
Integer Programming
ISE 418

Lecture 2

Dr. Ted Ralphs



ISE 418 Lecture 2 1

Reading for This Lecture

• N&W Sections I.1.1-I.1.6

• Wolsey Chapter 1

• CCZ Chapter 2

1



ISE 418 Lecture 2 2

Formulations and Models

• Our description in the last lecture boiled the modeling process down to
two basic steps.

1. Create a conceptual model of the real-world problem.
2. Translate the conceptual model into a formulation.

• In the conceptual model, we identify the variables and what values of we
would like to allow in logical/conceptual terms.

• In the formulation, we specify constraints that ensure the feasible
solutions to the resulting mathematical optimization problem are indeed
“feasible” in terms of the conceptual model.

• Integer (and other) variables that don’t appear in the conceptual model
may be introduced to enforce logical conditions (disjunction).

• We also try to account for “solvability.”

• We may have to prove formally that the resulting formulation does in
fact correspond to the model (and eventually to the real-world problem).

2



ISE 418 Lecture 2 3

Valid Formulation

• Suppose F ⊆ Zp
+ × Rn−p

+ is a set describing the solutions to our
conceptual model.

• Then

S =
{
(x, y) ∈ (Zp × Rn−p

+ )× (Zt
+ × Rr−t

+ ) | Ax+Gy ≤ b
}

is a valid (linear) formulation if F = projx(S), where A ∈ Qm×n, G ∈
Qr×n, b ∈ Qm are chosen appropriately.

• The formulation may have auxiliary variables that are not in the
conceptual model (we will see an example later in the lecture).

• In fact, the variables from the conceptual model may not even be
explicitly needed if their values can be computed later.

• This definition addresses only feasibility and does not address formal
equivalence of the formulation and the original optimization problem.

• To prove such equivalence, we need also consider the objective function
and may need to invoke the concept of reduction, introduced later.

3



ISE 418 Lecture 2 4

Alternative Formulations

• A typical mathematical model may have many valid formulations.

• In this class, we focus on problems that have linear formulations
(naturally, not every problem does).

• We will see that the specific formulation we choose can have a big impact
on the efficiency of the solution method.

• Finding a “good” formulation is critical to solving a given linear model
efficiently and is a good deal of what this course is about.

• The existence of alternative formulations and the question of how to
choose between them will be an implicit theme throughout the course.

• In fact, most algorithms for solving optimization problems can be seen
as methods for iteratively reformulating.

4



ISE 418 Lecture 2 5

Notation and Terminology

• For most parts of the course, we’ll assume the formulation is given and
won’t consider the original conceptual model.

• We may informally refer to the feasible region of the LP relaxation as
“the formulation.”

• Later we’ll discuss mathematical formalities involved in describing
optimization problems.

• For ease of notation, we won’t distinguish between the original structural
variables and the additional auxiliary variables.

5



ISE 418 Lecture 2 6

Proving Validity

• There are two parts to proving a formulation is valid, although one or
both of these may be “obvious” in some cases.

– First, we have to prove that F is in fact the set of solutions to the
original problem, which may have been described non-mathematically.

– Second, we have to prove our formulation is correct.

• In the first step, we need to identify a mapping between the real-world
system and the set F .

• Proving validity of a given formulation often means proving F =
projx(S).

• The most straightforward way of doing this involves proving

– x ∈ F ⇒ x ∈ projx(S), and
– x ∈ projx(S)⇒ x ∈ F .

• Note also that we may need to separately prove that the chosen objective
properly ranks the solutions according to our evaluation in the real world.

6



ISE 418 Lecture 2 7

Problem Reduction

• The process of modeling and formulation involves multiple translations
from one formal (or informal) language into another.

• Each of these steps involves what is called reduction, a type of procedure
that we will study in more detail later in the course.

• Informally, reducing problem A to problem B involves deriving

– a mapping of each “instance” of problem A to an “instance” of
problem B, and

– a mapping of a solution to problem B to a solution to problem A

• If problem A can be reduced to problem B in this way, we can solve an
instance of problem A by

1. Mapping the instance of problem A to an instance of problem B;
2. Solving the instance of problem B; and then
3. Mapping the solution we obtain back to a solution of problem A.

• Note that for an optimization problem, reduction only requires that an
optimal solution of B maps to an optimal solution of A.

• There may be solutions to B that do not map to solutions of A, but also
can never be optimal.

7



ISE 418 Lecture 2 8

Efficient Reduction

• The way reduction was informally described on the previous slide did not
account for the difficulty of doing the mapping.

• In general, for a reduction to be useful, the mappings should be “easy”
to compute.

• We usually define this to mean that the number of steps required is
polynomial in the “size” of the input.

• Hence, the description of the instance of problem B cannot be more than
a polynomial factor larger than the input of the instance of problem A.

• We’ll define this notion of “efficiency” more formally laster in the course
and also study it in ISE 407.

• Also note that we required that problem A be solved by one call to the
algorithm for problem B.

• In general, notions of reduction exist in which multiple instances of
problem B may be used to solve problem A.

• In this more general notion of reduction, we put a similar limit on both
the size and number of instances of problem B to be solved.

8



ISE 418 Lecture 2 9

Problem Reduction and Modeling

• Note that reduction does not require us to identify a problem that is
equivalent to our original problem.

• Problems A and B may not be equivalent, since we don’t require that
every instance of problem B corresponds to an instance of problem A.

• The goal is to exploit an algorithm for problem B to solve problem A.

• Modeling of a general optimization problem involves reducing that model
to optimization over a set F .

• Proving validity of a formulation amounts to showing that optimization
over F can be reduced to mathematical optimization.

• We may also do reductions from one mathematical optimization problem
to another in some cases.

• These reductions may involve problems defined over completely different
sets of variables.

9



ISE 418 Lecture 2 10

Example: Max Independent Set and Max Clique

10



ISE 418 Lecture 2 11

Formulations with Integer Variables

• From a practical standpoint, what is the purpose of integer variables?

11



ISE 418 Lecture 2 11

Formulations with Integer Variables

• From a practical standpoint, what is the purpose of integer variables?

• We have seen in the last lecture that integer variable essentially allow us
to introduce disjunctive logic

• If the variable is associated with a physical entity that is indivisible, then
the value must be integer.

– Product mix problem.
– Cutting stock problem.

• At its heart, integrality is a kind of disjunctive constraint.

• 0-1 (binary) variables are often used to formulate more abstract kinds of
disjunctions (non-numerical).

– Formulating yes/no decisions.
– Enforcing logical conditions.
– Formulating fixed costs.
– Formulating piecewise linear functions.

11



ISE 418 Lecture 2 12

Formulating Binary Choice

• We use binary variables to formulate yes/no decisions.

• Example: Integer knapsack problem

– We are given a set of items with associated values and weights.
– We wish to select a subset of maximum value such that the total

weight is less than a constant K.
– We associate a 0-1 variable with each item indicating whether it is

selected or not.

max

m∑
j=1

cjxj

s.t.

m∑
j=1

wjxj ≤K

x ∈ {0, 1}n

12



ISE 418 Lecture 2 13

Formulating Dependent Decisions

• We can also use binary variables to enforce the condition that a certain
action can only be taken if some other action is also taken.

• Suppose x and y are binary variables representing whether or not to take
certain actions.

• The constraint x ≤ y says “only take action x if action y is also taken”.

13



ISE 418 Lecture 2 14

Example: Facility Location Problem

• We are given n potential facility locations and m customers.

• There is a fixed cost cj of opening facility j.

• There is a cost dij associated with serving customer i from facility j.

• We have two sets of binary variables.

– yj is 1 if facility j is opened, 0 otherwise.
– xij is 1 if customer i is served by facility j, 0 otherwise.

• Here is one formulation:

min

n∑
j=1

cjyj +

m∑
i=1

n∑
j=1

dijxij

s.t.

n∑
j=1

xij = 1 ∀i

m∑
i=1

xij ≤ myj ∀j

xij, yj ∈ {0, 1} ∀i, j

14



ISE 418 Lecture 2 15

Selecting from a Set

• We can use constraints of the form
∑

j∈T xj ≥ 1 to represent that at
least one item should be chosen from a set T .

• Similarly, we can also formulate that at most one or exactly one item
should be chosen.

• Example: Set covering problem

– A set covering problem is any problem of the form

min c>x

s.t. Ax ≥ 1

xj ∈ {0, 1} ∀j
where A is a 0-1 matrix.

– Each row of A represents an item from a set S.
– Each column Aj represents a subset Sj of the items.
– Each variable xj represents selecting subset Sj.
– The constraints say that ∪{j|xj=1}Sj = S.
– In other words, each item must appear in at least one selected subset.

15



ISE 418 Lecture 2 16

Formulating Disjunctive Constraints

• We are given two constraints a>x ≥ b and c>x ≥ d with non-negative
coefficients.

• Instead of insisting both constraints be satisfied, we want at least one of
the two constraints to be satisfied.

• To formulate this, we define a binary variable y and impose

a>x ≥ yb,

c>x ≥ (1− y)d,
y ∈ {0, 1}.

• More generally, we can impose that at least k out of m constraints be
satisfied with

(a′i)
>x≥ biyi, i ∈ [1..m]

m∑
i=1

yi≥ k,

yi ∈ {0, 1}

16



ISE 418 Lecture 2 17

Formulating a Restricted Set of Values

• We may want variable x to only take on values in the set {a1, . . . , am}.

• We introduce m binary variables yj, j = 1, . . . ,m and the constraints

x =

m∑
j=1

ajyj,

m∑
j=1

yj = 1,

yj ∈ {0, 1}

17



ISE 418 Lecture 2 18

Piecewise Linear Cost Functions

• We can use binary variables to formulate arbitrary piecewise linear cost
functions.

• The function is specified by ordered pairs (ai, f(ai)) and we wish to
evaluate it at a point x.

• We have a binary variable yi, which indicates whether ai ≤ x ≤ ai+1.

• To evaluate the function, we take linear combinations
∑k

i=1 λif(ai) of
the given functions values.

• This only works if the only two nonzero λ′is are the ones corresponding
to the endpoints of the interval in which x lies.

18



ISE 418 Lecture 2 19

Minimizing Piecewise Linear Cost Functions

• The following formulation minimizes the function.

min

k∑
i=1

λif(ai)

s.t.

k∑
i=1

λi = 1,

λ1 ≤ y1,
λi ≤ yi−1 + yi, i ∈ [2..k − 1],

λk ≤ yk−1,
k−1∑
i=1

yi = 1,

λi ≥ 0,

yi ∈ {0, 1}.

• The key is that if yj = 1, then λi = 0, ∀i 6= j, j + 1.

19



ISE 418 Lecture 2 20

Formulating General Nonconvex Functions

• One way of dealing with general nonconvexity is by dividing the domain
of a nonconvex function into regions over which it is convex (or concave).

• We can do this using integer variables to choose the region.

• This is precisely what is done in the case of the piecewise linear cost
function above.

• Most methods of general global optimization use some form of this
approach.

20



ISE 418 Lecture 2 21

Fixed-charge Problems

• In many instances, there is a fixed cost and a variable cost associated
with a particular decision.

• Example: Fixed-charge Network Flow Problem

– We are given a directed graph G = (N,A).
– There is a fixed cost cij associated with “opening” arc (i, j) (think of

this as the cost to “build” the link).
– There is also a variable cost dij associated with each unit of flow along

arc (i, j).
– Consider an instance with a single supply node.
∗ Minimizing the fixed cost by itself is a minimum spanning tree

problem (easy).
∗ Minimizing the variable cost by itself is a minimum cost network

flow problem (easy).
∗ We want to minimize the sum of these two costs (difficult).

21



ISE 418 Lecture 2 22

Formulating the Fixed-charge Network Flow Problem

• To formulate the FCNFP, we associate two variables with each arc.

– xij (fixed-charge variable) indicates whether arc (i, j) is open.
– fij (flow variable) represents the flow on arc (i, j).
– Note that we have to ensure that fij > 0⇒ xij = 1.

min
∑

(i,j)∈A

cijxij + dijfij

s.t.
∑

j∈O(i)

fij −
∑

j∈I(i)

fji = bi ∀i ∈ N

fij ≤Cxij ∀(i, j) ∈ A
fij ≥ 0 ∀(i, j) ∈ A
xij ∈ {0, 1} ∀(i, j) ∈ A

22


