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Split Cuts

I Subsume MIR, GMI, Lift and Project, . . .
I Effectively used in branch-and-cut algorithms
I Let (π, π0) ∈ Z(n+1). Any valid inequality for P ∩ {x|πx ≤ π0}

and P ∩ {x|πx ≥ π0 + 1} is valid for P
I Split cuts alone are NOT sufficient to solve a general MIP

problem
I Need of stronger classes of cuts
I How to split on multiple disjunctions?
I Also see: Mixing mixed integer inequalities by Günluk and

Pochet (and Cor@l talk by Kumar Abhishek)

Today’s focus

Cutting planes from two rows of a simplex tableau
http://www.math.uni-magdeburg.de/~louveaux/
AndLouWeiWol-2may.pdf

http://www.math.uni-magdeburg.de/~louveaux/AndLouWeiWol-2may.pdf
http://www.math.uni-magdeburg.de/~louveaux/AndLouWeiWol-2may.pdf


Cook, Kannan and Schrijver’s example

x1

x2

x3

(2,0,0)

(0,2,0)
(0,0,0)

(0.67,0.67,0.67)

min−x3

s.t.

x3 ≤ x1

x3 ≤ x2

x1 + x2 + x3 ≤ 2

x1, x2 ∈ Z
x3 ∈ R+

x3 ≤ 0 is a valid cut for the above polytope.
Proof: . . .



Cook, Kannan and Schrijver’s example

x1

x2

x3

(2,0,0)

(0,2,0)
(0,0,0)

(0.67,0.67,0.67)

min−x3

s.t.

x3 ≤ x1

x3 ≤ x2

x1 + x2 + x3 ≤ 2

x1, x2 ∈ Z
x3 ∈ R+

x3 ≤ 0 is a valid cut for the above polytope.
Proof: . . .

x3 ≤ 0 is not a split inequality. See Cook et al.



The simplex tableau
I I: set of integer variables, C: set of continuous variables
I B: set of basic variables, N: set of non-basic variables
I rows in simplex tableau:

xi = fi +
∑
j∈N

rjxj, ∀i ∈ B

I If fi ∈ Z ∀i ∈ B ∩ I, current solution is feasible
I if fi /∈ Z then cuts may be derived from this row (MIR, GMI)
I Lets consider two rows (with change of notation) now:

x1 = f1 +
∑
j∈N

rj
1sj

x2 = f2 +
∑
j∈N

rj
2sj

or x = f +
∑

j∈N rjsj

x, f, rj are vectors in two dimensions
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First steps

PI = {(x, s) ∈ Z2 × Rn
+ : x = f +

∑
j∈N

rjsj}

PLP = {(x, s) ∈ R2 × Rn
+ : x = f +

∑
j∈N

rjsj}

rj : also called a ray, as in an LP

PI may be empty. (Never so for 1-row case.) e.g.

x1 =
1
5

+ 3s1 + 4s2

x2 =
2
3

+ 3s1 + 4s2

Lemma: PI is empty if and only if
1. All rays {rj} are parallel, and
2. The lines {f + rjsj : sj ∈ R} for j ∈ N do not contain any integer

points
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Structure of conv(PI)

−5x1 + 3x2 ≤ −1

x1 − 5x2 ≤ −2

x1, x2 ∈ Z

−5x1 + 3x2 + s1 = −1

x1 − 5x2 + s2 = −2

x1, x2 ∈ Z
s1, s2 ∈ R+

PLP

(0,0)

(0.5,0.5)

(3,1)

(2,3)

(0,0)

(0.5,0.5)

(3,1)

(2,3)

conv(P )I



conv(PI) (Not empty)

Let PI = {(x, s) ∈ Z2 × Rn
+ : x = f +

∑
j∈N

rjsj}

Lemma:
1. The extreme rays of conv(PI) are (rj, ej) for j ∈ N
2. The dimension of conv(PI) is n(= |N|)
3. The vertices (xI, sI) of conv(PI) take either of two forms:

3.1 (xI , sI) = (xI , ejsI
j ), where xI = f + rjsI

j ∈ Z2 and j ∈ N. (integer
point on ray {f + rjsj : sj ≥ 0)

3.2 (xI , sI) = (xI , ejsI
j + eksI

k), where xI = f + rjsI
j + rksI

k ∈ Z2 and
j, k ∈ N. (integer point in the set f + cone({rj, rk}).

Proof: . . . (Not all points satisfying above properties are vertices.)
Corollary: Every non-trivial valid inequality for PI that is tight at a
point (x̄, s̄) ∈ PI can be written in the form∑

j∈N

αjsj ≥ 1,

where αj ≥ 0 for all j ∈ N.
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Valid inequality for conv(PI)
Let

∑
j∈N αjsj ≥ 1 be a valid inequality for conv(PI) that is tight for

PI . Let

Lα = {x ∈ R2 : ∃ s ∈ Rn
+ s.t.(x, s) ∈ PLP and

∑
j∈n

αjsj ≤ 1}

Lemma: Let vj = f + 1
αj

rj, j ∈ N\N0
α, then

1. interior(Lα) ∩ PI = φ
2. if interior(Lα) 6= φ, then f ∈ interior(Lα)
3. Lα = conv({f} ∪ {vj}j∈N\N0

α
) + cone({rj}j∈N0

α
)}

Proof: . . .

Let Xα = {x ∈ Z2 : ∃ s ∈ Rn
+s.t.(x, s) ∈ PLP and

∑
j∈N

αjsj = 1}

= Lα ∩ Z2

6= φ when
∑
j∈N

αjsj = 1 is a facet

not neccessarily true for faces or other valid inequalities



Split cuts
Lemma: If, for a facet defining inequality

∑
j∈N αjsj ≥ 1 for

conv(PI), N0
α 6= φ then ∃(π, π0) ∈ Z2 × Z s.t.

Lα ⊆ {(x1, x2) : π0 ≤ π1x1 + π2x2 ≤ π0 + 1}.
Proof:

1. Let k ∈ N0
α. Then the line {f + µrk : µ ∈ R} does not pass

through any integer points in R2

2. All rays {rj}j∈N0
α

are parallel

3. Let π′ = (−rk
2, r

k
1), π′0 = π′f . Then,

{f + µrk : µ ∈ R} = {x|π′x = π′0}
4. Let

π1
0 = max{π′1x1|π′2x2 ≤ π′0, x ∈ Z2}
π2

0 = min{π′1x1|π′2x2 ≤ π′0, x ∈ Z2}
Sπ = {x ∈ R2 : π1

0 ≤ π′1x1 + π′2x2 ≤ π2
0}

5. Lα ⊆ Sπ

6. Sπ = {x ∈ R2 : π0 ≤ π1x1 + π2x2 ≤ π0 + 1} for some
(π, π0) ∈ Z2 × Z.



When N0
α = φ



When N0
α = φ

Stay tuned



Recap

PI = {(x, s) ∈ Z2 × Rn
+ : x = f +

∑
j∈N

rjsj}

PLP = {(x, s) ∈ R2 × Rn
+ : x = f +

∑
j∈N

rjsj}

I Basic solution: (f , 0)
I Objective: Find facet defining inequality(ies) for conv(PI).
I Some of these inequalities may not be split cuts (of any rank).
I PLP is a cone.
I dim(conv(PI)) = n = |N|
I For any (x̄, s̄) ∈ PI , either:

1. x̄ = f + sjej (ray point) or,
2. x̄ = f + sjej + skek



Recap

Every non-trivial valid inequality for PI that is tight at a point
(x̄, s̄) ∈ PI can be written in form:∑

j∈N

αjsj ≥ 1,

where αj ≥ 0,∀j ∈ N.



Recap

Every non-trivial valid inequality for PI that is tight at a point
(x̄, s̄) ∈ PI can be written in form:∑

j∈N

αjsj ≥ 1,

where αj ≥ 0,∀j ∈ N.

P
LP

s
1
= 0

s
2
= 0



Example

x1

x2

x3

(2,0,0)

(0,2,0)
(0,0,0)

(0.67,0.67,0.67)

min−x3

s.t.

x3 ≤ x1

x3 ≤ x2

x1 + x2 + x3 ≤ 2

x1, x2 ∈ Z
x3 ∈ R+

PLP :

x1 =
2
3

+
2
3

s1 −
1
3

s2 −
1
3

s3

x2 =
2
3
− 1

3
s1 +

2
3

s2 −
1
3

s3

facet definining inequality: x3 ≤ 0 ⇒ 1
2

s1 +
1
2

s2 +
1
2

s3 ≥ 1



Split Cuts

Let
∑

j∈N αjsj ≥ 0 be a valid inequality for conv(PI). Then:

1. Let N0
α = {j : αj = 0},

2. Lα = {x ∈ Rn|∃s ∈ Rn
+s.t.(x, s) ∈ PLP and

∑
j∈N αjsj ≤ 1}

3. Xα = Lα ∩ Z2

Lemma: If, for a facet defining inequality
∑

j∈N αjsj ≥ 1 for
conv(PI), N0

α 6= φ then ∃(π, π0) ∈ Z2 × Z s.t.
Lα ⊆ {(x1, x2) : π0 ≤ π1x1 + π2x2 ≤ π0 + 1}.

e.g. previous example.

Converse is not true.



When N0
α 6= φ

Main results of this paper:
I Every facet is derivable from at most four non-basic variables
I With every facet, one can associate three or four particular

vertices of conv(PI). These facets can be classified into:
1. Split Cuts
2. Dissection Cuts
3. Lifted two-variable cuts

I Dissection cuts are not split cuts
I Lifted two-variable cuts are not split cuts



conv(Xα)

1. Recall, Xα = Lα ∩ Z2

2. conv(Xα) ⊆ R2

3. Extreme points of conv(Xα) are integers

4. How many such polygons exist?

Which one is Cook’s example?
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What about Lα

The main theorem

Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality that satisfies αj > 0
for all j ∈ N. Then Lα is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set S ⊆ N such that |S| ≤ 4 and
∑

j∈S αjsj ≥ 1 is
facet defining for conv(PI(S)) where,

PI(S) = {(x, s) ∈ Zn × R|S|
+ : x = f +

∑
j∈S

sjrj}

Find this inequality and do simultaneous lifting of coefficients for
N\S to get the desire cut.
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More notation

I Let k ≤ 4 denote the number of vertices of conv(Xα).
K = {1, . . . , k}.

I Let the set {xν}ν∈K denote vertices of conv(Xα).
I if x̄ ∈ Xα, is not a ray point, then

x̄ = f + sj1rj1 + sj2rj2, sj1, sj2 > 0, unique
I Such a pair (j1, j2) is said to give a representation of x̄.
I Additionally if αj1sj1 + αj2sj2, then (j1, j2) is said to give a tight

representaion.
I If cone({ri1, ri2}) ⊆ cone({rj1, rj2}), then the pair (i1, i2) is a

sub-cone of (j1, j2).
I Tα(x̄) = {(j1, j2) : (j1, j2) gives a tight representation of x̄}

Lemma: There exists a unique maximal representation of
(jx̄1, j

x̄
2) ∈ Tα(x̄) (One tight representation of x̄ can be used).



Where does this lead to?

Suppose
∑

j∈N αjsj = 1 is a facet of conv(PI). Then,
I There exist n affinely independent points in PI that satisfy this

equality,
I Substituting values of sj and solving for αj should give this

equality as the unique solution
I Project these n points on to plane of (x1, x2).
I These projections are either vertices of conv(Xα), or
I they lie on edges of conv(Xα).

So ...



Where does this lead to?

After a lot of hand waving, we get:
I There is a set S, such that |S| ≤ 4 and
I

∑
j∈α αjsj ≥ 1 is facet defining for PI(S)

I Lα = conv({f} ∪ {ν j}j∈S)



Classification of cuts

I if each vertex of conv(Xα) belongs to a different Lα: Dissection
cut

I if exactly one facet of Lα contains two vertices of conv(Xα):
Lifted 2-variable cut

I two facets of Lα contain 2 vertices of conv(Xα) each: split cuts

What kind of cut is Cook’s example?


