Cutting planes from two rows of simplex tableau

Based on talk by Andersen et al, IPCO-2007

Ashutosh Mahajan¹

¹Lehigh University – Department of Industrial and Systems Engineering

Cor@l Seminar Series - August 28, 2007

Split Cuts

- ▶ Subsume MIR, GMI, Lift and Project, ...
- Effectively used in branch-and-cut algorithms
- ► Let $(\pi, \pi_0) \in \mathbb{Z}^{(n+1)}$. Any valid inequality for $P \cap \{x | \pi x \le \pi_0\}$ and $P \cap \{x | \pi x \ge \pi_0 + 1\}$ is valid for P
- Split cuts alone are NOT sufficient to solve a general MIP problem
- Need of stronger classes of cuts
- How to split on multiple disjunctions?
- Also see: *Mixing mixed integer inequalities* by Günluk and Pochet (and Cor@l talk by Kumar Abhishek)

Today's focus

Cutting planes from two rows of a simplex tableau http://www.math.uni-magdeburg.de/~louveaux/ AndLouWeiWol-2may.pdf

Cook, Kannan and Schrijver's example

 $x_3 \le 0$ is a valid cut for the above polytope. **Proof:** ...

Cook, Kannan and Schrijver's example

 $x_3 \le 0$ is a valid cut for the above polytope. **Proof:** ...

 $x_3 \leq 0$ is not a split inequality. See *Cook et al*.

The simplex tableau

- ► *I*: set of integer variables, *C*: set of continuous variables
- ▶ *B*: set of basic variables, *N*: set of non-basic variables
- rows in simplex tableau:

$$x_i = f_i + \sum_{j \in N} r^j x_j, \quad \forall i \in B$$

- ▶ If $f_i \in \mathbb{Z}$ $\forall i \in B \cap I$, current solution is feasible
- if $f_i \notin \mathbb{Z}$ then cuts may be derived from this row (MIR, GMI)
- Lets consider two rows (with change of notation) now:

$$x_1 = f_1 + \sum_{j \in N} r_1^j s_j$$

or $\mathbf{x} = \mathbf{f} + \sum_{j \in N} \mathbf{r}^j s_j$
$$x_2 = f_2 + \sum_{j \in N} r_2^j s_j$$

 $\mathbf{x}, \mathbf{f}, \mathbf{r}^{j}$ are vectors in two dimensions

The simplex tableau

- ► *I*: set of integer variables, *C*: set of continuous variables
- ▶ *B*: set of basic variables, *N*: set of non-basic variables
- rows in simplex tableau:

$$x_i = f_i + \sum_{j \in N} r^j x_j, \quad \forall i \in B$$

- ▶ If $f_i \in \mathbb{Z}$ $\forall i \in B \cap I$, current solution is feasible
- if $f_i \notin \mathbb{Z}$ then cuts may be derived from this row (MIR, GMI)
- Lets consider two rows (with change of notation) now:

$$x_1 = f_1 + \sum_{j \in N} r_1^j s_j$$

or $\mathbf{x} = \mathbf{f} + \sum_{j \in N} \mathbf{r}^j s_j$
$$x_2 = f_2 + \sum_{j \in N} r_2^j s_j$$

 $\mathbf{x}, \mathbf{f}, \mathbf{r}^{j}$ are vectors in two dimensions

First steps

$$P_I = \{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$
$$P_{LP} = \{(x,s) \in \mathbb{R}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$

$$r^{j}$$
 : also called a *ray*, as in an LP

 P_I may be empty. (Never so for 1-row case.) e.g.

$$x_1 = \frac{1}{5} + 3s_1 + 4s_2$$
$$x_2 = \frac{2}{3} + 3s_1 + 4s_2$$

Lemma: P_I is empty if and only if

- 1. All rays $\{r^j\}$ are parallel, and
- 2. The lines $\{f + r^j s_j : s_j \in \mathbb{R}\}$ for $j \in N$ do not contain any integer points

First steps

$$P_I = \{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$
$$P_{LP} = \{(x,s) \in \mathbb{R}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$

 r^{j} : also called a *ray*, as in an LP

 P_I may be empty. (Never so for 1-row case.) e.g.

$$x_1 = \frac{1}{5} + 3s_1 + 4s_2$$
$$x_2 = \frac{2}{3} + 3s_1 + 4s_2$$

Lemma: P_I is empty if and only if

- 1. All rays $\{r^j\}$ are parallel, and
- 2. The lines $\{f + r^j s_j : s_j \in \mathbb{R}\}$ for $j \in N$ do not contain any integer points

Structure of conv(P_I)

 $conv(P_I)$ (Not empty)

Let
$$P_I = \{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$

Lemma:

- 1. The extreme rays of $conv(P_I)$ are (r^j, e_j) for $j \in N$
- 2. The dimension of $conv(P_I)$ is n(=|N|)
- 3. The vertices (x^I, s^I) of $conv(P_I)$ take either of two forms:
 - 3.1 $(x^I, s^I) = (x^I, e_j s^I_j)$, where $x^I = f + r^j s^I_j \in \mathbb{Z}^2$ and $j \in N$. (integer point on ray $\{f + r^j s_j : s_j \ge 0\}$

3.2
$$(x^I, s^I) = (x^I, e_j s^I_j + e_k s^I_k)$$
, where $x^I = f + r^j s^I_j + r^k s^I_k \in \mathbb{Z}^2$ and $j, k \in \mathbb{N}$. (integer point in the set $f + cone(\{r^j, r^k\})$.

Proof: ... (Not all points satisfying above properties are vertices.) **Corollary:** Every non-trivial valid inequality for P_I that is tight at a point $(\bar{x}, \bar{s}) \in P_I$ can be written in the form

$$\sum_{j\in N} \alpha_j s_j \ge 1,$$

where $\alpha_j \geq 0$ for all $j \in N$.

 $conv(P_I)$ (Not empty)

Let
$$P_I = \{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$

Lemma:

- 1. The extreme rays of $conv(P_I)$ are (r^j, e_j) for $j \in N$
- 2. The dimension of $conv(P_I)$ is n(=|N|)
- 3. The vertices (x^I, s^I) of $conv(P_I)$ take either of two forms:
 - 3.1 $(x^I, s^I) = (x^I, e_j s^I_j)$, where $x^I = f + r^j s^I_j \in \mathbb{Z}^2$ and $j \in N$. (integer point on ray $\{f + r^j s_j : s_j \ge 0\}$

3.2
$$(x^I, s^I) = (x^I, e_j s^I_j + e_k s^I_k)$$
, where $x^I = f + r^j s^I_j + r^k s^I_k \in \mathbb{Z}^2$ and $j, k \in N$. (integer point in the set $f + cone(\{r^j, r^k\})$.

Proof: ... (Not all points satisfying above properties are vertices.) **Corollary:** Every non-trivial valid inequality for P_I that is tight at a point $(\bar{x}, \bar{s}) \in P_I$ can be written in the form

$$\sum_{j\in N}\alpha_j s_j \ge 1,$$

where $\alpha_j \ge 0$ for all $j \in N$.

Valid inequality for conv(P_I)

Let $\sum_{j \in N} \alpha_j s_j \ge 1$ be a valid inequality for $conv(P_I)$ that is tight for P_I . Let

$$L_{\alpha} = \{ x \in \mathbb{R}^2 : \exists s \in \mathbb{R}^n_+ \ s.t.(x,s) \in P_{LP} \text{ and } \sum_{j \in n} \alpha_j s_j \le 1 \}$$

Lemma: Let $v^j = f + \frac{1}{\alpha_i} r^j, j \in N \setminus N_{\alpha}^0$, then

1. $interior(L_{\alpha}) \cap P_{I} = \phi$ 2. if $interior(L_{\alpha}) \neq \phi$, then $f \in interior(L_{\alpha})$ 3. $L_{\alpha} = conv(\{f\} \cup \{v^{j}\}_{j \in N \setminus N_{\alpha}^{0}}) + cone(\{r^{j}\}_{j \in N_{\alpha}^{0}})\}$ Proof: ...

Let
$$X_{\alpha} = \{x \in \mathbb{Z}^2 : \exists s \in \mathbb{R}^n_+ s.t.(x,s) \in P_{LP} \text{ and } \sum_{j \in N} \alpha_j s_j = 1\}$$

$$= L_{\alpha} \cap \mathbb{Z}^{2}$$

$$\neq \phi \text{ when } \sum_{j \in N} \alpha_{j} s_{j} = 1 \text{ is a facet}$$

not neccessarily true for faces or other valid inequalities

Split cuts

Lemma: If, for a facet defining inequality $\sum_{j \in N} \alpha_j s_j \ge 1$ for $conv(P_I), N_{\alpha}^0 \ne \phi$ then $\exists (\pi, \pi_0) \in \mathbb{Z}^2 \times \mathbb{Z}$ *s.t.* $L_{\alpha} \subseteq \{(x_1, x_2) : \pi_0 \le \pi_1 x_1 + \pi_2 x_2 \le \pi_0 + 1\}.$ **Proof:**

- 1. Let $k \in N_{\alpha}^{0}$. Then the line $\{f + \mu r^{k} : \mu \in \mathbb{R}\}$ does not pass through any integer points in \mathbb{R}^{2}
- 2. All rays $\{r^j\}_{j \in N^0_{\alpha}}$ are parallel

3. Let
$$\pi' = (-r_2^k, r_1^k), \pi'_0 = \pi' f$$
. Then,
 $\{f + \mu r^k : \mu \in \mathbb{R}\} = \{x | \pi' x = \pi'_0\}$

$$\begin{aligned} \pi_0^1 &= \max\{\pi_1' x_1 | \pi_2' x_2 \le \pi_0', x \in \mathbb{Z}^2\} \\ \pi_0^2 &= \min\{\pi_1' x_1 | \pi_2' x_2 \le \pi_0', x \in \mathbb{Z}^2\} \\ S_\pi &= \{x \in \mathbb{R}^2 : \pi_0^1 \le \pi_1' x_1 + \pi_2' x_2 \le \pi_0^2\} \end{aligned}$$

5. $L_{\alpha} \subseteq S_{\pi}$ 6. $S_{\pi} = \{x \in \mathbb{R}^2 : \pi_0 \le \pi_1 x_1 + \pi_2 x_2 \le \pi_0 + 1\}$ for some $(\pi, \pi_0) \in \mathbb{Z}^2 \times \mathbb{Z}$.

When
$$N^0_{lpha} = \phi$$

When
$$N^0_{\alpha} = \phi$$

Stay tuned

Recap

$$P_I = \{(x,s) \in \mathbb{Z}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$
$$P_{LP} = \{(x,s) \in \mathbb{R}^2 \times \mathbb{R}^n_+ : x = f + \sum_{j \in N} r^j s_j\}$$

- Basic solution: (f, 0)
- Objective: Find facet defining inequality(ies) for $conv(P_I)$.
- Some of these inequalities may not be split cuts (of any rank).
- \triangleright *P*_{*LP*} is a cone.
- $dim(conv(P_I)) = n = |N|$
- ▶ For any $(\bar{x}, \bar{s}) \in P_I$, either:
 - *1.* $\bar{x} = f + s_j e_j$ (ray point) or,
 - $2. \ \bar{x} = f + s_j e_j + s_k e_k$

Every non-trivial valid inequality for P_I that is tight at a point $(\bar{x}, \bar{s}) \in P_I$ can be written in form:

$$\sum_{j\in N}\alpha_j s_j \ge 1,$$

where $\alpha_j \geq 0, \forall j \in N$.

Recap

Every non-trivial valid inequality for P_I that is tight at a point $(\bar{x}, \bar{s}) \in P_I$ can be written in form:

$$\sum_{j\in N}\alpha_j s_j \ge 1,$$

Example

 P_{LP} :

$$x_{1} = \frac{2}{3} + \frac{2}{3}s_{1} - \frac{1}{3}s_{2} - \frac{1}{3}s_{3}$$

$$x_{2} = \frac{2}{3} - \frac{1}{3}s_{1} + \frac{2}{3}s_{2} - \frac{1}{3}s_{3}$$
facet defining inequality: $x_{3} \le 0 \implies \frac{1}{2}s_{1} + \frac{1}{2}s_{2} + \frac{1}{2}s_{3} \ge 1$

Split Cuts

Let
$$\sum_{j \in N} \alpha_j s_j \ge 0$$
 be a valid inequality for $conv(P_I)$. Then:
1. Let $N_{\alpha}^0 = \{j : \alpha_j = 0\}$,
2. $L_{\alpha} = \{x \in \mathbb{R}^n | \exists s \in \mathbb{R}^n_+ s.t.(x,s) \in P_{LP} \text{ and } \sum_{j \in N} \alpha_j s_j \le 1\}$
3. $X_{\alpha} = L_{\alpha} \cap \mathbb{Z}^2$

Lemma: If, for a facet defining inequality $\sum_{j \in N} \alpha_j s_j \ge 1$ for *conv*(P_I), $N_{\alpha}^0 \ne \phi$ then $\exists (\pi, \pi_0) \in \mathbb{Z}^2 \times \mathbb{Z}$ *s.t.* $L_{\alpha} \subseteq \{(x_1, x_2) : \pi_0 \le \pi_1 x_1 + \pi_2 x_2 \le \pi_0 + 1\}.$

e.g. previous example.

Converse is not true.

When $N^0_{\alpha} \neq \phi$

Main results of this paper:

- Every facet is derivable from at most four non-basic variables
- With every facet, one can associate three or four particular vertices of conv(P_I). These facets can be classified into:
 - 1. Split Cuts
 - 2. Dissection Cuts
 - 3. Lifted two-variable cuts
- Dissection cuts are not split cuts
- Lifted two-variable cuts are not split cuts

 $conv(X_{\alpha})$

- *1*. Recall, $X_{\alpha} = L_{\alpha} \cap \mathbb{Z}^2$
- 2. $conv(X_{\alpha}) \subseteq \mathbb{R}^2$
- 3. Extreme points of $conv(X_{\alpha})$ are integers
- 4. How many such polygons exist?

Which one is Cook's example?

 $conv(X_{\alpha})$

- *l*. Recall, $X_{\alpha} = L_{\alpha} \cap \mathbb{Z}^2$
- 2. $conv(X_{\alpha}) \subseteq \mathbb{R}^2$
- 3. Extreme points of $conv(X_{\alpha})$ are integers
- 4. How many such polygons exist?

Which one is Cook's example?

 $conv(X_{\alpha})$

- *l*. Recall, $X_{\alpha} = L_{\alpha} \cap \mathbb{Z}^2$
- 2. $conv(X_{\alpha}) \subseteq \mathbb{R}^2$
- 3. Extreme points of $conv(X_{\alpha})$ are integers
- 4. How many such polygons exist?

Which one is Cook's example?

What about L_{α}

The main theorem

Let $\sum_{j \in N} \alpha_j s_j \ge 1$ be a facet defining inequality that satisfies $\alpha_j > 0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set $S \subseteq N$ such that $|S| \le 4$ and $\sum_{j \in S} \alpha_j s_j \ge 1$ is facet defining for $conv(P_I(S))$ where,

$$P_I(S) = \{(x,s) \in \mathbb{Z}^n \times \mathbb{R}^{|S|}_+ : x = f + \sum_{j \in S} s_j r^j \}$$

Find this inequality and do simultaneous lifting of coefficients for $N \setminus S$ to get the desire cut.

What about L_{α}

The main theorem

Let $\sum_{j \in N} \alpha_j s_j \ge 1$ be a facet defining inequality that satisfies $\alpha_j > 0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set $S \subseteq N$ such that $|S| \le 4$ and $\sum_{j \in S} \alpha_j s_j \ge 1$ is facet defining for $conv(P_I(S))$ where,

$$P_I(S) = \{(x,s) \in \mathbb{Z}^n \times \mathbb{R}^{|S|}_+ : x = f + \sum_{j \in S} s_j r^j \}$$

Find this inequality and do simultaneous lifting of coefficients for $N \setminus S$ to get the desire cut.

What about L_{α}

The main theorem

Let $\sum_{j \in N} \alpha_j s_j \ge 1$ be a facet defining inequality that satisfies $\alpha_j > 0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set $S \subseteq N$ such that $|S| \le 4$ and $\sum_{j \in S} \alpha_j s_j \ge 1$ is facet defining for $conv(P_I(S))$ where,

$$P_I(S) = \{(x,s) \in \mathbb{Z}^n \times \mathbb{R}^{|S|}_+ : x = f + \sum_{j \in S} s_j r^j \}$$

Find this inequality and do simultaneous lifting of coefficients for $N \setminus S$ to get the desire cut.

More notation

- Let k ≤ 4 denote the number of vertices of conv(X_α).
 K = {1,...,k}.
- Let the set $\{x^{\nu}\}_{\nu \in K}$ denote vertices of $conv(X_{\alpha})$.
- if $\bar{x} \in X_{\alpha}$, is not a ray point, then $\bar{x} = f + s_{j1}r^{j1} + s_{j2}r^{j2}, s_{j1}, s_{j2} > 0$, unique
- Such a pair (j_1, j_2) is said to give a representation of \bar{x} .
- Additionally if $\alpha_{j1}s_{j1} + \alpha_{j2}s_{j2}$, then (j_1, j_2) is said to give a tight representation.
- ► If $cone(\{r^{i1}, r^{i2}\}) \subseteq cone(\{r^{j1}, r^{j2}\})$, then the pair (i_1, i_2) is a sub-cone of (j_1, j_2) .
- ► $T_{\alpha}(\bar{x}) = \{(j_1, j_2) : (j_1, j_2) \text{ gives a tight representation of } \bar{x}\}$

Lemma: There exists a unique maximal representation of $(j_1^{\bar{x}}, j_2^{\bar{x}}) \in T_{\alpha}(\bar{x})$ (One tight representation of \bar{x} can be used).

Where does this lead to?

Suppose $\sum_{j \in N} \alpha_j s_j = 1$ is a facet of $conv(P_I)$. Then,

- There exist n affinely independent points in P₁ that satisfy this equality,
- Substituting values of s_j and solving for α_j should give this equality as the unique solution
- Project these *n* points on to plane of (x_1, x_2) .
- These projections are either vertices of $conv(X_{\alpha})$, or
- they lie on edges of $conv(X_{\alpha})$.

So ...

Where does this lead to?

After a lot of hand waving, we get:

- There is a set *S*, such that $|S| \leq 4$ and
- $\sum_{j \in \alpha} \alpha_j s_j \ge 1$ is facet defining for $P_I(S)$
- $\blacktriangleright L_{\alpha} = conv(\{f\} \cup \{\nu^j\}_{j \in S})$

Classification of cuts

- if each vertex of conv(X_α) belongs to a different L_α: Dissection cut
- if exactly one facet of L_α contains two vertices of conv(X_α): Lifted 2-variable cut
- ▶ two facets of L_{α} contain 2 vertices of $conv(X_{\alpha})$ each: split cuts

What kind of cut is Cook's example?