Cutting planes from two rows of simplex tableau

Based on talk by Andersen et al, IPCO-2007

Ashutosh Mahajan ${ }^{1}$
${ }^{1}$ Lehigh University - Department of Industrial and Systems Engineering
Cor@1 Seminar Series - August 28, 2007

Split Cuts

- Subsume MIR, GMI, Lift and Project, . . .
- Effectively used in branch-and-cut algorithms
- Let $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{(n+1)}$. Any valid inequality for $P \cap\left\{x \mid \pi x \leq \pi_{0}\right\}$ and $P \cap\left\{x \mid \pi x \geq \pi_{0}+1\right\}$ is valid for P
- Split cuts alone are NOT sufficient to solve a general MIP problem
- Need of stronger classes of cuts
- How to split on multiple disjunctions?
- Also see: Mixing mixed integer inequalities by Günluk and Pochet (and Cor@1 talk by Kumar Abhishek)

Today's focus

Cutting planes from two rows of a simplex tableau http://www.math.uni-magdeburg.de/~louveaux/ AndLouWeiWol-2may.pdf

Cook, Kannan and Schrijver's example

$\min -x_{3}$	
s.t.	
x_{3}	$\leq x_{1}$
x_{3}	$\leq x_{2}$
$x_{1}+x_{2}+x_{3}$	≤ 2
x_{1}, x_{2}	$\in \mathbb{Z}$
x_{3}	$\in \mathbb{R}^{+}$

$x_{3} \leq 0$ is a valid cut for the above polytope.
Proof: ...

Cook, Kannan and Schrijver's example

$\min -x_{3}$	
s.t.	
x_{3}	$\leq x_{1}$
x_{3}	$\leq x_{2}$
$x_{1}+x_{2}+x_{3}$	≤ 2
x_{1}, x_{2}	$\in \mathbb{Z}$
x_{3}	$\in \mathbb{R}^{+}$

$x_{3} \leq 0$ is a valid cut for the above polytope. Proof: ...
$x_{3} \leq 0$ is not a split inequality. See Cook et al.

The simplex tableau

- I: set of integer variables, C : set of continuous variables
- B : set of basic variables, N : set of non-basic variables
- rows in simplex tableau:

$$
x_{i}=f_{i}+\sum_{j \in N} r^{j} x_{j}, \quad \forall i \in B
$$

- If $f_{i} \in \mathbb{Z} \quad \forall i \in B \cap I$, current solution is feasible
- if $f_{i} \notin \mathbb{Z}$ then cuts may be derived from this row (MIR, GMI)
- Lets consider two rows (with change of notation) now:

The simplex tableau

- I: set of integer variables, C : set of continuous variables
- B : set of basic variables, N : set of non-basic variables
- rows in simplex tableau:

$$
x_{i}=f_{i}+\sum_{j \in N} r^{j} x_{j}, \quad \forall i \in B
$$

- If $f_{i} \in \mathbb{Z} \quad \forall i \in B \cap I$, current solution is feasible
- if $f_{i} \notin \mathbb{Z}$ then cuts may be derived from this row (MIR, GMI)
- Lets consider two rows (with change of notation) now:

$$
\begin{aligned}
& x_{1}=f_{1}+\sum_{j \in N} r_{1}^{j} s_{j} \\
& x_{2}=f_{2}+\sum_{j \in N} r_{2}^{j} s_{j}
\end{aligned} \text { or } \quad \mathbf{x}=\mathbf{f}+\sum_{j \in N} \mathbf{r}^{j} s_{j}
$$

$\mathbf{x}, \mathbf{f}, \mathbf{r}^{j}$ are vectors in two dimensions

First steps

$$
\begin{aligned}
P_{I} & =\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\} \\
P_{L P} & =\left\{(x, s) \in \mathbb{R}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\} \\
r^{j} & : \text { also called a ray, as in an LP }
\end{aligned}
$$

P_{I} may be empty. (Never so for 1-row case.) e.g.

Lemma: P_{I} is empty if and only if 1. All rays $\left\{r^{j}\right\}$ are parallel, and
2. The lines $\left\{f+r^{j} s_{j}: s_{j} \in \mathbb{R}\right\}$ for $j \in N$ do not contain any integer

First steps

$$
\begin{aligned}
P_{I} & =\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\} \\
P_{L P} & =\left\{(x, s) \in \mathbb{R}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\}
\end{aligned}
$$

r^{j} : also called a ray, as in an LP
P_{I} may be empty. (Never so for 1-row case.) e.g.

$$
\begin{aligned}
& x_{1}=\frac{1}{5}+3 s_{1}+4 s_{2} \\
& x_{2}=\frac{2}{3}+3 s_{1}+4 s_{2}
\end{aligned}
$$

Lemma: P_{I} is empty if and only if

1. All rays $\left\{r^{j}\right\}$ are parallel, and
2. The lines $\left\{f+r^{j} s_{j}: s_{j} \in \mathbb{R}\right\}$ for $j \in N$ do not contain any integer points

Structure of $\operatorname{conv}\left(P_{I}\right)$

$$
\begin{array}{r}
-5 x_{1}+3 x_{2} \leq-1 \\
x_{1}-5 x_{2} \leq-2 \\
x_{1}, x_{2} \in \mathbb{Z}
\end{array}
$$

$$
\text { Let } P_{I}=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\}
$$

Lemma:

1. The extreme rays of $\operatorname{conv}\left(P_{I}\right)$ are $\left(r^{j}, e_{j}\right)$ for $j \in N$
2. The dimension of $\operatorname{conv}\left(P_{I}\right)$ is $n(=|N|)$
3. The vertices $\left(x^{I}, s^{I}\right)$ of $\operatorname{conv}\left(P_{I}\right)$ take either of two forms:
$3.1\left(x^{I}, s^{I}\right)=\left(x^{I}, e_{j} s_{j}^{I}\right)$, where $x^{I}=f+r^{j} s_{j}^{I} \in \mathbb{Z}^{2}$ and $j \in N$. (integer point on ray $\left\{f+r^{j} s_{j}: s_{j} \geq 0\right.$)
$3.2\left(x^{I}, s^{I}\right)=\left(x^{I}, e_{j} s_{j}^{I}+e_{k} s_{k}^{I}\right)$, where $x^{I}=f+r^{j} s_{j}^{I}+r^{k} s_{k}^{I} \in \mathbb{Z}^{2}$ and $j, k \in N$. (integer point in the set $f+\operatorname{cone}\left(\left\{r^{j}, r^{k}\right\}\right)$.
Proof: ... (Not all points satisfying above properties are vertices.)
point $(\bar{x}, \bar{s}) \in P_{I}$ can be written in the form
$\operatorname{conv}\left(P_{I}\right)($ Not empty $)$

$$
\text { Let } P_{I}=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\}
$$

Lemma:

1. The extreme rays of $\operatorname{conv}\left(P_{I}\right)$ are $\left(r^{j}, e_{j}\right)$ for $j \in N$
2. The dimension of $\operatorname{conv}\left(P_{I}\right)$ is $n(=|N|)$
3. The vertices $\left(x^{I}, s^{I}\right)$ of $\operatorname{conv}\left(P_{I}\right)$ take either of two forms: $3.1\left(x^{I}, s^{I}\right)=\left(x^{I}, e_{j} s_{j}^{I}\right)$, where $x^{I}=f+r^{j} s_{j}^{I} \in \mathbb{Z}^{2}$ and $j \in N$. (integer point on ray $\left\{f+r^{j} s_{j}: s_{j} \geq 0\right.$)
$3.2\left(x^{I}, s^{I}\right)=\left(x^{I}, e_{j} s_{j}^{I}+e_{k} s_{k}^{I}\right)$, where $x^{I}=f+r^{j} s_{j}^{I}+r^{k} s_{k}^{I} \in \mathbb{Z}^{2}$ and $j, k \in N$. (integer point in the set $f+\operatorname{cone}\left(\left\{r^{j}, r^{k}\right\}\right)$.
Proof: . . . (Not all points satisfying above properties are vertices.)
Corollary: Every non-trivial valid inequality for P_{I} that is tight at a point $(\bar{x}, \bar{s}) \in P_{I}$ can be written in the form

$$
\sum_{j \in N} \alpha_{j} s_{j} \geq 1
$$

where $\alpha_{j} \geq 0$ for all $j \in N$.

Valid inequality for $\operatorname{conv}\left(P_{I}\right)$

Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a valid inequality for $\operatorname{conv}\left(P_{I}\right)$ that is tight for P_{I}. Let

$$
L_{\alpha}=\left\{x \in \mathbb{R}^{2}: \exists s \in \mathbb{R}_{+}^{n} \text { s.t. }(x, s) \in P_{L P} \text { and } \sum_{j \in n} \alpha_{j} s_{j} \leq 1\right\}
$$

Lemma: Let $v^{j}=f+\frac{1}{\alpha_{j}} r^{j}, j \in N \backslash N_{\alpha}^{0}$, then

1. interior $\left(L_{\alpha}\right) \cap P_{I}=\phi$

2. if interior $\left(L_{\alpha}\right) \neq \phi$, then $f \in \operatorname{interior}\left(L_{\alpha}\right)$
3. $\left.L_{\alpha}=\operatorname{conv}\left(\{f\} \cup\left\{\nu^{j}\right\}_{j \in N \backslash N_{\alpha}^{0}}\right)+\operatorname{cone}\left(\left\{r^{j}\right\}_{j \in N_{\alpha}^{0}}\right)\right\}$

Proof: ...

$$
\begin{aligned}
\text { Let } X_{\alpha} & =\left\{x \in \mathbb{Z}^{2}: \exists s \in \mathbb{R}_{+}^{n} \text { s.t. }(x, s) \in P_{L P} \text { and } \sum_{j \in N} \alpha_{j} s_{j}=1\right\} \\
& =L_{\alpha} \cap \mathbb{Z}^{2} \\
& \neq \phi \text { when } \sum_{j \in N} \alpha_{j} s_{j}=1 \text { is a facet }
\end{aligned}
$$

not neccessarily true for faces or other valid inequalities

Split cuts

Lemma: If, for a facet defining inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ for $\operatorname{conv}\left(P_{I}\right), N_{\alpha}^{0} \neq \phi$ then $\exists\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{2} \times \mathbb{Z}$ s.t. $L_{\alpha} \subseteq\left\{\left(x_{1}, x_{2}\right): \pi_{0} \leq \pi_{1} x_{1}+\pi_{2} x_{2} \leq \pi_{0}+1\right\}$. Proof:

1. Let $k \in N_{\alpha}^{0}$. Then the line $\left\{f+\mu r^{k}: \mu \in \mathbb{R}\right\}$ does not pass through any integer points in \mathbb{R}^{2}
2. All rays $\left\{r^{j}\right\}_{j \in N_{\alpha}^{0}}$ are parallel
3. Let $\pi^{\prime}=\left(-r_{2}^{k}, r_{1}^{k}\right), \pi_{0}^{\prime}=\pi^{\prime} f$. Then,

$$
\left\{f+\mu r^{k}: \mu \in \mathbb{R}\right\}=\left\{x \mid \pi^{\prime} x=\pi_{0}^{\prime}\right\}
$$

4. Let

$$
\begin{aligned}
& \pi_{0}^{1}=\max \left\{\pi_{1}^{\prime} x_{1} \mid \pi_{2}^{\prime} x_{2} \leq \pi_{0}^{\prime}, x \in \mathbb{Z}^{2}\right\} \\
& \pi_{0}^{2}=\min \left\{\pi_{1}^{\prime} x_{1} \mid \pi_{2}^{\prime} x_{2} \leq \pi_{0}^{\prime}, x \in \mathbb{Z}^{2}\right\} \\
& S_{\pi}=\left\{x \in \mathbb{R}^{2}: \pi_{0}^{1} \leq \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2} \leq \pi_{0}^{2}\right\}
\end{aligned}
$$

5. $L_{\alpha} \subseteq S_{\pi}$
6. $S_{\pi}=\left\{x \in \mathbb{R}^{2}: \pi_{0} \leq \pi_{1} x_{1}+\pi_{2} x_{2} \leq \pi_{0}+1\right\}$ for some $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{2} \times \mathbb{Z}$.

When $N_{\alpha}^{0}=\phi$

When $N_{\alpha}^{0}=\phi$

Recap

$$
\begin{aligned}
P_{I} & =\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\} \\
P_{L P} & =\left\{(x, s) \in \mathbb{R}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} r^{j} s_{j}\right\}
\end{aligned}
$$

- Basic solution: $(f, 0)$
- Objective: Find facet defining inequality(ies) for $\operatorname{conv}\left(P_{I}\right)$.
- Some of these inequalities may not be split cuts (of any rank).
- $P_{L P}$ is a cone.
- $\operatorname{dim}\left(\operatorname{conv}\left(P_{I}\right)\right)=n=|N|$
- For any $(\bar{x}, \bar{s}) \in P_{I}$, either:

1. $\bar{x}=f+s_{j} e_{j}$ (ray point) or,
2. $\bar{x}=f+s_{j} e_{j}+s_{k} e_{k}$

Recap

Every non-trivial valid inequality for P_{I} that is tight at a point $(\bar{x}, \bar{s}) \in P_{I}$ can be written in form:

$$
\sum_{j \in N} \alpha_{j} s_{j} \geq 1
$$

where $\alpha_{j} \geq 0, \forall j \in N$.

Recap

Every non-trivial valid inequality for P_{I} that is tight at a point $(\bar{x}, \bar{s}) \in P_{I}$ can be written in form:

$$
\sum_{j \in N} \alpha_{j} s_{j} \geq 1
$$

where $\alpha_{j} \geq 0, \forall j \in N$.
.

Example

$$
\begin{aligned}
\min -x_{3} & \\
\text { s.t. } & \\
x_{3} & \leq x_{1} \\
x_{3} & \leq x_{2} \\
x_{1}+x_{2}+x_{3} & \leq 2 \\
x_{1}, x_{2} & \in \mathbb{Z} \\
x_{3} & \in \mathbb{R}^{+}
\end{aligned}
$$

$P_{L P}:$

$$
\begin{aligned}
x_{1} & =\frac{2}{3}+\frac{2}{3} s_{1}-\frac{1}{3} s_{2}-\frac{1}{3} s_{3} \\
x_{2} & =\frac{2}{3}-\frac{1}{3} s_{1}+\frac{2}{3} s_{2}-\frac{1}{3} s_{3}
\end{aligned}
$$

$$
\text { facet definining inequality: } x_{3} \leq 0 \Rightarrow \frac{1}{2} s_{1}+\frac{1}{2} s_{2}+\frac{1}{2} s_{3} \geq 1
$$

Split Cuts

Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 0$ be a valid inequality for $\operatorname{conv}\left(P_{I}\right)$. Then:

$$
\text { 1. Let } N_{\alpha}^{0}=\left\{j: \alpha_{j}=0\right\} \text {, }
$$

2. $L_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid \exists s \in \mathbb{R}_{+}^{n}\right.$ s.t. $(x, s) \in P_{L P}$ and $\left.\sum_{j \in N} \alpha_{j} s_{j} \leq 1\right\}$
3. $X_{\alpha}=L_{\alpha} \cap \mathbb{Z}^{2}$

Lemma: If, for a facet defining inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ for $\operatorname{conv}\left(P_{I}\right), N_{\alpha}^{0} \neq \phi$ then $\exists\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{2} \times \mathbb{Z}$ s.t. $L_{\alpha} \subseteq\left\{\left(x_{1}, x_{2}\right): \pi_{0} \leq \pi_{1} x_{1}+\pi_{2} x_{2} \leq \pi_{0}+1\right\}$.
e.g. previous example.

Converse is not true.

When $N_{\alpha}^{0} \neq \phi$

Main results of this paper:

- Every facet is derivable from at most four non-basic variables
- With every facet, one can associate three or four particular vertices of $\operatorname{conv}\left(P_{I}\right)$. These facets can be classified into:

1. Split Cuts
2. Dissection Cuts
3. Lifted two-variable cuts

- Dissection cuts are not split cuts
- Lifted two-variable cuts are not split cuts

1. Recall, $X_{\alpha}=L_{\alpha} \cap \mathbb{Z}^{2}$
2. $\operatorname{conv}\left(X_{\alpha}\right) \subseteq \mathbb{R}^{2}$
3. Extreme points of $\operatorname{conv}\left(X_{\alpha}\right)$ are integers
4. How many such polygons exist?

Which one is Cook's example?

1. Recall, $X_{\alpha}=L_{\alpha} \cap \mathbb{Z}^{2}$
2. $\operatorname{conv}\left(X_{\alpha}\right) \subseteq \mathbb{R}^{2}$
3. Extreme points of $\operatorname{conv}\left(X_{\alpha}\right)$ are integers
4. How many such polygons exist?

Which one is Cook's example?

1. Recall, $X_{\alpha}=L_{\alpha} \cap \mathbb{Z}^{2}$
2. $\operatorname{conv}\left(X_{\alpha}\right) \subseteq \mathbb{R}^{2}$
3. Extreme points of $\operatorname{conv}\left(X_{\alpha}\right)$ are integers
4. How many such polygons exist?

Which one is Cook's example?

What about L_{α}

The main theorem
Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality that satisfies $\alpha_{j}>0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set $S \subseteq N$ such that $|S| \leq 4$ and $\sum_{j \in S} \alpha_{j} S_{j} \geq 1$ is facet defining for $\operatorname{conv}\left(P_{I}(S)\right)$ where,

Find this inequality and do simultaneous lifting of coefficients for $N \backslash S$ to get the desire cut.

What about L_{α}

The main theorem

Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality that satisfies $\alpha_{j}>0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set $S \subseteq N$ such that $|S| \leq 4$ and $\sum_{j \in S} \alpha_{j} s_{j} \geq 1$ is facet defining for $\operatorname{conv}\left(P_{I}(S)\right)$ where,

$$
P_{I}(S)=\left\{(x, s) \in \mathbb{Z}^{n} \times \mathbb{R}_{+}^{|S|}: x=f+\sum_{j \in S} s_{j} r^{j}\right\}
$$

Find this inequality and do simultaneous lifting of coefficients for $N \backslash S$ to get the desire cut.

What about L_{α}

The main theorem

Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality that satisfies $\alpha_{j}>0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Proof: Follows from six lemmas.

Also, there exists a set $S \subseteq N$ such that $|S| \leq 4$ and $\sum_{j \in S} \alpha_{j} s_{j} \geq 1$ is facet defining for $\operatorname{conv}\left(P_{I}(S)\right)$ where,

$$
P_{I}(S)=\left\{(x, s) \in \mathbb{Z}^{n} \times \mathbb{R}_{+}^{|S|}: x=f+\sum_{j \in S} s_{j} r^{j}\right\}
$$

Find this inequality and do simultaneous lifting of coefficients for $N \backslash S$ to get the desire cut.

More notation

- Let $k \leq 4$ denote the number of vertices of $\operatorname{conv}\left(X_{\alpha}\right)$. $K=\{1, \ldots, k\}$.
- Let the set $\left\{x^{\nu}\right\}_{\nu \in K}$ denote vertices of $\operatorname{conv}\left(X_{\alpha}\right)$.
- if $\bar{x} \in X_{\alpha}$, is not a ray point, then $\bar{x}=f+s_{j 1} r^{j 1}+s_{j 2} r^{j 2}, s_{j 1}, s_{j 2}>0$, unique
- Such a pair $\left(j_{1}, j_{2}\right)$ is said to give a representation of \bar{x}.
- Additionally if $\alpha_{j 1} s_{j 1}+\alpha_{j 2} s_{j 2}$, then $\left(j_{1}, j_{2}\right)$ is said to give a tight representaion.
- If cone $\left(\left\{r^{i 1}, r^{i 2}\right\}\right) \subseteq \operatorname{cone}\left(\left\{r^{j 1}, r^{j 2}\right\}\right)$, then the pair $\left(i_{1}, i_{2}\right)$ is a sub-cone of $\left(j_{1}, j_{2}\right)$.
- $T_{\alpha}(\bar{x})=\left\{\left(j_{1}, j_{2}\right):\left(j_{1}, j_{2}\right)\right.$ gives a tight representation of $\left.\bar{x}\right\}$

Lemma: There exists a unique maximal representation of $\left(j_{1}^{\bar{x}}, j_{2}^{\bar{x}}\right) \in T_{\alpha}(\bar{x})$ (One tight representation of \bar{x} can be used).

Where does this lead to?

Suppose $\sum_{j \in N} \alpha_{j} s_{j}=1$ is a facet of $\operatorname{conv}\left(P_{I}\right)$. Then,

- There exist n affinely independent points in P_{I} that satisfy this equality,
- Substituting values of s_{j} and solving for α_{j} should give this equality as the unique solution
- Project these n points on to plane of $\left(x_{1}, x_{2}\right)$.
- These projections are either vertices of $\operatorname{conv}\left(X_{\alpha}\right)$, or
- they lie on edges of $\operatorname{conv}\left(X_{\alpha}\right)$.

So ...

Where does this lead to?

After a lot of hand waving, we get:

- There is a set S, such that $|S| \leq 4$ and
- $\sum_{j \in \alpha} \alpha_{j} s_{j} \geq 1$ is facet defining for $P_{I}(S)$
- $L_{\alpha}=\operatorname{conv}\left(\{f\} \cup\left\{\nu^{j}\right\}_{j \in S}\right)$

Classification of cuts

- if each vertex of $\operatorname{conv}\left(X_{\alpha}\right)$ belongs to a different L_{α} : Dissection cut
- if exactly one facet of L_{α} contains two vertices of $\operatorname{conv}\left(X_{\alpha}\right)$:

Lifted 2-variable cut

- two facets of L_{α} contain 2 vertices of $\operatorname{conv}\left(X_{\alpha}\right)$ each: split cuts

What kind of cut is Cook's example?

