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Outline of Talk

• Introduction

• Applications

• Research

– Solution methodology
– User interfaces
– Computation

• Conclusions
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Introduction
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Mathematical Programming Models

• What does mathematical programming mean?

• Programming here means “planning.”

• Literally, these are “mathematical models for planning.”

• Also called optimization models.

• Essential elements

– Decision variables
– Constraints
– Objective Function
– Parameters and Data
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Forming a Mathematical Programming Model

• The general form of a mathematical programming model is:

min f(x)

s.t. gi(x)
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x ∈ X

X ⊆ Rn is an (implicitly defined) set that may be discrete.

• A mathematical programming problem is a problem that can be expressed
using a mathematical programming model (called the formulation).

• A single mathematical programming problem can be represented using
many different formulations (important).
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Types of Mathematical Programming Models

• The type of mathematical programming model is determined mainly by

– The form of the objective and the constraints.
– The form of the set X.

• In this talk, we consider linear models.

– The objective function is linear.
– The constraints are linear.
– Linear models are specified by cost vector c ∈ Rn, constraint matrix

A ∈ Rm×n, and right-hand side vector b ∈ Rm and have the form

min cTx

s.t. Ax≥ b

x ∈ X
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Linear Models

• Generally speaking, linear models are easier to solve than more general
types of models.

• If X = Rn, the model is called a linear program (LP).

• Linear programming models can be solved effectively.

• If some of the variables in the model are required to take on integer
values, the model is called a mixed integer linear programs (MILPs).

• MILPs can be extremely difficult to solve in practice.
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Modeling with Integer Variables

• Why do we need integer variables?

• If a variable represents the quantity of a physical resource that only
comes in discrete units, then it must be assigned an integer value.

– Product mix problem.
– Cutting stock problem.

• We can use 0-1 (binary) variables for a variety of purposes.

– Modeling yes/no decisions.
– Enforcing disjunctions.
– Enforcing logical conditions.
– Modeling fixed costs.
– Modeling piecewise linear functions.

• The simplest form of ILP is a combinatorial optimization problem (COP),
where all variables are binary.
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Example: Perfect Matching Problem

• We are given a set N of n people that need to paired in teams of two.

• Let cij represent the “cost” of the team formed by persons i and j.

• We wish to minimize the overall cost of the pairings.

• The nodes represent the people and the edges represent pairings.

• We have xij = 1 if i and j are matched, xij = 0 otherwise.

• To simplify the presentation, we assume that xij = 0 if i ≥ j.

min
∑

{i,j}∈N×N

cijxij

s.t.
∑

j∈N

xij = 1, ∀i ∈ N

xij ∈ {0, 1}, ∀{i, j} ∈ N ×N, i < j.
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Applications
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Applications

To get a feel, we w’ll sample applications from a few “hot” areas.

• Supply Chain Logistics

• Computational Biology

• Electronic Commerce
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Facility Location Problem

• We are given n potential facility locations and m customers that must
be serviced from those locations.

• There is a fixed cost cj of opening facility j.

• There is a cost dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

min
n∑

j=1

cjyj +
m∑

i=1

n∑

j=1

dijxij

s.t.

n∑

j=1

xij = 1 ∀i

m∑

i=1

xij ≤ myj ∀j

xij, yj ∈ {0, 1} ∀i, j
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Traveling Salesman Problem

• We are given a set of cities and a cost associated with traveling between
each pair of cities.

• The Traveling Salesman Problem (TSP) is that of finding the least cost
route traveling through every city and ending up back at the starting
city.

• Applications of the TSP

– Drilling Circuit Boards
– DNA Sequencing
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DNA Sequencing and the TSP

• The DNA sequencing problem is to find the sequence of base pairs in a
large fragment of DNA (length N).

• It is not practical to simply examine the DNA and determine the sequence.

• One approach is sequencing by hybridization: mix the DNA sequence
with short oligonucleotides that bind with subsequences of the DNA.

• This results in an approximate list of all subsequences of length l that
occur in the larger sequence.

• To reconstruct the original sequence, we simply have to correctly order
the subsequences.

• This is easy if there are no errors.

• In the presence of errors, it becomes an optimization problem that is a
variant of the TSP.
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The Set Partitioning Problem

• We are given a finite set S and subsets S1, . . . , Sn of S, each with an
associated cost c(Si), i ∈ [1..n].

• The Set Partitioning Problem is to determine I ⊂ [1..n] such that
∪i∈ISi = S and

∑
i∈I c(Si) is minimized.

• We can formulating this as an integer program.

– Construct a 0 − 1 matrix A in which aij = 1 if and only if the ith

element of S belongs to Sj.
– The integer program is then

min cTx

s.t. Ax = 1

x ∈ {0, 1}n

• These integer programs are very difficult to solve.
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The Set Partitioning Problem and Combinatorial
Auctions

• A combinatorial auction is an auction in which participants are allowed
to bid on subsets of the available goods.

• This accounts for the fact that some items have a greater worth when
combined with other items.

• Example: FCC bandwidth auction

– The FCC wishes to sell the licenses by bandwidth and region.
– The value of a set of bandwidth licenses is increased if they are in

contiguous regions.

• A set of items along with a price constitutes a bid.

• Given a set of bids, determining the winners of the auction is a set
partitioning problem.
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Research
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Show Me the Research

• Methodology

– Solution methodology
∗ Primal algorithms
∗ Implicit enumeration algorithms
∗ Heuristics

– Other tools
∗ Automatic reformulation
∗ Decomposition
∗ Preprocessing techniques
∗ Generation of strong valid inequalities
∗ Primal heuristics

• User interfaces

– Modeling languages
– Data interchange formats
– Callable libraries
– Algorithmic frameworks

• Computation
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Methodology
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How Hard Are These Problems?

• In practice, they can be extremely difficult.

• The number of possible solutions for the TSP is n! (that’s HUGE).

• We cannot afford to enumerate all these possibilities.

• But there is no efficient direct method for solving these problems.
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Primal Algorithms

• Many optimization algorithms use an improving search paradigm.

– Find a feasible starting solution.
– In each iteration, determine an improving feasible direction and move

in that direction to get to a better solution.
– The step size is determined by performing a line search.

• Can this be made to work for integer programming?

• What are the difficulties?
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Implicit Enumeration

• Implicit enumeration techniques try to enumerate the solution space in
an intelligent way.

• The most common algorithm of this type is branch and bound.

• Suppose F is the set of feasible solutions for some MILP and we wish to
solve minx∈F cTx.

• Consider a partition of F into subsets F1, . . . Fk. Then

min
x∈F

cTx = min
1≤i≤k

{min
x∈Fi

cTx}

.

• Idea: If we can’t solve the original problem directly, we might be able to
solve the smaller subproblems recursively.

• Dividing the original problem into subproblems is called branching.

• Taken to the extreme, this scheme is equivalent to complete enumeration.

• We avoid complete enumeration primarily by deriving bounds on the
value of an optimal solution to each subproblem.
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The Geometry of Integer Programming

Convex hull of integer solutions

Linear programming relaxation
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Bounding

• A relaxation of an ILP is an auxiliary mathematical program for which

– the feasible region contains the feasible region for the original ILP, and
– the objective function value of each solution to the original ILP is not

increased.

• Types of Relaxations

– Continuous relaxations
∗ Most common continuous relaxation is the LP relaxation.
∗ Obtained by dropping some or all of the integrality constraints.
∗ Easy to solve.
∗ Bounds weak in general.
∗ Other relaxations are possible using semi-definite programming, for

instance.
– Combinatorial relaxations
∗ Obtained by dropping some of the linear constraints.
∗ Violation of these constraints can then penalized in the objective

function (Lagrangian relaxation)
∗ Bound strength depends on what constraints are dropped.
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Branch and Bound Algorithm

• We maintain a queue of active subproblems initially containing just the
root subproblem.

• We choose a subproblem from the queue and solve a relaxation of it to
obtain a bound.

• The result is one of the following:

1. The relaxation is infeasible ⇒ subproblem is infeasible.
2. We obtain a feasible solution for the MILP ⇒ subproblem solved (new

upper bound??).
3. We obtain an optimal solution to the relaxation that is not feasible for

the MILP ⇒ lower bound.

• In the first two cases, we are finished.

• In the third case, we compare the lower bound to the global upper bound.

– If it exceeds the upper bound, we discard the subproblem.
– If not, we branch and add the resulting subproblems to the queue.
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Branching

Branching involves partitioning the feasible region with hyperplanes such
that:

• All optimal solutions are in one of the members of the partition.

• The solution to the current relaxation is not in any of the members of
the partition.
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Branch and Bound Tree
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Heuristics

• Heuristics are fast methods for finding “good” feasible solutions to
mathematical programs when other methods fail.

• Constructive Methods

– Attempt to construct a solution by selecting items from the ground
set one by one.

– Usually done using a greedy selection criteria.

• Improvement Methods

– Begin with a feasible solution obtained using another method and try
to improve on it.

– Typically done by discarding some of the items in the solution and
choosing others in such a way that the solution improves.

– These are also sometime called local search methods because they
search in the local area of a given solution for better ones.

• Important: Heuristics do not “solve” problems, they just find good
solutions!!!
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Other Tools and Techniques
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Reformulation

• Not all formulations are created equal.

• A given mathematical programming problem may have many alternative
formulations.

• For MILPs, “stronger” formulations make problems easier to solve.

• Example: Facility Location revisited

– Consider the constraints
∑m

i=1 xij ≤ myj ∀j.
– These can be replaced with xij ≤ yj ∀i, j

• Adding variables or recasting with a completely different set of variables
can also help.

• Various automatic reformulation techniques have been successful in
improving our ability to solve difficult problems.

• Decomposition, preprocessing, and cutting plane generation are three
simple methods for strengthening initial formulations.
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Decomposition

• Decomposition methods try to reduce solution of a difficult model to
solution of a series of easier models.

• This is done by relaxing certain constraints and then trying to implicitly
enforce them.

• One typical approach, called Lagrangian relaxation, assigns a penalty in
the objective function for violating the relaxed constraints.

• The difficult part is identifying which constraints to relax.

• Methods for automatically detecting structure and applying a
decomposition method are a promising area for research.
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Preprocessing and Logical Tightening

• Preprocessing techniques use various logical rules to tighten bounds on
both variables and constraints.

• Example: We can derive implied bounds for variables from each constraint
ax ≤ b. If a0 > 0, then

x1 ≤ (b−
∑

j:aj>0

ajlj −
∑

j:aj<0

ajuj)/a0

• Many other such rules can be applied in order to strengthen the
formulation and obtain better bounds.

• Similar techniques are used in constraint logic programming.
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Strong Valid Inequalities

Any inequality valid for all optimal solutions to a given MILP can be used
to obtain improved bounds.

Convex hull of integer solutions

Linear programming relaxation

32



Other Tools 33

Valid Inequality Example
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• Consider the graph on the left above.

• The optimal perfect matching has value L + 2.

• The optimal solution to the LP relaxation has value 3.

• This formulation can be extremely weak.

• Add the valid inequality x24 + x35 ≥ 1.

• Every perfect matching satisfies this inequality.
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Primal Heuristics

• Primal heuristics are used to perturb a solution to a relaxation into a
solution feasible for the original MILP.

• The most common primal heuristics are based on rounding the solution
obtained by solving an LP relaxation.

• The success of such methods depends on

– how easy it is to achieve feasibility, and
– how much rounding increases the objective function value.

• Another possibility is to use a constructive method initialized by fixing
all the variables that are integer-valued in the current LP solution.

• This could be followed by an improvement method.
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User Interfaces
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Bringing MILP to the Masses

• User interfaces are the bridge between theory and practice.

• User interfaces allow practitioners to apply methodology developed by
academics to real problems.

• How do practitioners use these tools?

– As a “black box” to solve a given model specified in a modeling
language.

– As a “black box” embedded within a larger application using a callable
library.

– As building blocks within customized solvers.
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Common Infrastructure for Operations Research
(COIN-OR)

• The COIN-OR project is a consortium of researchers from both industry
and academia.

• We are dedicated to promoting the development and use of interoperable,
open-source software for operations research.

• We are also dedicated to defining standards and interfaces that allow
software components to interoperate with other software, as well as with
users.

• Check out the Web site for the project at

http://www.coin-or.org

• There is also a Lehigh site devoted to COIN tutorial materials at

http://sagan.ie.lehigh.edu/coin

• COIN-OR is involved in research in all of the areas in the second-half of
the talk.
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Modeling Languages and Data Interchange Formats

• A modeling language is a human-readable syntax for specifying a model.

• Modeling languages typically strive to be “solver independent.”

• Using a modeling language, the user can write a text-based description
of the model that could be read from a file by a solver.

• Some existing modeling languages

– AMPL
– GAMS
– MPL
– OPL
– GMPL

• Non-human-readable formats are also needed to store model data or pass
it to other applications.

• Current modeling languages are somewhat limited in the integer
programming models they can express.

• One area prime for research is increasing the richness of modeling
languages to allow specification of more complex (combinatorial) models.
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Callable Libraries

• More sophisticated users may prefer to access the solver directly from
application code without going through a modeling language.

• This requires specifying an API.

• The Open Solver Interface (OSI) is a uniform API available from COIN-
OR that provides a common interface to numerous solvers.

• Using the OSI improves portability and eliminates dependence on third-
party software.
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Algorithmic Frameworks

• An algorithmic framework allows the user to easily modify the inner
workings of the algorithm.

• In branch and bound, a user might want to develop a new branching rule
or generate some cutting planes without implementing from scratch.

• In a framework, functionality must be modularized and interfaces well-
defined.

• Existing frameworks for MILP

– MINTO
– ABACUS
– SYMPHONY
– COIN/BCP
– ALPS (under development)
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Computation
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Large-scale Computation

• With large-scale computation, many practical issues arise.

– speed
– memory usage
– numerical stability

• Dealing with these issues can be more of an art than a science.

• This is an area in which we have a great deal to learn.
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Distributed Computing

• High-performance computing is becoming increasingly affordable.

• The use of parallel algorithms for solving large-scale problems has become
a realistic option for many users.

• Developing parallel algorithms raises a range of additional issues.

• The name of the game in parallel computation is to avoid doing
unnecessary computations (right hand doesn’t know what the left hand
is doing).

• To void unnecessary work, processing units have to share information.

• Information sharing also has a cost, so there is a tradeoff.

• Achieving the correct balance is challenging.

• This is an area of active research.
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Current State of the Art
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Outlook

• Currently, IP researchers are in search of the “next big breakthrough” in
methodology.

• More work is needed on improving user interfaces and making IP
technology accessible to practitioners.

• There is still a lot to be learned about computation and large-scale IP.

• Applying IP to a new application area can have a big impact.

• Many application areas remain untapped.
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Current Research

• Theory and Methodology

– Branch, cut, and price algorithms for large-scale discrete optimization
– Decomposition-based algorithms for discrete optimization
– Parallel algorithms

• Software Development

– COIN-OR Project (Open Source Software for Operations Research)
– SYMPHONY (C library for parallel branch, cut, and price)
– ALPS (C++ library for scalable parallel search algorithms)
– BiCePS (C++ library for parallel branch, constrain, and price)
– BLIS (C++ library built for solving MILPs)
– DECOMP (Framework for decomposition-based algorithms)

• Applications

– Logistics (routing and packing problems)
– Electronic commerce/combinatorial auctions
– Computational biology

46


