Integer Programming ISE 418

Lecture 2

Dr. Ted Ralphs

Reading for This Lecture

- N\&W Sections I.1.1-I.1. 6
- Wolsey Chapter 1
- CCZ Chapter 2

Formulations and Models

- Our description in the last lecture boiled the modeling process down to two basic steps.

1. Create a conceptual model of the real-world problem.
2. Translate the conceptual model into a formulation.

- In the conceptual model, we identify the variables and what values of we would like to allow in logical/conceptual terms.
- In the formulation, we specify constraints that ensure the feasible solutions to the resulting mathematical optimization problem are indeed "feasible" in terms of the conceptual model.
- Integer (and other) variables that don't appear in the conceptual model may be introduced to enforce logical conditions (disjunction).
- We also try to account for "solvability."
- We may have to prove formally that the resulting formulation does in fact correspond to the model (and eventually to the real-world problem).

Valid Formulation

- Suppose $\mathcal{F} \subseteq \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}$ is a set describing the solutions to our conceptual model.
- Then

$$
\mathcal{S}=\left\{(x, y) \in\left(\mathbb{Z}^{p} \times \mathbb{R}_{+}^{n-p}\right) \times\left(\mathbb{Z}_{+}^{t} \times \mathbb{R}_{+}^{r-t}\right) \mid A x+G y \leq b\right\}
$$

is a valid (linear) formulation if $\mathcal{F}=\operatorname{proj}_{x}(\mathcal{S})$, where $A \in \mathbb{Q}^{m \times n}, G \in$ $\mathbb{Q}^{r \times n}, b \in \mathbb{Q}^{m}$ are chosen appropriately.

- The formulation may have auxiliary variables that are not in the conceptual model (we will see an example later in the lecture).
- In fact, the variables from the conceptual model may not even be explicitly needed if their values can be computed later.
- This definition addresses only feasibility and does not address formal equivalence of the formulation and the original optimization problem.
- To prove such equivalence, we need also consider the objective function and may need to invoke the concept of reduction, introduced later.

Alternative Formulations

- A typical mathematical model may have many valid formulations.
- In this class, we focus on problems that have linear formulations (naturally, not every problem does).
- We will see that the specific formulation we choose can have a big impact on the efficiency of the solution method.
- Finding a "good" formulation is critical to solving a given linear model efficiently and is a good deal of what this course is about.
- The existence of alternative formulations and the question of how to choose between them will be an implicit theme throughout the course.
- In fact, most algorithms for solving optimization problems can be seen as methods for iteratively reformulating.

Notation and Terminology

- For most parts of the course, we'll assume the formulation is given and won't consider the original conceptual model.
- We may informally refer to the feasible region of the LP relaxation as "the formulation."
- Later we'll discuss mathematical formalities involved in describing optimization problems.
- For ease of notation, we won't distinguish between the original structural variables and the additional auxiliary variables.

Proving Validity

- There are two parts to proving a formulation is valid, although one or both of these may be "obvious" in some cases.
- First, we have to prove that \mathcal{F} is in fact the set of solutions to the original problem, which may have been described non-mathematically.
- Second, we have to prove our formulation is correct.
- In the first step, we need to identify a mapping between the real-world system and the set \mathcal{F}.
- Proving validity of a given formulation often means proving $\mathcal{F}=$ $\operatorname{proj}_{x}(\mathcal{S})$.
- The most straightforward way of doing this involves proving
- $x \in \mathcal{F} \Rightarrow x \in \operatorname{proj}_{x}(\mathcal{S})$, and
$-x \in \operatorname{proj}_{x}(\mathcal{S}) \Rightarrow x \in \mathcal{F}$.
- Note also that we may need to separately prove that the chosen objective properly ranks the solutions according to our evaluation in the real world.

Problem Reduction

- The process of modeling and formulation involves multiple translations from one formal (or informal) language into another.
- Each of these steps involves what is called reduction, a type of procedure that we will study in more detail later in the course.
- Informally, reducing problem A to problem B involves deriving
- a mapping of each "instance" of problem A to an "instance" of problem B, and
- a mapping of a solution to problem B to a solution to problem A
- If problem A can be reduced to problem B in this way, we can solve an instance of problem A by

1. Mapping the instance of problem A to an instance of problem B;
2. Solving the instance of problem B; and then
3. Mapping the solution we obtain back to a solution of problem A.

- Note that for an optimization problem, reduction only requires that an optimal solution of B maps to an optimal solution of A.
- There may be solutions to B that do not map to solutions of A, but also can never be optimal.

Efficient Reduction

- The way reduction was informally described on the previous slide did not account for the difficulty of doing the mapping.
- In general, for a reduction to be useful, the mappings should be "easy" to compute.
- We usually define this to mean that the number of steps required is polynomial in the "size" of the input.
- Hence, the description of the instance of problem B cannot be more than a polynomial factor larger than the input of the instance of problem A.
- We'll define this notion of "efficiency" more formally laster in the course and also study it in ISE 407.
- Also note that we required that problem A be solved by one call to the algorithm for problem B.
- In general, notions of reduction exist in which multiple instances of problem B may be used to solve problem A.
- In this more general notion of reduction, we put a similar limit on both the size and number of instances of problem B to be solved.

Problem Reduction and Modeling

- Note that reduction does not require us to identify a problem that is equivalent to our original problem.
- Problems A and B may not be equivalent, since we don't require that every instance of problem B corresponds to an instance of problem A.
- The goal is to exploit an algorithm for problem B to solve problem A.
- Modeling of a general optimization problem involves reducing that model to optimization over a set \mathcal{F}.
- Proving validity of a formulation amounts to showing that optimization over \mathcal{F} can be reduced to mathematical optimization.
- We may also do reductions from one mathematical optimization problem to another in some cases.
- These reductions may involve problems defined over completely different sets of variables.

Example: Max Independent Set and Max Clique

Formulations with Integer Variables

- From a practical standpoint, what is the purpose of integer variables?

Formulations with Integer Variables

- From a practical standpoint, what is the purpose of integer variables?
- We have seen in the last lecture that integer variable essentially allow us to introduce disjunctive logic
- If the variable is associated with a physical entity that is indivisible, then the value must be integer.
- Product mix problem.
- Cutting stock problem.
- At its heart, integrality is a kind of disjunctive constraint.
- 0-1 (binary) variables are often used to formulate more abstract kinds of disjunctions (non-numerical).
- Formulating yes/no decisions.
- Enforcing logical conditions.
- Formulating fixed costs.
- Formulating piecewise linear functions.

Formulating Binary Choice

- We use binary variables to formulate yes/no decisions.
- Example: Integer knapsack problem
- We are given a set of items with associated values and weights.
- We wish to select a subset of maximum value such that the total weight is less than a constant K.
- We associate a 0-1 variable with each item indicating whether it is selected or not.

$$
\begin{aligned}
\max & \sum_{j=1}^{m} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{m} w_{j} x_{j} \leq K \\
x & \in\{0,1\}^{n}
\end{aligned}
$$

Formulating Dependent Decisions

- We can also use binary variables to enforce the condition that a certain action can only be taken if some other action is also taken.
- Suppose x and y are binary variables representing whether or not to take certain actions.
- The constraint $x \leq y$ says "only take action x if action y is also taken".

Example: Facility Location Problem

- We are given n potential facility locations and m customers.
- There is a fixed cost c_{j} of opening facility j.
- There is a cost $d_{i j}$ associated with serving customer i from facility j.
- We have two sets of binary variables.
- y_{j} is 1 if facility j is opened, 0 otherwise.
- $x_{i j}$ is 1 if customer i is served by facility $j, 0$ otherwise.
- Here is one formulation:

$$
\begin{array}{ll}
\min & \sum_{j=1}^{n} c_{j} y_{j}+\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} x_{i j} \\
\text { s.t. } \sum_{j=1}^{n} x_{i j}=1 & \forall i \\
\sum_{i=1}^{m} x_{i j} \leq m y_{j} & \forall j \\
x_{i j}, y_{j} \in\{0,1\} & \forall i, j
\end{array}
$$

Selecting from a Set

- We can use constraints of the form $\sum_{j \in T} x_{j} \geq 1$ to represent that at least one item should be chosen from a set T.
- Similarly, we can also formulate that at most one or exactly one item should be chosen.
- Example: Set covering problem
- A set covering problem is any problem of the form

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x \geq 1 \\
\quad x_{j} \in\{0,1\} \forall j
\end{array}
$$

where A is a $0-1$ matrix.

- Each row of A represents an item from a set S.
- Each column A_{j} represents a subset S_{j} of the items.
- Each variable x_{j} represents selecting subset S_{j}.
- The constraints say that $\cup_{\left\{j \mid x_{j}=1\right\}} S_{j}=S$.
- In other words, each item must appear in at least one selected subset.

Formulating Disjunctive Constraints

- We are given two constraints $a^{\top} x \geq b$ and $c^{\top} x \geq d$ with non-negative coefficients.
- Instead of insisting both constraints be satisfied, we want at least one of the two constraints to be satisfied.
- To formulate this, we define a binary variable y and impose

$$
\begin{aligned}
a^{\top} x & \geq y b \\
c^{\top} x & \geq(1-y) d \\
y & \in\{0,1\}
\end{aligned}
$$

- More generally, we can impose that at least k out of m constraints be satisfied with

$$
\begin{aligned}
\left(a_{i}^{\prime}\right)^{\top} x & \geq b_{i} y_{i}, \quad i \in[1 . . m] \\
\sum_{i=1}^{m} y_{i} & \geq k \\
y_{i} & \in\{0,1\}
\end{aligned}
$$

Formulating a Restricted Set of Values

- We may want variable x to only take on values in the set $\left\{a_{1}, \ldots, a_{m}\right\}$.
- We introduce m binary variables $y_{j}, j=1, \ldots, m$ and the constraints

$$
\begin{array}{r}
x=\sum_{j=1}^{m} a_{j} y_{j} \\
\sum_{j=1}^{m} y_{j}=1 \\
y_{j} \in\{0,1\}
\end{array}
$$

Piecewise Linear Cost Functions

- We can use binary variables to formulate arbitrary piecewise linear cost functions.
- The function is specified by ordered pairs $\left(a_{i}, f\left(a_{i}\right)\right)$ and we wish to evaluate it at a point x.
- We have a binary variable y_{i}, which indicates whether $a_{i} \leq x \leq a_{i+1}$.
- To evaluate the function, we take linear combinations $\sum_{i=1}^{k} \lambda_{i} f\left(a_{i}\right)$ of the given functions values.
- This only works if the only two nonzero $\lambda_{i}^{\prime} s$ are the ones corresponding to the endpoints of the interval in which x lies.

Minimizing Piecewise Linear Cost Functions

- The following formulation minimizes the function.

$$
\begin{array}{ll}
\min & \sum_{i=1}^{k} \lambda_{i} f\left(a_{i}\right) \\
\text { s.t. } & \sum_{i=1}^{k} \lambda_{i}=1, \\
& \lambda_{1} \leq y_{1}, \\
& \lambda_{i} \leq y_{i-1}+y_{i}, \quad i \in[2 . . k-1], \\
& \lambda_{k} \leq y_{k-1}, \\
& \sum_{i=1}^{k-1} y_{i}=1, \\
& \lambda_{i} \geq 0, \\
& y_{i} \in\{0,1\} .
\end{array}
$$

- The key is that if $y_{j}=1$, then $\lambda_{i}=0, \forall i \neq j, j+1$.

Formulating General Nonconvex Functions

- One way of dealing with general nonconvexity is by dividing the domain of a nonconvex function into regions over which it is convex (or concave).
- We can do this using integer variables to choose the region.
- This is precisely what is done in the case of the piecewise linear cost function above.
- Most methods of general global optimization use some form of this approach.

Fixed-charge Problems

- In many instances, there is a fixed cost and a variable cost associated with a particular decision.
- Example: Fixed-charge Network Flow Problem
- We are given a directed graph $G=(N, A)$.
- There is a fixed cost $c_{i j}$ associated with "opening" arc (i, j) (think of this as the cost to "build" the link).
- There is also a variable cost $d_{i j}$ associated with each unit of flow along arc (i, j).
- Consider an instance with a single supply node.
* Minimizing the fixed cost by itself is a minimum spanning tree problem (easy).
* Minimizing the variable cost by itself is a minimum cost network flow problem (easy).
* We want to minimize the sum of these two costs (difficult).

Formulating the Fixed-charge Network Flow Problem

- To formulate the FCNFP, we associate two variables with each arc.
- $x_{i j}$ (fixed-charge variable) indicates whether arc (i, j) is open.
- $f_{i j}$ (flow variable) represents the flow on arc (i, j).
- Note that we have to ensure that $f_{i j}>0 \Rightarrow x_{i j}=1$.

$$
\begin{aligned}
\min & \sum_{(i, j) \in A} c_{i j} x_{i j}+d_{i j} f_{i j} \\
\text { s.t. } \sum_{j \in O(i)} f_{i j}-\sum_{j \in I(i)} f_{j i} & =b_{i} \quad \forall i \in N \\
f_{i j} & \leq C x_{i j} \\
f_{i j} & \geq 0 \quad \forall(i, j) \in A \\
x_{i j} & \in\{0,1\} \quad \forall(i, j) \in A \\
& \in A
\end{aligned}
$$

