
∑
i/∈L

d2i ŷi +
∑
i∈L

d2i ŷi(1− xi)
}
.

Application. Under the stated assumptions, the Benders cut can be exploited to remove the
optimal solution (x̂, ŷ) ∈ S \ F of (LR) with respect to the bilevel feasible solution (x̂, ŷ), where
ŷ ∈ R(x̂). Moreover, this cut removes all bilevel infeasible solutions (x, y) ∈ S, with xL = x̂L.

19

3.2.5 Intersection Cut

Assumptions.

• A2x+G2y − b2 ∈ Zm2 for all (x, y) ∈ S.

• d2 ∈ Zn2 .

Theorem 8 ([Fischetti et al., 2018], [Fischetti et al., 2017]). Let (x̂, ŷ) /∈ F be the optimal solution
of (LR) and y∗ ∈ Y satisfy these conditions:

• d2y∗ < d2ŷ.

• G2y∗ ≥ b2 −A2x̂.

Then, under the stated assumptions, we have

αxx+ αyy ≥ β ∀(x, y) ∈ F , (12)

where the inequality (12) is the intersection cut associated with the sets V(x̂, ŷ) and

C =
{

(x, y) ∈ Rn1×n2
∣∣ d2y ≥ d2y∗, G2y∗ ≥ b2 −A2x− 1

}
, (13)

Furthermore, the inequality (12) is violated by (x̂, ŷ).

Two distinct types of cuts can be derived from the above formula, obtained by computing y∗ in
two different ways.

Intersection Cut I. This type is obtained simply by selecting any y∗ ∈ R(x̂). Note that in this
case, the assumption d2 ∈ Zm2 is not required.

Intersection Cut II. In this type of intersection cut, y∗ is taken to be an optimal solution of
the following MILP.

y∗ ∈argmin

m2∑
i=1

wi

d2y ≤ d2ŷ − 1

G2y + (A2x̂− L)w ≥ b2 − L (14)

y ∈ Y
w ∈ {0, 1}m2 ,

where Li =
∑n1

j=1 min{A2
ijlxj , A

2
ijuxj} for i = 1, ...,m2 and A2

ij represents the element of ith row

and jth column of A2.

Note that due to constraint (14), w∗i = 0 (w∗ represents the optimal value of w) guarantees that
g2i y
∗ ≥ b2i − a2ix for all bilevel feasible solutions. Hence, this inequality can be removed from the

definition of set C in (13) in this case. By utilizing such property, the defined set C for intersection
cut type II is hopefully larger than the one for type I and may provide a stronger cut. However, it
should also be noted that finding y∗ for type II cuts requires solving an MILP, while in intersection
cut I, no additional effort is needed.

20

Illustrative Example. Figure 3 shows the generated intersection cut (the red line) for removing
the extreme point (2,4) of P in the example shown in Figure 1. The blue cone and the green dotted
region show V(2, 4)) and set C, respectively. Note that in this case, the generated cuts and sets C
are the same for both described types of intersection cut.

Figure 3: The generated intersection cut for the example shown in Figure 1

Discussion. As one can observe in Theorem 8 (and also Theorems 9 and 10), the intersection
cuts can also be exploited in the context of MIBLPs.

Application. In case of existing ŷ with the desired conditions (such ŷ exists certainly when
(x̂, ŷ) ∈ S), this cut can be applied to remove the optimal solution (x̂, ŷ) /∈ F of (LR) under
the above assumptions. The generated cut is valid for the set V(x̂, ŷ) \ int(C) (note that F ⊆
V(x̂, ŷ)\ int(C)), however, it does not remove all points belong to the set V(x̂, ŷ)∩ int(C) necessarily.

3.2.6 Watermelon Intersection Cut

Assumptions.

• A2x+G2y − b2 ∈ Zm2 for all (x, y) ∈ S.

• d2 ∈ Zn2 .

Theorem 9 ([Fischetti et al., 2017]). Let (x̂, ŷ) /∈ F be the optimal solution of (LR) and ∆ŷ ∈
Zr2 × Rn2−r2 satisfy these conditions:

• d2∆ŷ < 0.

• G2(ŷ + ∆ŷ) ≥ b2 −A2x̂.

• ŷ + ∆ŷ ≥ 0.

21

Then, under the stated assumptions, we have

αxx+ αyy ≥ β ∀(x, y) ∈ F , (15)

where the inequality (15) is the intersection cut generated associated with the sets V(x̂, ŷ) and

C =
{

(x, y) ∈ Rn1×n2
∣∣ G2(y + ∆ŷ) ≥ b2 −A2x− 1, y + ∆ŷ ≥ −1

}
. (16)

Furthermore, the inequality (15) is violated by (x̂, ŷ).

Generating a watermelon intersection cut requires finding ∆ŷ ∈ Zr2 × Rn2−r2 described in Theo-
rem 9. Such vector can be achieved by solving the MILP

∆ŷ ∈argmax

m2∑
i=1

wi +

n2∑
i=1

vi

d2∆y ≤ −1

G2∆y ≥ b2 −A2x̂−G2ŷ

∆y ≥ −ŷ
G2∆y ≥ w
∆y ≥ v
∆y ∈ Zr2 × Rn2−r2

w ≤ 0

v ≤ 0.

In the same vein as the intersection cut II, with the aim of finding a larger convex set, the optimal
values of the vectors w and v can be employed to drop some of the inequalities in the definition of
set (16). w∗i = 0 (v∗i = 0) means that g2i (y + ∆ŷ) ≥ b2i − a2ix (yi + ∆ŷi ≥ 0) for all bilevel feasible
solutions, so this inequality can be removed from the definition of set (16).

Illustrative Example. Figure 4 shows the generated watermelon intersection cut (the red line)
for removing the extreme point (2,4) of P in the example shown in Figure 1. The blue cone and
the green dotted region show V(2, 4) and set C, respectively.

Discussion. As one can observe in Figures 3 and 4 (and also Figure 5), none of the sets C is not
the subset of another, so we cannot say that one type of intersection cuts always dominates the
others.

Application. In a similar way as the intersection cut, under the stated assumptions and also
existing the desired ∆ŷ, this cut can be utilized to separate a subset of V(x̂, ŷ) ∩ int(C) which
definitely includes the optimal solution (x̂, ŷ) /∈ F of (LR) (the desired ∆ŷ exists certainly when
(x̂, ŷ) ∈ S)).

22

Figure 4: The generated watermelon intersection cut for the example shown in Figure 1

3.2.7 Hypercube Intersection Cut

Assumptions.

• xL ⊆ ZL.

Theorem 10 ([Fischetti et al., 2017]). Let (x̂, ŷ) ∈ P be the optimal solution of (LR) with x̂L ∈ ZL.
Then, under the stated assumption, we have

αxx+ αyy ≥ β ∀(x, y) ∈ F such that xL 6= x̂L, (17)

where the inequality (17) is the intersection cut generated associated with the sets V(x̂, ŷ) and

C =
{

(x, y) ∈ Rn1×n2
∣∣ x̂i − 1 ≤ xi ≤ x̂i + 1 ∀i ∈ L

}
.

Furthermore, the inequality (17) is violated by (x̂, ŷ).

Illustrative Example. Figure 5 shows the generated hypercube intersection cut (the red line)
for removing the extreme point (2,4) of P in the example shown in Figure 1. The blue cone and
the green dotted region show V(2, 4) and set C, respectively.

Discussion. Since this cut eliminates the solution to (LR), even when it is bilevel feasible, the
problem (UB) must first be solved with γ = x̂L prior to generating such cut. By doing this, all
possible removed bilevel feasible solutions will be non-improving.

Application. Under the above assumption, the optimal solution (x̂, ŷ) /∈ F of (LR) with x̂L ∈ ZL
can be removed by generating the hypercube intersection cut with respect to this point. The
generated cut may also be violated by a subset of set F with the same linking part as x̂, but (as
shown in Figure 5) it does not necessarily remove all (x, y) ∈ P with xL = x̂L.

23

Figure 5: The generated hypercube intersection cut for the example shown in Figure 1

3.3 Projected Optimality Cuts

The only projected optimality cut in MibS is the generalized no-good cut described in this section.

3.3.1 Generalized No-good Cut

Assumptions.

• xL ⊆ BL.

Theorem 11. Let γ ∈ BL. Then, under the desired assumption, we have∑
i∈L:γi=0

xi +
∑

i∈L:γi=1

(1− xi) ≥ 1 ∀(x, y) ∈ F such that xL 6= γ. (18)

Furthermore, the inequality (18) is violated by all (x, y) ∈ P with xL = γ.

Proof. When xL = γ, we have
∑

i∈L:γi=0 xi = 0 and
∑

i∈L:γi=1(1− xi) = 0, which follows that

xL = γ ⇒
∑

i∈L:γi=0

xi +
∑

i∈L:γi=1

(1− xi) = 0. (19)

Furthermore, when xL 6= γ, at least one of the following happens

• ∃i ∈ L such that γi = 0 and xi = 1⇒
∑

i∈L:γi=0 xi ≥ 1.

• ∃i ∈ L such that γi = 1 and xi = 0⇒
∑

i∈L:γi=1(1− xi) ≥ 1.

Hence, we have

xL 6= γ ⇒
∑

i∈L:γi=0

xi +
∑

i∈L:γi=1

(1− xi) ≥ 1. (20)

The result follows from (19) and (20).

24

Discussion. The generalized no-good cut is a generalization of the no-good cut suggested by DeNe-
gre [2011]. His proposed cut is employed to remove all solutions with the same first-level values,
while the new version strengthens the former one since it separates the solutions with the same
linking part. Moreover, since the no-good cut is valid only for the problems in which all first-level
variables are binary, the assumption of the generalized one is less strict.

As with the hypercube intersection cut, the corresponding problem (UB) should be solved prior
to generating a generalized no-good cut. In contrast with the hypercube intersection cuts, it is
guaranteed that the generalized no-good cut eliminates all solutions with the target linking values.
Note, however, that the hypercube intersection cut is applicable for more general MIBLPs.

Application : Under the above assumption, after solving the problem (UB) with γ = x̂L, the
generalized no-good cut can be applied to remover the optimal solution (x̂, ŷ) ∈ P \F of (LR) with
x̂L ∈ BL and all other solutions (x, y) ∈ P with xL = x̂L. At a more general level, this cut can be
generated whenever problem (UB) is solved to avoid visiting the solutions with the same linking
part again.

4 Strong Valid Inequalities

As in the MILP case, there is a limit to the strength of inequalities that can be obtained through
procedures such as the ones describe in the last section. This is particularly true in the case
of MIBLP. In the MILP case, there exist methods for strengthening known valid inequalities by
solving auxiliary optimization problems. Specifically, lifting is a procedure for computing “optimal”
coefficients that can be used to strengthen a given base inequality. Lifting can be applied directly
to inequalities valid for MIBLPs in the obvious way. Here, we suggest a related methodology to
strengthen the right-hand side of a given inequality, while leaving the left-hand side coefficients
unmodified.

4.1 General Principle

The method we propose is based on the straightforward idea that a valid inequality (αx, αy, β) can
be strengthened if we are able to prove that β can be replaced with β∗ for some β∗ > β. The
methodology for generating such a proof is general and can be applied broadly in many settings
beyond the narrow one described here. In particular, it can be applied to the solution of traditional
single-level MILPs. Figure 6 shows how decreasing the right-hand side (recall that this cut was
given in “≤” form, so the strengthening is a decrease in the right-hand side) of the integer no-good
cut described in Figure 2 results in a stronger valid inequality. The strengthening is accomplished
by computing the right-hand side that ensures the associated hyperplane supports F (the new
right-hand side is 4 in this case). This computation is obviously an optimization problem over F
and thus intractable in general, but in the remainder of this section and the next, we discuss ways
in which the computation can be carried out approximately to improve tractability.

In the remainder of this subsection, we consider a general closed feasible set G ⊂ Rn and then
apply the principles discussed specifically to the MIBLP case in subsection 4.2. As we have already

25

Figure 6: Strengthening the integer no-good cut

indicated, the largest β for which (α, β) ∈ Qn×Q is a valid inequality for G is the unique maximum
β such that the hyperplane {x ∈ Rn | αx = β} supports conv(G) (i.e, has non-empty intersection
with G). For convenience, we define a function, which we refer to as an inverse value function, that
returns this largest value of the right-hand side as a function of the left-hand side vector, as follows.

Definition 12. The inverse value function ΓG is the function that returns the largest value of β ∈ Q
such that (α, β) is valid for conv(G), given α ∈ Qn.

It is straightforward to observe that ΓG(α) can be computed by solving an optimization problem.

Theorem 12. For any G ⊆ Qn and α ∈ Qn,

ΓG(α) = min
x∈G

αx = min
x∈conv(G)

αx. (21)

In other words, ΓG can also be interpreted as a function that returns the optimal value of an
optimization problem as a function of the objective vector. The origin of the name inverse value
function is from the fact that this function plays a role here similar to the function that is more
typically called a value function, which is a function of the right-hand side rather than the objective
function [Hassanzadeh and Ralphs, 2014]. The word “inverse” is to indicate the connection to the
inverse optimization problem, which is closely related to the problem of computing Γ−1G (β) [Bulut
and Ralphs, 2015].

We have the following corollary that states the connection between ΓG and valid inequalities more
directly.

Corollary 2. An inequality (α, β) ∈ Qn×Q is valid for G if and only if β ≤ ΓG(α). The associated
face supports G if and only if β = ΓG(α).

Note that we could replace G with a subset of G containing only improving solutions in order to
obtain a similar condition for improving valid inequalities.

26

Corollary 2 tells us that the strongest possible right-hand side would be obtained by computing
the exact value of ΓG(α), but that we may instead use any lower bound to ensure validity of the
inequality. There are two obvious strategies to calculating such a lower bound. First, we can replace
G with a larger set (essentially relaxing the optimization problem). This is a common strategy used
by many cut generation procedures. Second, we can compute a lower bound by executing a time-
or node-limited branch-and-bound procedure. The latter is the approach we take here. As an aside,
this latter procedure can technically be viewed as an implementation of the former, since the union
of the feasible regions of the subproblems associated with the leaf nodes of the branch-and-bound
tree constitute a set containing G over which we are optimizing to obtain the dual bound associated
with the branch-and-bound tree. The proposed strategy creates an obvious tradeoff between the
resource limit imposed and the strength of the resulting inequality. The fine-tuning of this tradeoff
is crucial to the effectiveness of the algorithm and our procedure for doing this in the case of MIBLP
is described in Section 6.

A question we have not addressed yet is exactly how the left-hand side vectors that are inputs to
this strengthening procedure are generated. This is a largely empirical question that we discuss in
the specific case of MIBLP in the next subsection.

4.2 Strong Valid Inequalities for MIBLP

In the specific case of an MIBLP that is itself solved by a branch-and-bound algorithm, further
improvements to the tractability of the procedure suggested above can be made by generating
inequalities that are only locally valid with respect to some subproblem in the branch-and-bound
tree. The problem of generating an improved right-hand side should be easier in such cases, since the
optimization is then over a reduced feasible region. With respect to node t and (αx, αy) ∈ Qn1+n2 ,
the function ΓFt(αx, αy) is the inverse value function function that generates strengthened valid
inequalities. Theorem 13 captures the use of such a function to generate a strong valid inequality
for node t, given a left-hand side vector.

Theorem 13. Let (αx, αy) ∈ Qn1+n2 be given and let β ∈ R be the lower bound resulting from a
resource-limited branch-and-bound procedure for attempting to solve

min
(x,y)∈Ft

αxx+ αyy. (22)

Then (αx, αy, β) is valid for F t. The associated face supports F t if and only if β is the optimal
value of (22).

The empirical question of how the left-hand side vectors that are the input to this strengthening
procedure are obtained is a crucial one. In our experiments, we have so far used left-hand sides
from two different sources, which are described next. In Section 4.2.1, we describe how we employ
the described idea for generating strengthened integer no-good cuts, which are exactly as one would
expect—first generate an integer no-good cut and then strengthen it using the procedure. In
Section 4.2.2, we describe so-called bound cuts in which the left-hand side is fixed to d2. The bound
cuts are linear cuts that attempt to replicate some of the strength lost when relaxing the second-
level optimality condition to obtain the LP relaxation that is the basis for the branch-and-cut
procedure.

27

4.2.1 Strengthened Integer No-good Cut

The idea of the strengthened integer no-good cut is both to strengthen the typically weak integer
no-good cut and to remove some of the difficulties surrounding the scaling that may be required to
obtain integer coefficients, as needed for validity of the original cut.

Theorem 14. Let (x̂, ŷ) /∈ F be the optimal solution of (LR) and H1 and H2 denote the set of
indices of the first- and second-level constraints, respectively, binding at (x̂, ŷ). Then we have

αxx+ αyy ≥ β ∀(x, y) ∈ F ,

where

αx =
∑
i∈H1

a1i +
∑
i∈H2

a2i , α
y =

∑
i∈H1

g1i +
∑
i∈H2

g2i , β ≤ ΓF (αx, αy)

and a1i , a
2
i , g

1
i and g2i represent the ith rows of A1, A2, G1 and G2, respectively.

As we have already mentioned, computing β is an optimization problem over F and we have a
branch-and-bound procedure for solving this problem. Therefore, we can straightforwardly apply
the procedure that is the basis for Theorem 13. Note that for the inequality to be violated by
(x̂, ŷ), we must have

β > αxx̂+ αyŷ

so we need to obtain a lower bound improving upon this value in order to ensure violation. Naturally,
these inequalities can also be derived with respect to individual subproblems arising in the branch-
and-bound tree, but for notational simplicity, the above theorem describes only the globally valid
version.

It is important to mention that using this procedure avoids the need for the restrictive assumptions
of the original integer no-good cut, as described in Section 3.2.1. According to Theorem 4, this
inequality requires the integrality of all first- and second-level variables, as well as that of the
constraint coefficients and the right-hand side vectors. This is due to the method used for computing
the right-hand side for a given left-hand side vector. None of these assumptions are needed for
validity, however, when the strengthening procedure is applied, since validity is assured by direct
computation of a valid right-hand side.

4.2.2 Bound Cut

It is clear that the relaxation of the optimality constraint of the second-level problem is typically
the primary reason for the weakness of the LP relaxation used in the branch-and-bound procedure
for solving (MIBLP). In order to tighten the relaxation, an obvious approach is thus to impose
a valid upper bound on the value of the second-level objective function. Such a bound can be
viewed as a (linear) relaxation of the original optimality constraint of the second-level problem.
The strongest version of such a cut, which we refer to as a bound inequality at node t, is defined as

−d2y ≥ ΓFt(0,−d2).

28

Obviously, computing ΓFt(0,−d2) is a bilevel problem in itself (though simpler than the original
one). Nevertheless, using a resource-limited branch-and-bound is a viable approach to improving
tractability and obtaining a valid inequality. In the next section, we discuss a further improvement
in which we view the inequality as being parametric and are able to compute strengthened bounds
for subproblems deeper in the branch-and-bound tree based on computations performed in ancestors
using a technique that essentially amounts sensitivity analysis.

5 Parametric Inequalities

In this section, we describe a procedure for automatically and inexpensively strengthening the
inequalities obtained by the procedure in the previous section. Specifically we focus on deriving
new inequalities that are locally valid for the subproblems obtained by branching. As previously,
the technique has broad application, but we describe the general framework using the notation
from (MIBLP) to avoid introducing too much additional notation.

5.1 General Principle

A parametric cut is a cut whose coefficients and/or right-hand side are functions of the input data.
The subadditive inequalities arising in integer programming are a classic example [Nemhauser
and Wolsey, 1988]. Some known classes of valid inequalities, such as Gomory cuts, also have a
parametric form. Here, we describe a general notion of parametric valid inequality in which the
left-hand side remains constant but the right-hand side is expressed as a parametric function of
(some of) the input data. The parameterization we consider is of the variable bounds, which are
the parts of the input to the subproblems that are modified as branching occurs.

As previously, let a left-hand side vector (αx, αy) ∈ Qn1+n2 be given. The goal is to generate strong
valid inequalities with this left-hand side, but with the right-hand side determined by an easily
computable function of the input data for different nodes in the branch-and-bound tree. The so-
called non-parametric approach would be simply to employ Theorem 13 at each node t, beginning
the optimization from scratch. However, by essentially warm-starting the optimization procedure,
we can inexpensively compute an improved right-hand side after bounds on the variables have been
modified due to branching. This is the so-called parametric approach.

The core idea is to construct a nodal dual function (with respect to (αx, αy)) that allows us to
quickly obtain a bound on the optimal value of a subproblem of the form (22). The nodal dual
function is thus a function that bounds the so-called value function of the parametric family of
optimization problem arising as subproblems in a branch-and-bound procedure for solving (22) (for
a detailed discussion of value functions in general, as they pertain to MIBLPs, see [Bolusani et al.,
2020, Bolusani and Ralphs, 2020]).

Specifically, we consider functions of the variable bounds, as follows. At the risk of abusing notation,
let lx, ux ∈ Rn1 and ly, uy ∈ Rn2 denote vectors of lower and upper bounds for the first- and second-
level variables. We then define the nodal dual function as follows.

Definition 13. A nodal dual function Fα : R2n1+2n2 → R with respect to (αx, αy) is any function

29

satisfying

Fα(lx, ux, ly, uy) ≤ min
(x,y)∈F

{αxx+ αyy | lx ≤ x ≤ ux, ly ≤ y ≤ uy} ∀lx, ux ∈ Rn1 , ly, uy ∈ Rn2

Here, the superscript α indicates that the function is defined with respect to a particular fixed
left-hand side vector. If Fα is a nodal dual function with respect to (αx, αy) ∈ Qn1+n2 , then

Fα(ltx, u
t
x, l

t
y, u

t
y) ≤ min

(x,y)∈Ft
αxx+ αyy

Theorem 15 thus tells us that such a nodal dual function can be exploited to obtain a parametric
family of inequalities valid for any given node in the branch-and-bound tree.

Theorem 15. Let Fα : R2n1+2n2 → R be a nodal dual function associated with (αx, αy) ∈ Qn1+n2.
Then, at node t, in the branch-and-bound tree for solving the original problem (MIBLP), we have

αxx+ αyy ≥ Fα(ltx, u
t
x, l

t
y, u

t
y) ∀(x, y) ∈ F t.

In this way, we obtain a different right-hand side for each node t with respect to the same left-hand
side by plugging in the set of variable bounds that define the subproblem at node t into the nodal
dual function. Of course, the strength of the resulting inequality at a given node depends strongly
on how well the nodal dual function approximates the true optimal values of that subproblems. We
discuss how the nodal dual functions arise next.

5.2 Application

While Theorem 15 provides the main theoretical justification for the parametric approach, it does
not specify how the desired nodal dual function(s) (or the left-hand sides) should be generated.
To build the function associated with a given left-hand side, our approach is precisely the same
as the approach for obtaining valid right-hand side values in Section 4—we first attempt to solve
problem (22) using a resource-limited branch-and-bound procedure in the root node (t = 0) of the
branch-and-bound tree for the original MIBLP and then exploit the information from the obtained
branch-and-bound tree to build the nodal dual function Fα.

More specifically, let problem (22) be solved (partially or completely) for t = 0 by a separate
branch-and-bound algorithm, such as that of MibS itself. Since (22) is a bilevel optimization
problem itself, we use related notation to describe this problem and its solution procedure, but
carefully distinguish objects associated with solution of (22) from objects associated with solution
of the original problem (MIBLP). As such, let (αx, αy) ∈ Qn1+n2 be a given left-hand side vector
and define the following sets with respect to (22) at the root node (t = 0) and the associated set
K of leaf nodes of the resource-limited branch-and-bound procedure associated with it.

• Fkα is the feasible region of the bilevel subproblem associated with leaf node k;

• Pkα is the feasible region of the LP relaxation of leaf node k; and

• Skα = Pkα ∩ (X × Y).

30

We assume that when solving (22) at the root node (t = 0), no improving valid inequalities that
may remove part of the bilevel feasible region are generated. This is because while we may be
able to prove that addition of such inequalities are valid when the goal is only to solve the original
problem to optimality, they may remove parts of the feasible region that are needed in describing
the nodal dual function. For similar reasons, the nodes in set K must include nodes that would
ordinarily be discarded after pruning. To emphasize this, we classify the leaf nodes constituting
the set K as follows (the classification is not explicitly referenced in what follows, however).

• K1: The set of nodes fathomed because the relaxation problem is infeasible (Pkα = ∅).

• K2 : The set of nodes fathomed because the objective value of the relaxation is greater than
the current global upper bound.

• K3 : The set of nodes whose processing was terminated because resource limits were exceeded
(either time or node limits).

• K4 : The set of nodes fathomed because the optimal solution of relaxation problem was bilevel
feasible.

• K5 : The set of nodes fathomed because the linking variables were fixed and the node was
pruned after solving (UB) (with objective function αxx+ αyy).

Theorem 16 states formally how information obtained when processing these leaf nodes can then
be used to construct the nodal dual function Fα.

Theorem 16. Let problem (22) be solved by a resource-constrained branch-and-bound for t = 0, as
described above. Moreover, let the vectors LBk ∈ Rn1+n2 and UBk ∈ Rn1+n2 denote, respectively,
the intersection of the bounds lx, ux, ly, and uy with the bounds describing the leaf node k ∈ K.
Then, if we define

Fα(lx, ux, ly, uy) = min
k∈K

zk,

where

zk =

{
min

{
αxx+ αyy

∣∣ (x, y) ∈ Skα, d2y ≤ φ(b2 −A2x), LBk ≤ (x, y) ≤ UBk
}

if LBk
L = UBk

L

min
{
αxx+ αyy

∣∣ (x, y) ∈ Pkα, LBk ≤ (x, y) ≤ UBk
}

otherwise,

we have that Fα is a nodal dual function.

Proof. Since none of the cuts generated while solving problem (22) with t = 0 remove any bilevel
feasible solutions, we have that

{(x, y) ∈ F | lx ≤ x ≤ ux, ly ≤ y ≤ uy} ⊆
⋃
k∈K

{
(x, y) ∈ Fkα

∣∣∣ LBk ≤ (x, y) ≤ UBk
}
,

which results

min {αxx+ αyy | (x, y) ∈ F , lx ≤ x ≤ ux, ly ≤ y ≤ uy}

≥ min
k∈K

{
min

{
αxx+ αyy

∣∣∣ (x, y) ∈ Fkα, LBk ≤ (x, y) ≤ UBk
}}

.
(23)

31

Moreover, we have

min
{
αxx+ αyy

∣∣∣ (x, y) ∈ Fkα, LBk ≤ (x, y) ≤ UBk
}

= min
{
αxx+ αyy

∣∣∣ (x, y) ∈ Skα, d2y ≤ φ(b2 −A2x), LBk ≤ (x, y) ≤ UBk
}

if LBk
L = UBk

L,

(24)
and

min
{
αxx+ αyy

∣∣∣ (x, y) ∈ Fkα, LBk ≤ (x, y) ≤ UBk
}
≥

min
{
αxx+ αyy

∣∣∣ (x, y) ∈ Pkα, LBk ≤ (x, y) ≤ UBk
}

for all k ∈ K.
(25)

The result follows from (23), (24) and (25).

6 Computational Results

Some experiments were conducted in order to evaluate the performance of different valid inequal-
ities for MIBLPs described in previous sections. Four different data sets were employed in our
experiments as follows.

• INTERD-DEN: This set was generated by DeNegre [2011] and contains 320 knapsack interdic-
tion problems. These problems originate from the the Multiple Criteria Decision Making
library [Figueira, 2000] and has the same structure as (MIPINT). The number of first-level
variables (n1 = n2) varies in n1 ∈ {10, 11, ..., 19, 20, 30, 40, 50} and the number of first- and
second-level constraints are 1 and n1 + 1, respectively. There are 20 instances corresponding
to each level of n1, except 40 instances for n1 ∈ {10, 20}. Due to the difficulty of the instances
with n1 = 50, we excluded them in the experiments.

• IBLP-DEN: This set was also generated by DeNegre [2011]. It contains 50 problems comprised
of 10 instances with (n1, n2) = (5, 10), 10 instances with (n1, n2) = (10, 10), 10 instances with
(n1, n2) = (15, 5) and 20 instances with (n1, n2) = (15, 5). All first- and second-level variables
are integer and the number of first- and second-level constraints are 0 and 20, respectively.

• IBLP-ZHANG: This set was generated by Zhang and Ozaltın [2017] and includes 30 instances
with binary first-level variables, integer second-level variables and no first-level constraints.
The number of first-level variables varies in n1 ∈ {50, 60, 70, 80, 90} and the number of second-
level variables is set to n2 = n1 + 20. There are 3 instances with m2 = 6 and also 3 instances
with m2 = 7 corresponding to each level of n1.

• IBLP-FIS: This set was generated by Fischetti et al. [2018] and originates from MILPLIB

3.0 [Bixby et al., 1998]. This set includes 57 instances in which all variables are binary and
there are no first-level constraints. Furthermore, n1 and n2 vary in ranges 3 − 78734 and
2− 78733, respectively. Due to the memory limit, we did not consider 3 instances of this set
in our experiments.

MibS 1.1.1 was employed for conducting all experiments and all computational results we report
were generated on compute nodes running the Linux (Debian 8.7) operating system with dual

32

AMD Opteron 6128 processors and 32 GB RAM. All experiments were run sequentially and the
time limit was 3600 seconds. SYMPHONY was employed as the MILP solver, while preprocessing
and primal heuristics were disabled and the pseudocost branching strategy was used to choose the
best variable among the branching candidates in MibS. In all numerical experiments, the generation
of generic MILP cuts by CGL in MibS was disabled and the cuts were generated only when the
optimal solution of relaxation was infeasible, but satisfied integrality requirements. Furthermore,
all other parameters of MibS were set to their default values as described in [Tahernejad et al.,
2020], unless otherwise noted.

6.1 Comparing Performance of MIBLP Cuts

In this section, we compare the performance of different valid inequalities for the described data
sets. We also investigate the impact of the branchStrategy parameter of MibS on the performance
of cuts.

For plotting each figure shown in Sections 6.1.1–6.1.3, we first solved all instances of its corre-
sponding data set with all considered methods in that figure. Then, we selected only the problems
that (i)could be solved by at least one method in 3600 seconds, (ii)whose solution time exceeds 5
seconds for at least one method and (iii)call the cut generator at least one time during the solution
process. Furthermore, the plotted figures in these sections show virtual best performance profiles
with solution time or number of processed nodes as the criteria. In a virtual best performance
profile, for a specific method, the point (x,y) shows that for the fraction y of all instances, the
value of the investigating criterion by employing this method is less than or equal to x times of the
best value among all methods.

6.1.1 INTERD-DEN Set

In order to evaluate the impact of different MIBLP cuts on the instances of this set, we employed
eight different methods:

• benders: The benders cut was on.

• genNoGood: The strengthened no-good cut was on.

• incObj: The increasing objective cut was on.

• intNoGood: The integer no-good cut was on.

• type1IC: The intersection cut I was on.

• type2IC: The intersection cut II was on.

• watermelonIC: The watermelon intersection cut was on.

• hyperIC: The hypercube intersection cut was on.

33

Note that since the required solution times of the benders method for some of the accepted instances
were very small, we added 1 second to the required solution times of all methods for all accepted
instances.

In the first set of experiments, the branchStrategy parameter was set to fractional. The per-
formance profile shown in Figure 7a compares all eight described methods with the solution time
as the performance measure (for 200 accepted instances). This figure shows the superiority of the
benders cut over the other cuts. In order to get a better understanding of the performance of
the other cuts, Figure 7b was plotted which compares the performance of all methods other than
benders. This figure shows that watermelonIC is the runner-up after the benders method and
incObj takes the third place.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200

benders
genNoGood

incObj
intNoGood

type1IC
type2IC

watermelonIC
hyperIC

(a) Comparing all cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

genNoGood
incObj

intNoGood
type1IC
type2IC

watermelonIC
hyperIC

(b) Excluding the benders method

Figure 7: Comparing the performance of different cuts on the INTERD-DEN set (with the fractional
branching strategy)

The branchStrategy parameter was set to linking in the second set of experiments. The perfor-
mance profile shown in Figure 8a (for 199 accepted instances) compares the solution time of the
eight described methods and it shows that the benders and watermelon intersection cuts perform
better comparing with the other cuts. Figure 8b was plotted in the same way as Figure 7b and
it shows that type2IC and incObj are the best methods after benders and watermelonIC. By
comparing the Figures 7b and 8b, one can observe that the type of employed branching strategy
can affect the performance of cuts.

We also investigated the impact of using the benders and watermelon intersection cuts together
and the results are shown in Figure 9 (for both branching strategies). Figures 9a and 9b show that
the performance of benders cut cannot be improved by combining it with watermelon intersection
cut in none of the fractional and linking branching strategies.

6.1.2 IBLP-DEN Set

A set of experiments with five different methods, from the ones described in Section 6.1.1, were
conducted on the IBLP-DEN set to assess the performance of different cuts on the instances of this
set. These methods are intNoGood, type1IC, type2IC, watermelonIC and hyperIC. Each of these

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000 1200 1400 1600

benders
genNoGood

incObj
intNoGood

type1IC
type2IC

watermelonIC
hyperIC

(a) Comparing all cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30

genNoGood
incObj

intNoGood
type1IC
type2IC

watermelonIC
hyperIC

(b) Excluding the benders method

Figure 8: Comparing the performance of different cuts on the INTERD-DEN set (with the linking

branching strategy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

benders
benders+waterIC

(a) Fractional branching strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

benders
benders+waterIC

(b) Linking branching strategy

Figure 9: Impact of employing both benders and watermelon intersection cuts on the INTERD-DEN

set

methods was tested with both fractional and linking branching strategies, but since the number
of accepted instances for the linking strategy was 14 and the number of generated cuts for the
majority of these accepted problems was very small, it was not appropriate for representing the
performance of cuts, so we just report the results for the fractional branching strategy.

The performance profile shown in Figure 10a (for 22 accepted instances) compares the solution time
of the described methods and one can observe type1IC and hyperIC perform better comparing
with the other methods. Figure 10b shows the performance profile for these methods with the
number of processed nodes as the performance measure. This figure shows the superiority of
watermelonIC and hyperIC from the point of size of tree, which means that watermelon intersection
cut is strong, but its generation is expensive. Figure 10c compares the solution time of turning
on both type I and hypercube intersection cuts with using just each of these cuts. Based on this
figure, type1IC+hyperIC is not effective in decreasing the solution time.

35

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20

intNoGood
type1IC
type2IC

watermelonIC
hyperIC

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

intNoGood
type1IC
type2IC

watermelonIC
hyperIC

(b) Comparing the number of processed nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

type1IC
hyperIC

type1IC+hyperIC

(c) Employing both type I and hypercube intersection cuts

Figure 10: Comparing the performance of different cuts on the IBLP-DEN set

6.1.3 IBLP-ZHANG Set

In order to investigate the performance of different cuts for the IBLP-ZHANG set, we conducted
a set of experiments with seven different methods on the instances of this set. These methods
are genNoGood, incObj, type1IC, type2IC, watermelonIC and hyperIC (as were described in
Section 6.1.1).

All methods were tested with both linking and fractional branching strategies, but due to the
same reasons stated for the IBLP-DEN set, we here only analyze the results of using the fractional

branching strategy. Figure 11a shows the performance profile (for 13 accepted instances) for the
described methods with the solution time as the performance measure. This figure shows the supe-
riority of type1IC and incObj methods. Furthermore, the performance profile shown in Figure 11b
compares the number of processed nodes for the above methods and in the same way as Figure 10b,
one can observe that the watermelon intersection cut performs better with respect to the size of
tree.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

genNoGood
incObj

intNoGood
type1IC
type2IC

watermelonIC
hyperIC

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

genNoGood
incObj

intNoGood
type1IC
type2IC

watermelonIC
hyperIC

(b) Comparing the number of processed nodes

Figure 11: Comparing the performance of different cuts on the IBLP-ZHANG set

6.1.4 IBLP-FIS Set

For evaluation of the performance of different cuts on this set, all instances were first solved with
the methods genNoGood, intNoGood, type1IC, type2IC, watermelonIC and hyperIC (as illustrated
in Section 6.1.1). The branching strategy was set to fractional. Since the number of accepted
instances was very small by using the selection criteria for the other test sets, we accepted all
instances which call the cut generator at least one time during the solution process. The results of
28 accepted instances are shown in Figure 12. This plot is composed of two subplots with solution
time and duality gap as the performance measures. In the left (right) plot, the point (x,y) for a
specific method shows that the solution time (gap) of the fraction y of instances is not greater than
x by employing that method. This figure shows that the watermelon intersection cut has better
performance comparing with the other cuts for this test set.

Figure 12: Comparing the performance of different cuts on the IBLP-FIS set

37

6.2 Strengthening Integer No-good Cut

We illustrated in Section 4 that how a cut can be strengthened by improving its right-hand side.
In this section, we show the results of employing this idea for improving the performance of integer
no-good cut for the INTERD-DEN and IBLP-DEN sets.

As we explained in Section 4, it is not required to solve problem (22) to optimality and the selected
values for its termination parameters can affect the performance of generated cuts. The decision
about the nodes in which the generated cuts are strengthened can also affect the solution process.
Hence, for each data set, we tested multiple methods which are different in the termination criteria
of problem (22) and the level of the search tree that we start strengthening the cuts. The results
of a subset of these methods are shown in Figures 13 and 14. These figures show the base best per-
formance profiles for the solution time and number of processed nodes. In a base best performance
profile, for a specific method, the point (x,y) shows that for the fraction y of all instances, the
value of the investigating criterion by employing this method is less than or equal to x times of the
value of the criterion for the base method. A base best performance profile provides an appropriate
tool for comparing each method with the base method.

The first set of experiments were conducted on the INTERD-DEN set. The branching strategy was
set to linking for all methods and the the integer no-good cut (without strengthening) was turned
on in the base method. The other methods are:

• limTSec: The integer no-good cut was on and the cuts were strengthenth by setting the time
limit of problem (22) to T seconds for T ∈ {5, 10}.

• limTSecAfterLevelL: The same as limTSec, but only the cuts generated after the Lth level
of the search tree were strengthenth for T ∈ {5, 10} and L ∈ {5}.

Whenever it was needed to solve problem (22) in these methods, the branching strategy was set
to linking and all cuts were turned off. All other parameters were set to their default values. In
order to plot Figure 13 (and also Figure 14), we considered the instances (i)whose solution time
is greater than 5 seconds and less than 3600 seconds by employing the base method and (ii)which
call the cut generator at least one time during the solution process.

The performance profile shown in Figure 13a (for 180 accepted instances) compares the solution
time of the described methods with the base method. It shows that strengthening the integer
no-good cut can decrease the solution time of most of the problems and lim10SecAfterLevel5

performs better than the other ones. Moreover, Figure 13b compares the number of the processed
nodes and one can observe that strengthening the generated cuts can decrease the size of tree
substantially.

In the second set of experiments, we considered the IBLP-DEN set. The branching strategy was set to
fractional for all methods and the the integer no-good cut (without strengthening) was turned on
in the base method. The other methods are limTSecAfterLevelL for T ∈ {2, 5} and L ∈ {10, 15}.
The setting for solving the problem (22) was the same as the one used for the INTERD-DEN set.

The Figures 14a and 14b compare the performance of the described methods with the base method
with the solution time and the number of processed nodes as the performance measures, respectively

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

lim5Sec
lim5SecAfterLevel5

lim10Sec
lim10SecAfterLevel5

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

lim5Sec
lim5SecAfterLevel5

lim10Sec
lim10SecAfterLevel5

(b) Comparing the number of processed nodes

Figure 13: Impact of strengthening the integer no-good cut on the INTERD-DEN set

(for 14 accepted instances). As one can observe, none of the methods could not improve the solution
time of the base method, however, they can decreases the number of nodes for some instances.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

lim2SecAfterLevel10
lim2SecAfterLevel15
lim5SecAfterLevel10
lim5SecAfterLevel15

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

lim2SecAfterLevel10
lim2SecAfterLevel15
lim5SecAfterLevel10
lim5SecAfterLevel15

(b) Comparing the number of processed nodes

Figure 14: Impact of strengthening the integer no-good cut on the IBLP-DEN set

6.3 Impact of Bound Cut

In this section, we evaluate the impact of employing non-parametric and parametric bound cuts on
the instances of the INTERD-DEN and IBLP-DEN sets.

For each data set (for both non-parametric and parametric bound cuts), we tested multiple methods
which differ in (i)the termination parameters of problem (22) and (ii)the nodes in which bound cut
is generated. In the same way as Section 6.2, figures shown in this section are base best performance
profiles. The description of the investigated methods in this section are:

• onlyRootTimeTNodeN: The same as the base method, but the bound cut was generated at
the root node with T seconds and N nodes as the time and node limits for the problem (22),

39

respectively.

• onlyRootNodeN: The same as the method onlyRootTimeTNodeN, but there was no time limit
for the problem (22).

• timeTNodeNBeforeLFreqF: The same as the base method, but the bound cut was generated
with frequency F, whenever the cut generator was called for the nodes whose level in the tree
was less than L. Moreover, the time and node limits for the problem (22) were set to T seconds
and N nodes, respectively.

• timeTNodeNBeforeL: The same as the method timeTNodeNBeforeLFreqF, but the frequency
was set to 1.

• nodeNBeforeLFreqF: The same as the method timeTNodeNBeforeLFreqF, but there was no
time limit for the problem (22).

• nodeNFreqF: The same as the method nodeNBeforeLFreqF, but there was no limit on the
level of nodes in which the bound cut was generated.

In the first set of experiments, we considered the INTERD-DEN set. In the experiments for both non-
parametric and parametric bound cuts, we set the branching strategy to linking for all methods
and only benders cut was turned on in the base method. Furthermore, in all methods, we only
turned on the benders cut in solving problem (22) and all other parameters (except the termination
criteria) were set to their default values. For this data set (and also the IBLP-DEN set), we selected
the instances (i)whose solution time is greater than 50 seconds and less than 3600 seconds by
employing the base method and (ii)which call the cut generator at least one time during the
solution process. Figures 15 and 16 show the results for the parametric and non-parametric bound
cuts for this data set (for 17 accepted instances), respectively.

Figure 15a shows that employing the parametric bound cut can decrease the solution time and the
best settings are the three methods in which we generated the bound cut only in the root node
(i.e., the methods onlyRootTime120NodeN for N ∈ {15000, 20000, 30000}). As one can observe,
the performance of these methods is degraded as we increased the number of generated bound
cuts. Note that when we generate the bound cut only in the root node, the generated cut can be
considered as either parametric or non-parametric bound cuts because the approach of generating
bound cut in the root node is the same for both of these categories. Furthermore, Figure 15b shows
that generating the parametric bound cut has a considerable effect on decreasing the number of
processed nodes.

As one can observe in Figure 16a, employing the non-parametric bound cut can decrease the
solution time and similar to the parametric case, the best methods are those in which we generated
the bound cut only in the root node. Moreover, Figure 16b shows that generating non-parametric
bound cut can be effective in decreasing the number of processed nodes.

The second set of experiments were conducted on the IBLP-DEN set. The branching strategy was set
to fractional for all methods (both non-parametric and parametric cases) and only the hypercube
intersection cut was turned on in the base method. In all methods for parametric bound cut, we
only turned on the intersection cut I in solving problem (22) and all other parameters (except the
termination criteria) were set to their default values. This problem was solved with the same setting

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6

onlyRootTime120Node15000
onlyRootTime120Node20000
onlyRootTime120Node30000

time120Node20000Before5
time120Node20000Before5Freq4
time120Node30000Before5Freq4

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

onlyRootTime120Node15000
onlyRootTime120Node20000
onlyRootTime120Node30000

time120Node20000Before5
time120Node20000Before5Freq4
time120Node30000Before5Freq4

(b) Comparing the number of processed nodes

Figure 15: Impact of generating parametric bound cut on the INTERD-DEN set

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4

onlyRootTime120Node15000
onlyRootTime120Node20000
onlyRootTime120Node30000

node2000Freq5000
node2000Freq50000

node2000Before5Freq4
node5000Before5Freq4

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4

onlyRootTime120Node15000
onlyRootTime120Node20000
onlyRootTime120Node30000

node2000Freq5000
node2000Freq50000

node2000Before5Freq4
node5000Before5Freq4

(b) Comparing the number of processed nodes

Figure 16: Impact of generating non-parametric bound cut on the INTERD-DEN set

in the methods for the non-parametric bound cut, except that only hypercube intersection cut was
enabled. The results of employing the parametric and non-parametric bound cuts are shown in
Figures 17 and 18 (for 13 accepted instances), respectively. As one can observe, neither parametric
nor parametric bound cuts are effective in decreasing the solution time and number of processed
nodes for this set.

6.4 Evaluation of Strength of Different Cuts

We selected randomly 10 instances of the INTERD-DEN and IBLP-DEN sets and solved each instance
with different cuts as shown in Tables 1 and 2. For each instance, we considered the first generated
cut and compared its right-hand side with the best possible right-hand side. These values are shown
in the Orig RHS and Best RHS columns, respectively. The Obj before cut, Obj after orig

cut and Obj after best cut columns show, respectively, the objective values of the relaxation
problem before adding the first cut, after adding this cut and after adding this cut with the best
right-hand side.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

onlyRootNode1000
onlyRootNode5000

onlyRootNode10000
time60Node1000Before5Freq4

time60Node5000Before5
time60Node5000Before5Freq4

time60Node10000Before5Freq4

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1 1.1

onlyRootNode1000
onlyRootNode5000

onlyRootNode10000
time60Node1000Before5Freq4

time60Node5000Before5
time60Node5000Before5Freq4

time60Node10000Before5Freq4

(b) Comparing the number of processed nodes

Figure 17: Impact of generating parametric bound cut for the IBLP-DEN set

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3 3.5 4

onlyRootNode1000
onlyRootNode5000

onlyRootNode10000
time3Freq1000

time3After5Freq1000
time5Freq1000

node5000Before5

(a) Comparing the solution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1 1.1

onlyRootNode1000
onlyRootNode5000

onlyRootNode10000
time3Freq1000

time3After5Freq1000
time5Freq1000

node5000Before5

(b) Comparing the number of processed nodes

Figure 18: Impact of generating non-parametric bound cut for the IBLP-DEN set

As one can observe in Table 1, the right-hand sides of the generated benders cuts are equal to the
best possible right-hand sides for all five instances and it is one of the reasons of the strength of this
cut. Furthermore, the right-hand sides of the generated watermelon intersection cuts are closer to
their best possible values comparing with the integer no-good cuts and it verifies the results shown
in Section 6.1.1.

Note that in Table 2, for the instances 1, 2 and 3, we observed that the bilevel feasible region
of the node in which the first cut is generated is empty and it results that the best value of the
right-hand side is ∞ (because the best right-hand side is obtained by minimizing the left-hand
side over the bilevel feasible region) and the node should be pruned. This table also shows that
the right-hand sides of the watermelon and hypercube intersection cuts are more closer to their
best values in comparison with the integer no-good cuts and it verifies the superiority of these cuts
over the integer no-good cut in Section 6.1.2. Moreover, since the hypercube intersection cut and
strengthened no-good cut may remove a part of the non-improving bilevel feasible solutions, the
right-hand sides of these cuts may be greater than their best possible values and it can be observed
for the instances 3 and 4.

42

Table 1: Analysis of the right-hand sides of different cuts for the INTERD-DEN set

Benders cut Watermelon intersection cut Integer no-good cut

Instance
Obj

before cut
Orig
RHS

Best
RHS

Obj after
orig cut

Obj after
best cut

Orig
RHS

Best
RHS

Obj after
orig cut

Obj after
best cut

Orig
RHS

Best
RHS

Obj after
orig cut

Obj after
best cut

1 0 4520 4520 424.64 424.64 1 1.64 0 514.43 1 7 0 0
2 0 6252 6252 1270.08 1270.08 1 1.11 0 407.73 1 12 0 659.91
3 0 5662 5662 1285.7 1285.7 1 1.07 0 61.21 1 14 0 481.27
4 0 7113 7113 1274.73 1274.73 1 1.15 0 390.19 1 16 0 701.53
5 0 9685 9685 1720.64 1720.64 1 1.11 0 406.65 1 18 0 1070.59

Table 2: Analysis of the right-hand sides of different cuts for the IBLP-DEN set

Watermelon intersection cut Hypercube intersection cut Integer no-good cut

Instance
Obj

before cut
Orig
RHS

Best
RHS

Obj after
orig cut

Obj after
best cut

Orig
RHS

Best
RHS

Obj after
orig cut

Obj after
best cut

Orig
RHS

Best
RHS

Obj after
orig cut

Obj after
best cut

1 -669 0 ∞ -623.47 prune 5 ∞ -645 prune -789 ∞ -668.5 prune
2 -688 0 ∞ -544 prune 1 ∞ -632.46 prune -29 ∞ -676.36 prune
3 -766 0 0 -286 -286 3 2 -761.08 -766 -17 -4 -761.08 -508.05
4 -724 0 0 -578.63 -578.63 19 18 -709.75 -724 -407 -402 -721 -706
5 -659 0 ∞ -656.67 prune 15 ∞ prune prune -603 ∞ -656.83 prune

7 Conclusions

Although the generation of valid inequalities has proven to be an invaluable tool in solving MIBLPs,
there remains a large scope for developing the fundamental theory underlying the branch-and-cut
algorithms that have become a standard solution method. We have taken an initial step towards
filling in some of the gaps, as well as providing a framework within which to view the known
methods, clarifying the relationship to and distinction from similar methods already studied in the
MILP case. We also introduced new general methodology for generating valid inequalities that
applies not only to MIBLPs, but also potentially to other classes of optimization problem (such
as MILPs themselves). Finally, we provided a comprehensive comparison of known methods for
the generation of valid inequalities. There remains a wide range of possibilities for innovation in
leveraging the decades of research solving MILPs to derive improved methodology for MIBLPs. It
is our hope that this work motivates future work along these lines, leading to further discoveries in
this important field of research.

Acknowledgements

This research was made possible with support from National Science Foundation Grants CMMI-
1435453, CMMI-0728011, and ACI-0102687, as well as Office of Naval Research Grant N000141912330.

References

E. Balas. Intersection cuts-a new type of cutting planes for integer programming. Operations
Research, 19(1):19–39, 1971.

43

E. Balas. Disjunctive programming. In Annals of Discrete Mathematics 5: Discrete Optimization,
pages 3–51. North Holland, 1979.

E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimization prob-
lems. SIAM Journal on Algebraic Discrete Methods, 6(3):466–486, 1985.

E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete
Applied Mathematics, 89:3–44, 1998.

E. Balas, S. Ceria, and G. Corneujols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming, 58:295–324, 1993a.

E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming, 58:295324, 1993b.

J. Bard and J. Moore. A branch and bound algorithm for the bilevel programming problem. SIAM
Journal on Scientific and Statistical Computing, 11(2):281–292, 1990.

A. Basu, C. T. Ryan, and S. Sankaranarayanan. Mixed-integer bilevel representability. arXiv
preprint arXiv:1808.03865, 2018.

D. Bienstock, C. Chen, and G. Munoz. Outer-product-free sets for polynomial optimization and
oracle-based cuts. arXiv preprint arXiv:1610.04604, 2016.

R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated mixed integer program-
ming library: Miplib 3.0. Technical report, 1998.

S. Bolusani and T. Ralphs. A Framework for Generalized Benders’ Decomposition and Its Ap-
plication to Multilevel Optimization. Technical report, COR@L Laboratory Technical Report
20T-004, Lehigh University, 2020. URL http://coral.ie.lehigh.edu/~ted/files/papers/

MultilevelBenders20.pdf.

S. Bolusani, S. Coniglio, T. Ralphs, and S. Tahernejad. A Unified Framework for Multistage
Mixed Integer Linear Optimization. Technical report, COR@L Laboratory Technical Report
20T-005, Lehigh University, 2020. URL http://coral.ie.lehigh.edu/~ted/files/papers/

MultistageFramework20.pdf.

A. Bulut and T. Ralphs. On the Complexity of Inverse Mixed Integer Linear Optimization. Tech-
nical report, COR@L Laboratory Technical Report 15T-001-R3, Lehigh University, 2015. URL
http://coral.ie.lehigh.edu/~ted/files/papers/InverseMILP15.pdf.

A. Caprara, M. Carvalho, A. Lodi, and G. Woeginger. Bilevel knapsack with interdiction con-
straints. INFORMS Journal on Computing, 28(2):319–333, 2016.

Cgl. Cut generator library, 2017. URL https://projects.coin-or.org/Cgl.

M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming, volume 271. Springer, 2014.

W. Cook, , R. Kannan, and A. Schrijver. Chva´tal Closures For Mixed Integer Programming
Problems. Mathematical Programming, 47(2):155–174, 1990.

44

http://coral.ie.lehigh.edu/~ted/files/papers/MultilevelBenders20.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MultilevelBenders20.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MultistageFramework20.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MultistageFramework20.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/InverseMILP15.pdf
https://projects.coin-or.org/Cgl

G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical Programming,
112(1):3–44, 2008.

A. Del Pia and R. Weismantel. On convergence in mixed integer programming. Mathematical
programming, 135(1-2):397–412, 2012.

S. Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers, 2002.

S. DeNegre. Interdiction and Discrete Bilevel Linear Programming. PhD, Lehigh University, 2011.
URL http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.

pdf.

S. DeNegre and T. Ralphs. A Branch-and-Cut Algorithm for Bilevel Integer Programming.
In Proceedings of the Eleventh INFORMS Computing Society Meeting, pages 65–78, 2009.
doi: 10.1007/978-0-387-88843-9 4. URL http://coral.ie.lehigh.edu/~ted/files/papers/

BILEVEL08.pdf.

S. DeNegre, T. Ralphs, and S. Tahernejad. MibS version 1.1.1 2019. doi: 10.5281/zenodo.1439102.
URL https://github.com/coin-or/MibS.

J. Figueira. MCDM Numerical Instances Library, 2000. URL http://www.univ-valenciennes.

fr/ROAD/MCDM/ListMOKP.html.

M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algorithm for mixed-
integer bilevel linear programs. Operations Research, 65(6):1615–1637, 2017.

M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. On the use of intersection cuts for bilevel
optimization. Mathematical Programming, 172:77–103, 2018.

D. Gade and S. Küçükyavuz. Pure cutting-plane algorithms and their convergence. Wiley Ency-
clopedia of Operations Research and Management Science, pages 1–11, 2011.

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Monthly, 64:275–278, 1958.

R. E. Gomory. A algorithm for the mixed integer problem. Technical report, The RAND Cooper-
ation, 1960.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.
Springer-Verlag, New York, 1993.

A. Hassanzadeh and T. Ralphs. On the Value Function of a Mixed Integer Linear Optimization
Problem and an Algorithm for Its Construction. Technical report, COR@L Laboratory Technical
Report 14T-004, Lehigh University, 2014. URL http://coral.ie.lehigh.edu/~ted/files/

papers/MILPValueFunction14.pdf.

P. Loridan and J. Morgan. Weak via strong stackelberg problem: New results. Journal of Global
Optimization, 8(3):263–287, 1996.

H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer and mixed
integer programming. Discrete Applied Mathematics, 123(1):397–446, 2002.

45

http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/ScottDeNegreDissertation11.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf
https://github.com/coin-or/MibS
http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOKP.html
http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOKP.html
http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunction14.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunction14.pdf

R. Meyer. On the existence of optimal solutions to integer and mixed integer programming prob-
lems. Mathematical Programming, 7:223–235, 1974.

J. Moore and J. Bard. The mixed integer linear bilevel programming problem. Operations research,
38(5):911–921, 1990.

J. Munkres. Topology. Pearson Education, 2014.

G. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley and Sons,
New York, 1988.

L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1976.

S. Tahernejad, T. Ralphs, and S. DeNegre. A Branch-and-Cut Algorithm for Mixed Integer Bilevel
Linear Optimization Problems and Its Implementation. Mathematical Programming Computa-
tion, 12:529–568, 2020. doi: 10.1007/s12532-020-00183-6. URL http://coral.ie.lehigh.edu/

~ted/files/papers/MIBLP16.pdf.

L. Vicente, G. Savard, and J. Júdice. Discrete linear bilevel programming problem. Journal of
Optimization Theory and Applications, 89(3):597–614, 1996.

K. Wolter. Implementation of Cutting Plane Separators for Mixed Integer Programs. Master’s
thesis, Technische Universität Berlin, 2006.

J. Zhang and O. Y. Ozaltın. A branch-and-cut algorithm for discrete bilevel linear programs.
Optim. Online, 2017.

46

http://coral.ie.lehigh.edu/~ted/files/papers/MIBLP16.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MIBLP16.pdf

	Introduction
	Mixed Integer Bilevel Optimization

	Theoretical Foundations
	Convexification
	Cutting Plane Method
	Improving Valid Inequalities
	General Classes

	Valid Inequalities for MIBLPs
	Feasibility Cuts
	Optimality Cuts
	Integer No-Good Cut
	Generalized Chvátal Inequality
	Increasing Objective Cut
	Benders Cut
	Intersection Cut
	Watermelon Intersection Cut
	Hypercube Intersection Cut

	Projected Optimality Cuts
	Generalized No-good Cut

	Strong Valid Inequalities
	General Principle
	Strong Valid Inequalities for MIBLP
	Strengthened Integer No-good Cut
	Bound Cut

	Parametric Inequalities
	General Principle
	Application

	Computational Results
	Comparing Performance of MIBLP Cuts
	INTERD-DEN Set
	IBLP-DEN Set
	IBLP-ZHANG Set
	IBLP-FIS Set

	Strengthening Integer No-good Cut
	Impact of Bound Cut
	Evaluation of Strength of Different Cuts

	Conclusions

