
Integer Programming: A Research Overview

Ted Ralphs

Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA

http://www.lehigh.edu/˜tkr2



Integer Programming Research Overview 1

Outline of Talk

• Introduction

• Applications

• Research

– Solution methodology
– User interfaces
– Computation

• Conclusions

1



Introduction 2

Introduction

2



Introduction 3

Mathematical Programming Models

• What does mathematical programming mean?

• Programming here means “planning.”

• Literally, these are “mathematical models for planning.”

• Also called optimization models.

• Essential elements

– Decision variables
– Constraints
– Objective Function
– Parameters and Data

3



Introduction 4

Forming a Mathematical Programming Model

• The general form of a mathematical programming model is:

min f(x)

s.t. gi(x)




≤
=
≥



 bi

x ∈ X

X ⊆ Rn is an (implicitly defined) set that may be discrete.

• A mathematical programming problem is a problem that can be expressed
using a mathematical programming model (called the formulation).

• A single mathematical programming problem can be represented using
many different formulations (important).

4



Introduction 5

Types of Mathematical Programming Models

• The type of mathematical programming model is determined mainly by

– The form of the objective and the constraints.
– The form of the set X.

• In this talk, we consider linear models.

– The objective function is linear.
– The constraints are linear.
– Linear models are specified by cost vector c ∈ Rn, constraint matrix

A ∈ Rm×n, and right-hand side vector b ∈ Rm and have the form

min cTx

s.t. Ax≥ b

x ∈ X

5



Introduction 6

Linear Models

• Generally speaking, linear models are easier to solve than more general
types of models.

• If X = Rn, the model is called a linear program (LP).

• Linear programming models can be solved effectively.

• If some of the variables in the model are required to take on integer
values, the model is called a mixed integer linear programs (MILPs).

• MILPs can be extremely difficult to solve in practice.

6



Introduction 7

Modeling with Integer Variables

• Why do we need integer variables?

• If a variable represents the quantity of a physical resource that only
comes in discrete units, then it must be assigned an integer value.

– Product mix problem.
– Cutting stock problem.

• We can use 0-1 (binary) variables for a variety of purposes.

– Modeling yes/no decisions.
– Enforcing disjunctions.
– Enforcing logical conditions.
– Modeling fixed costs.
– Modeling piecewise linear functions.

• The simplest form of ILP is a combinatorial optimization problem (COP),
where all variables are binary.

7



Introduction 8

Example: Perfect Matching Problem

• We are given a set N of n people that need to paired in teams of two.

• Let cij represent the “cost” of the team formed by persons i and j.

• We wish to minimize the overall cost of the pairings.

• The nodes represent the people and the edges represent pairings.

• We have xij = 1 if i and j are matched, xij = 0 otherwise.

• To simplify the presentation, we assume that xij = 0 if i ≥ j.

min
∑

{i,j}∈N×N

cijxij

s.t.
∑

j∈N

xij = 1, ∀i ∈ N

xij ∈ {0, 1}, ∀{i, j} ∈ N ×N, i < j.

8



Applications 9

Applications

9



Applications 10

Applications

To get a feel, we w’ll sample applications from a few “hot” areas.

• Supply Chain Logistics

• Computational Biology

• Electronic Commerce

10



Applications 11

Facility Location Problem

• We are given n potential facility locations and m customers that must
be serviced from those locations.

• There is a fixed cost cj of opening facility j.

• There is a cost dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

min
n∑

j=1

cjyj +
m∑

i=1

n∑

j=1

dijxij

s.t.

n∑

j=1

xij = 1 ∀i

m∑

i=1

xij ≤ myj ∀j

xij, yj ∈ {0, 1} ∀i, j

11



Applications 12

Traveling Salesman Problem

• We are given a set of cities and a cost associated with traveling between
each pair of cities.

• The Traveling Salesman Problem (TSP) is that of finding the least cost
route traveling through every city and ending up back at the starting
city.

• Applications of the TSP

– Drilling Circuit Boards
– DNA Sequencing

12



Applications 13

DNA Sequencing and the TSP

• The DNA sequencing problem is to find the sequence of base pairs in a
large fragment of DNA (length N).

• It is not practical to simply examine the DNA and determine the sequence.

• One approach is sequencing by hybridization: mix the DNA sequence
with short oligonucleotides that bind with subsequences of the DNA.

• This results in an approximate list of all subsequences of length l that
occur in the larger sequence.

• To reconstruct the original sequence, we simply have to correctly order
the subsequences.

• This is easy if there are no errors.

• In the presence of errors, it becomes an optimization problem that is a
variant of the TSP.

13



Applications 14

The Set Partitioning Problem

• We are given a finite set S and subsets S1, . . . , Sn of S, each with an
associated cost c(Si), i ∈ [1..n].

• The Set Partitioning Problem is to determine I ⊂ [1..n] such that
∪i∈ISi = S and

∑
i∈I c(Si) is minimized.

• We can formulating this as an integer program.

– Construct a 0 − 1 matrix A in which aij = 1 if and only if the ith

element of S belongs to Sj.
– The integer program is then

min cTx

s.t. Ax = 1

x ∈ {0, 1}n

• These integer programs are very difficult to solve.

14



Applications 15

The Set Partitioning Problem and Combinatorial
Auctions

• A combinatorial auction is an auction in which participants are allowed
to bid on subsets of the available goods.

• This accounts for the fact that some items have a greater worth when
combined with other items.

• Example: FCC bandwidth auction

– The FCC wishes to sell the licenses by bandwidth and region.
– The value of a set of bandwidth licenses is increased if they are in

contiguous regions.

• A set of items along with a price constitutes a bid.

• Given a set of bids, determining the winners of the auction is a set
partitioning problem.

15



Research 16

Research

16



Research 17

Show Me the Research

• Methodology

– Solution methodology
∗ Primal algorithms
∗ Implicit enumeration algorithms
∗ Heuristics

– Other tools
∗ Automatic reformulation
∗ Decomposition
∗ Preprocessing techniques
∗ Generation of strong valid inequalities
∗ Primal heuristics

• User interfaces

– Modeling languages
– Data interchange formats
– Callable libraries
– Algorithmic frameworks

• Computation

17



Methodology 18

Methodology

18



Methodology 19

How Hard Are These Problems?

• In practice, they can be extremely difficult.

• The number of possible solutions for the TSP is n! (that’s HUGE).

• We cannot afford to enumerate all these possibilities.

• But there is no efficient direct method for solving these problems.

19



Methodology 20

Primal Algorithms

• Many optimization algorithms use an improving search paradigm.

– Find a feasible starting solution.
– In each iteration, determine an improving feasible direction and move

in that direction to get to a better solution.
– The step size is determined by performing a line search.

• Can this be made to work for integer programming?

• What are the difficulties?

20



Methodology 21

Implicit Enumeration

• Implicit enumeration techniques try to enumerate the solution space in
an intelligent way.

• The most common algorithm of this type is branch and bound.

• Suppose F is the set of feasible solutions for some MILP and we wish to
solve minx∈F cTx.

• Consider a partition of F into subsets F1, . . . Fk. Then

min
x∈F

cTx = min
1≤i≤k

{min
x∈Fi

cTx}

.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.

• We avoid complete enumeration primarily by deriving bounds on the
value of an optimal solution to each subproblem.

21



Methodology 22

The Geometry of Integer Programming

Convex hull of integer solutions

Linear programming relaxation

22



Methodology 23

Bounding

• A relaxation of an ILP is an auxiliary mathematical program for which

– the feasible region contains the feasible region for the original ILP, and
– the objective function value of each solution to the original ILP is not

increased.

• Types of Relaxations

– Continuous relaxations
∗ Most common continuous relaxation is the LP relaxation.
∗ Obtained by dropping some or all of the integrality constraints.
∗ Easy to solve.
∗ Bounds weak in general.
∗ Other relaxations are possible using semi-definite programming, for

instance.
– Combinatorial relaxations
∗ Obtained by dropping some of the linear constraints.
∗ Violation of these constraints can then penalized in the objective

function (Lagrangian relaxation)
∗ Bound strength depends on what constraints are dropped.

23



Methodology 24

Branch and Bound Algorithm

• We maintain a queue of active subproblems initially containing just the
root subproblem.

• We choose a subproblem from the queue and solve a relaxation of it to
obtain a bound.

• The result is one of the following:

1. The relaxation is infeasible ⇒ subproblem is infeasible.
2. We obtain a feasible solution for the MILP ⇒ subproblem solved (new

upper bound??).
3. We obtain an optimal solution to the relaxation that is not feasible for

the MILP ⇒ lower bound.

• In the first two cases, we are finished.

• In the third case, we compare the lower bound to the global upper bound.

– If it exceeds the upper bound, we discard the subproblem.
– If not, we branch and add the resulting subproblems to the queue.

24



Methodology 25

Branching

Branching involves partitioning the feasible region with hyperplanes such
that:

• All optimal solutions are in one of the members of the partition.

• The solution to the current relaxation is not in any of the members of
the partition.

25



Methodology 26

Branch and Bound Tree

26



Methodology 27

Heuristics

• Heuristics are fast methods for finding “good” feasible solutions to
mathematical programs when other methods fail.

• Constructive Methods

– Attempt to construct a solution by selecting items from the ground
set one by one.

– Usually done using a greedy selection criteria.

• Improvement Methods

– Begin with a feasible solution obtained using another method and try
to improve on it.

– Typically done by discarding some of the items in the solution and
choosing others in such a way that the solution improves.

– These are also sometime called local search methods because they
search in the local area of a given solution for better ones.

• Important: Heuristics do not “solve” problems, they just find good
solutions!!!

27



Other Tools 28

Other Tools and Techniques

28



Other Tools 29

Reformulation

• Not all formulations are created equal.

• A given mathematical programming problem may have many alternative
formulations.

• For MILPs, “stronger” formulations make problems easier to solve.

• Example: Facility Location revisited

– Consider the constraints
∑m

i=1 xij ≤ myj ∀j.
– These can be replaced with xij ≤ yj ∀i, j

• Adding variables or recasting with a completely different set of variables
can also help.

• Various automatic reformulation techniques have been successful in
improving our ability to solve difficult problems.

• Decomposition, preprocessing, and cutting plane generation are three
simple methods for strengthening initial formulations.

29



Other Tools 30

Decomposition

• Decomposition methods try to reduce solution of a difficult model to
solution of a series of easier models.

• This is done by relaxing certain constraints and then trying to implicitly
enforce them.

• One typical approach, called Lagrangian relaxation, assigns a penalty in
the objective function for violating the relaxed constraints.

• The difficult part is identifying which constraints to relax.

• Methods for automatically detecting structure and applying a
decomposition method are a promising area for research.

30



Other Tools 31

Preprocessing and Logical Tightening

• Preprocessing techniques use various logical rules to tighten bounds on
both variables and constraints.

• Example: We can derive implied bounds for variables from each constraint
ax ≤ b. If a0 > 0, then

x1 ≤ (b−
∑

j:aj>0

ajlj −
∑

j:aj<0

ajuj)/a0

• Many other such rules can be applied in order to strengthen the
formulation and obtain better bounds.

• Similar techniques are used in constraint logic programming.

31



Other Tools 32

Strong Valid Inequalities

Any inequality valid for all optimal solutions to a given MILP can be used
to obtain improved bounds.

Convex hull of integer solutions

Linear programming relaxation

32



Other Tools 33

Valid Inequality Example

4

53

1

2

6

4

53

1

2

6

1

1

1

L

L

1

1

1

1/2

1/2

1/2 1/2

1/2

1/2

• Consider the graph on the left above.

• The optimal perfect matching has value L + 2.

• The optimal solution to the LP relaxation has value 3.

• This formulation can be extremely weak.

• Add the valid inequality x24 + x35 ≥ 1.

• Every perfect matching satisfies this inequality.

33



Other Tools 34

Primal Heuristics

• Primal heuristics are used to perturb a solution to a relaxation into a
solution feasible for the original MILP.

• The most common primal heuristics are based on rounding the solution
obtained by solving an LP relaxation.

• The success of such methods depends on

– how easy it is to achieve feasibility, and
– how much rounding increases the objective function value.

• Another possibility is to use a constructive method initialized by fixing
all the variables that are integer-valued in the current LP solution.

• This could be followed by an improvement method.

34



User Interfaces 35

User Interfaces

35



User Interfaces 36

Bringing MILP to the Masses

• User interfaces are the bridge between theory and practice.

• User interfaces allow practitioners to apply methodology developed by
academics to real problems.

• How do practitioners use these tools?

– As a “black box” to solve a given model specified in a modeling
language.

– As a “black box” embedded within a larger application using a callable
library.

– As building blocks within customized solvers.

36



User Interfaces 37

Common Infrastructure for Operations Research
(COIN-OR)

• The COIN-OR project is a consortium of researchers from both industry
and academia.

• We are dedicated to promoting the development and use of interoperable,
open-source software for operations research.

• We are also dedicated to defining standards and interfaces that allow
software components to interoperate with other software, as well as with
users.

• Check out the Web site for the project at

http://www.coin-or.org

• There is also a Lehigh site devoted to COIN tutorial materials at

http://sagan.ie.lehigh.edu/coin

• COIN-OR is involved in research in all of the areas in the second-half of
the talk.

37



User Interfaces 38

Modeling Languages and Data Interchange Formats

• A modeling language is a human-readable syntax for specifying a model.

• Modeling languages typically strive to be “solver independent.”

• Using a modeling language, the user can write a text-based description
of the model that could be read from a file by a solver.

• Some existing modeling languages

– AMPL
– GAMS
– MPL
– OPL
– GMPL

• Non-human-readable formats are also needed to store model data or pass
it to other applications.

• Current modeling languages are somewhat limited in the integer
programming models they can express.

• One area prime for research is increasing the richness of modeling
languages to allow specification of more complex (combinatorial) models.

38



User Interfaces 39

Callable Libraries

• More sophisticated users may prefer to access the solver directly from
application code without going through a modeling language.

• This requires specifying an API.

• The Open Solver Interface (OSI) is a uniform API available from COIN-
OR that provides a common interface to numerous solvers.

• Using the OSI improves portability and eliminates dependence on third-
party software.

39



User Interfaces 40

Algorithmic Frameworks

• An algorithmic framework allows the user to easily modify the inner
workings of the algorithm.

• In branch and bound, a user might want to develop a new branching rule
or generate some cutting planes without implementing from scratch.

• In a framework, functionality must be modularized and interfaces well-
defined.

• Existing frameworks for MILP

– MINTO
– ABACUS
– SYMPHONY
– COIN/BCP
– ALPS (under development)

40



User Interfaces 41

Computation

41



User Interfaces 42

Large-scale Computation

• With large-scale computation, many practical issues arise.

– speed
– memory usage
– numerical stability

• Dealing with these issues can be more of an art than a science.

• This is an area in which we have a great deal to learn.

42



User Interfaces 43

Distributed Computing

• High-performance computing is becoming increasingly affordable.

• The use of parallel algorithms for solving large-scale problems has become
a realistic option for many users.

• Developing parallel algorithms raises a range of additional issues.

• The name of the game in parallel computation is to avoid doing
unnecessary computations (right hand doesn’t know what the left hand
is doing).

• To void unnecessary work, processing units have to share information.

• Information sharing also has a cost, so there is a tradeoff.

• Achieving the correct balance is challenging.

• This is an area of active research.

43



User Interfaces 44

Current State of the Art

44



User Interfaces 45

Outlook

• Currently, IP researchers are in search of the “next big breakthrough” in
methodology.

• More work is needed on improving user interfaces and making IP
technology accessible to practitioners.

• There is still a lot to be learned about computation and large-scale IP.

• Applying IP to a new application area can have a big impact.

• Many application areas remain untapped.

45



User Interfaces 46

Current Research

• Theory and Methodology

– Branch, cut, and price algorithms for large-scale discrete optimization
– Decomposition-based algorithms for discrete optimization
– Parallel algorithms

• Software Development

– COIN-OR Project (Open Source Software for Operations Research)
– SYMPHONY (C library for parallel branch, cut, and price)
– ALPS (C++ library for scalable parallel search algorithms)
– BiCePS (C++ library for parallel branch, constrain, and price)
– BLIS (C++ library built for solving MILPs)
– DECOMP (Framework for decomposition-based algorithms)

• Applications

– Logistics (routing and packing problems)
– Electronic commerce/combinatorial auctions
– Computational biology

46


