Integrated Location Routing and Scheduling Problems

Zeliha Akça zelihaakca@lehigh.edu Rosemary T. Berger rosemary.berger@verizon.net Theodore K. Ralphs tkr2@lehigh.edu

Department of Industrial and Systems Engineering Lehigh University

CORAL Seminar Series

(日) (同) (日) (日) (日)

Outline

Introduction

- Problem Definition and Formulation
- Solution Methodology

4 Future Work

イロト イポト イヨト イヨト

큰

LRS Problem

LRS problem integrates the decisions of determining

- the optimal number and locations of facilities,
- an optimal set of vehicle routes from facilities to customers
- an optimal assignment of routes to vehicles subject to scheduling constraints.

The objective is to minimize the total fixed costs and operating costs of facilities and vehicles.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

Problem Definition and Formulation Solution Methodology Future Work References

Motivation

- For multiple customer routes, location and routing are interdependent.
- Assuming one-to-one relationship between vehicles and routes overestimates the required number of vehicles and costs.
 - -Fixed costs of vehicles and drivers are high.
 - -Companies might have fleets with constant size.
 - -Delivery of items might be time sensitive and drivers might have working hour limits.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

LRS PROBLEM

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem Definition and Formulation Solution Methodology Future Work References

LRS Problem in Literature

- Integrates other NP-Hard problems such as CFLP, CVRP and MDVSP.
- Generalizes problems such as LRP, MDVRP, VRPMT.

Akca, Berger, Ralphs

- Lin et al. [2002] introduce the LRS problem.
- They divide the problem into 3 phases: facility location, vehicle routing and loading, and construct a heuristic algorithm which includes some metaheuristics.
- Lin and Kwok [2005] extend the study to a multi-objective LRS problem. They use a similar heuristic algorithm.

Problem Definition

Objective

to select a subset of the facilities, construct a set of delivery routes and to assign routes to vehicles with minimum total cost.

Constraints

- Capacitated facilities.
- Capacitated vehicles.
- Time limit for the vehicles.
- Each customer must be visited exactly once.
- Each route and vehicle must start at a facility and return to the same facility.

2 Formulations: Edge-based linear mixed integer model, set-partitioning based linear integer model

Pairing Concept

Pairing:

A set of routes that can be served sequentially by one vehicle within the vehicle's working hour limit.

A pairing is feasible if

- total demand of each route ≤ vehicle capacity,
- total travel time of the pairing ≤ vehicle working hour limit,
- each customer included in the pairing is visited once.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure: Example of pairings

Set Partitioning-based model: Notation

Sets

- N = set of demand nodes
- M = set of candidate facility locations
- P_j = set of all feasible pairings for facility $j, \forall j \in M$

Parameters

 $a_{ipj} = \begin{cases} 1 & \text{if demand node } i \text{ is in pairing } p \text{ of facility } j, \forall i \in N, j \in M, p \in P_j \\ 0 & \text{otherwise} \end{cases}$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

 C_{jp} = cost of pairing p associated with facility j, $\forall j \in M, p \in P_j$

$$FC_j = fixed cost of opening facility $j, \forall j \in M$$$

 $CapF_j$ = capacity of facility $j, \forall j \in M$

Decision Variables

 $Z_{jp} = \begin{cases} 1 & \text{if pairing p is selected for facility j, } \forall p \in P_j \text{ and } j \in M \\ 0 & \text{otherwise} \end{cases}$ $T_i = \begin{cases} 1 & \text{if facility j is selected, } \forall j \in M \\ 0 & \text{otherwise} \end{cases}$

Set Partitioning Formulation

(SPP-LRS)

Minimize	$\sum_{j \in M} FC_j T_j + \sum_{j \in M} \sum_{p \in P_j} C_{jp} Z_{jp}$			(1)
subject to	$\sum_{j \in M} \sum_{p \in P_j} a_{ipj} Z_{jp} = 1$	$\forall i \in N$	(π_i)	(2)
	$\sum_{ ho \in P_j} \sum_{i \in N} a_{i ho j} d_i Z_{j ho} \leq Ca ho F_j T_j$	$\forall j \in M$	(μ_j)	(3)
	$Z_{jp} \in \{0,1\}$	$\forall j \in M, \forall p \in P_j$		(4)
	$T_j \in \{0,1\}$	$\forall j \in M$		(5)

-큰

Simple Valid Inequalities

$$\sum_{j \in M} T_j \ge nREQ \tag{6}$$

イロト イポト イヨト イヨト

큰

$$\sum_{p \in P_j} a_{ipj} Z_{jp} \leq T_j \quad \forall j \in M, i \in N \quad (\sigma_{ji})$$
(7)

nREQ= minimum number of required (selected) facilities

Branch and Price Algorithm

Figure: Branch-and-Price Tree

イロト イ団ト イヨト イヨトー

-큰

Akça, Berger, Ralphs LRS PROBLEM

Pricing Problem as a Network Problem

Objective: Find a column with minimum reduced cost. Constraints:

- All of the routes in the pairing start and end at the same facility.
- Total demand of each route \leq vehicle capacity.
- Total travel time of the pairing \leq time limit.
- Each customer node can be visited at most once.

Figure: Constructed Network for facility *j*

- Can define the problem as an ESPPRC (not elementary wrt sink).
- Exact solution: labeling algorithm by Feillet et al. [2004] for ESPPRC.
- Heuristic solution: labeling algorithm with a LIMIT on the number of labels for each node.

• • • • • • • • • • • • •

Branching Rules

- Branching on the facility location variables, OPEN \ CLOSED. Simple, no need to update the pricing problems.
- Integrality of total # of vehicles at each facility. Just a fixed cost change in the total reduced cost of a column.
- A customer can only be assigned to 1 facility, FORCE FORBID a customer for a facility. Add constraints dual variables of which can be easily incorporated into the pricing problem.
- Modified Ryan and Foster branching rule suggested by Desrochers and Soumis [1989]. Update the arc costs in pricing problem.

< □ > < 同 > < 三 > < 三 >

Branch and Price Algorithm

STEP 1: Heuristic Branch and Price Tree

Figure: Branch and Price Algorithm

Akça, Berger, Ralphs LRS PROBLEM

Implementation and Test Problems

- MINTO 3.1 and CPLEX 9.1.
- Initial columns and upper bound for heuristic BP are generated using a facility location heuristic, some VRP heuristics and a bin packing heuristic.
- Step 1 of the algorithm (Heuristic BP) is run for 3 CPU hours.
- Step 2 of the algorithm (Exact BP) is run for 6 CPU hours.
- 6 set of customer and candidate facility locations, customer demands generated from MDVRP benchmark problems developed by Cordeau et al. [1995].
- For each set of locations, 2 possible vehicle capacity, 2 possible time limit values are used. Therefore, 24 instances with 30 customers.
- Facility and vehicle fixed costs, vehicle operating cost are estimated.

< □ > < 同 > < 三 > < 三 >

Computational Results: 2-step Branch and Price Algorithm

Data	LP	IP	% Int.	CPU Time		Solution	
			Gap	Step 1	Step 2	# of Fac.	# of veh.
p01-f-11	4821.07	4877.33	0.00%	1.36 hr	5.49 hr	2	4
p01-f-12	4715.3	4987.17	2.83%	3 hr	6 hr	2	4
p01-f-21	4582.27	4684.67	0.01%	3 hr	6 hr	2	4
p01-f-22	4482.2	4885	8.25%	3 hr	6 hr	2	4
p03-f-11	6467.35	6504.83	0.00%	1.76 hr	0.89 hr	3	4
p03-f-12	6370.12	6497.33	0.94%	3 hr	6 hr	3	4
p03-f-21	6263.17	6420.67	0.55%	2.5 hr	6 hr	3	4
p03-f-22	6193.52	6196.5	0.05%	0.82 hr	6 hr	3	3
p03-l-11	4896.04	5014.67	0.00%	1.58 hr	0.54 hr	2	5
p03-l-12	4756.95	5026.83	4.12%	3 hr	6 hr	2	5
p03-l-21	4679.23	4730.17	0.00%	1.43 hr	0.67 hr	2	4
p03-I-22	4562.29	4706.33	1.28%	2.4 hr	6 hr	2	4
p07-f-11	4765.63	4808.33	0.00%	1.82 hr	1.06 hr	2	4
p07-f-12	4654.19	4760.17	0.01%	2.65 hr	6 hr	2	4
p07-f-21	4558.21	4683.5	0.00%	1.74 hr	2.56 hr	2	4
p07-f-22	4453.2	4745	5.77%	3 hr	6 hr	2	4
p11-f-11	7915.87	8054.67	0.00%	1 min	1.19 min	3	7
p11-f-12	7791.1	8036.33	0.00%	2.32 min	4.17 min	3	7
p11-f-21	7531.81	7634.67	0.00%	0.4 min	0.21 min	3	6
p11-f-22	7469.84	7634.67	0.00%	0.85 min	0.47 min	4	7
p11-l-11	9929.75	10043	0.00%	0.25 min	0.18 min	4	7
p11-l-12	9837.09	9937.33	0.00%	0.42 min	0.31 min	4	7
p11-l-21	9645.66	9758.17	0.00%	0.8 min	0.74 min	4	7
p11-l-22	9416.78	9500.67	0.00%	1.08 min	0.75 min	4	6

Akça, Berger, Ralphs

イロト イポト イヨト イヨト

큰

Future Work

- Improve the algorithm to be able to solve larger instances.
- Investigate how to incorporate cuts into the algorithm, develop a branch, cut and price algorithm.
- Update the algorithm to solve the special cases of the LRS problem such as LRP, MDVRP, VRPMT.

< □ > < 同 > < 三 > < 三 >

J.F. Cordeau, M. Gendreau, and G. Laporte. A Tabu Search Heuristic for Periodic and Multi-Depot Vehicle Routing Problems, 1995. Technical Report 95-75, Center for Research on Transportation, Montréal. Available at neo.lcc.uma.es/radi-

aeb/WebVRP/Problem_Instances/CordeauFilesDesc.html.

- M. Desrochers and F. Soumis. A Column Generation Approach to the Urban Transit Crew Scheduling Problem. *Transportation Science*, 23(1):1–13, 1989.
- D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints: Application to Some Vehicle Routing Problems. *Networks*, 44(3):216–229, 2004.
- C.K. Lin, C.K. Chew, and A. Chen. A Location-Routing-Loading Problem for Bill Delivery Services. *Computers and Industrial Engineering*, 43:5–25, 2002.
- C.K. Lin and R.C.W. Kwok. Multi-Objective Metaheuristics for a Location-Routing Problem withMultiple Use of Vehicles on Real Data and Simulated Date. *European Journal of Operational Research*, In Press, 2005.

D. Ryan and B. Foster. An Integer Programming Approach to Scheduling. In A. Wren, editor, *Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling*, pages 269–280. North-Holland, 1981.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >