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Introduction
We will Cover:

Dantzig-Wolfe decomposition and column generation in IP.

2 applications of DW decomposition: maximum independent set
problem, multistage stochastic IP.

@ Lagrangian relaxation (this week or next week).

@ Formulation of Benders decomposition.

@ Global optimization of nonconvex MINP with decomposable structures.
@ Any suggestions? Additions? Not interesting?
o
[}
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Volunteers?
Suggestions for the structure of the seminar?
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Introduction
Decomposition In General

@ DW Decomposition
@ Lagrangian relaxation
© Benders decomposition

@ All are large scale (models with large number of constraints/variables)
optimization algorithms.

@ We can find better bounds for branch and bound using these
approaches.

@ For the first 2, alternative approaches are cutting plane, variable
redefinition.

@ Basically, first 2 decomposition includes 3 steps:

9@ Decompose system of inequalities into two parts.
@ Find the convex hull of the second system.
@ optimize first system over this convex hull.
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Why decomposition can find a better bound?

@ From T. Ralphs and M. Galati, Decomposition in Integer Programming, in
Integer Programming: Theory and Practice, John Karlof, ed. (2005), 57.

mincx
s.t.Ax<b
xeZ"

oletQ={xeRAx<b}={xecRA"x<b  A'x<b'}.

@ Let F = 0N Z" (feasible integer points) and P be the convex hull of F.

o letQ ={xeR'A'x < b}, F = Q nZ" (feasible integer points) and P’
be the convex hull of F .

o letQ = {xeRA'x<b"}.

® z1p = minsep{cx}.

9 zprcomp = min,cp {CX|AHX < b”} = minepr o {ex}.
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Why decomposition can find a better bound?
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Source: T. Ralphs and M. Galati, Decomposition in Integer Programming, in Integer
Programming: Theory and Practice, John Karlof, ed. (2005), 57.
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Dantzig Wolfe Decomposition

@ Assume P is bounded. Let E C F' be the set of extreme points of P'.

Pr={zeR"|z=3 sAs,Y A=1A=20¥se&}

2EE EL
@ Dantzig Wolfe formulation and bound:

“pw = min [Tx| A"z = 8"z = ;.‘;Ag. g As=1,As > 0V¥s € £}

@ Substitute new variables:

oW = 1111.11{( |Zs}.g| | 4”|Z shs) = B Zlg =1}

scd 2l =g

@ |E| may be very large, thus E should be generated dynamically.

Source: T. Ralphs and M. Galati, Decomposition in Integer Programming, in Integer
Programming: Theory and Practice, John Karlof, ed. (2005), 57.
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Cutting Strips Problem

K

P
min ZL* (W"yJE - Zw,-zf)
=1

[P“] st

k=1
K

ZL"zf;*d,-. i=l...,

k=1

zfel\l. = P

(2)

3)

Source:Vanderbeck F.,On Dantzig-Wolfe Decomposition in Integer Programming and
ways to Perform Branching in a Branch-and-Price Algorithm, Oper. Res. 48-1, 2000,

pg. 111.
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Integer Points in Second System

@ Let 0" be the set of feasible cutting patterns for sheet k, \; be the
number of times pattern ¢* is selected.

X = { (.2 Y=y, x € NFKUHP
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Introduction

Dantzig Wolfe Decomposition of Cutting Strips Problem

k=1 gf M
[‘ur.‘x] st
5 -,
Z kaffij zdi, i=1,..., J22 (6)
k=1 q"’EQ*
YooA<l, k=1,...K
qregt

Aef01}, €0 k=1,. K



Introduction
Column Generation

@ Master problem may include infinitely many cutting patterns:
4
0'={d' eN:> wql < W}

@ Start with “a” set of feasible cutting patterns — RMP.

@ Generate the column with most negative reduced cost to improve the
bound.

@ Let 7; be the dual variable for demand constraint i, i« be the dual
variable for convex comb. constr. Subproblem:

e
()= min L* (W* = Z(H-} + @ ):s) + b
i=1
s.1.
1l

Z Wiz < W

i=1

zi e M, f:],“,,p,
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Lower bound for DW Decomposition LP

If column generation subproblem is solved to optimality:

zwow(LP)"® = (obj. value of dual master)
-+ (obj. function value of optimal column generation subproblem)

Let ¢ be the optimal solution to the column generation problem.

2w LP Z dimi + Z i) + ( Z Cqqk — Z quf— Z k)

i=l..p k=1..K k=1..K k=1..K,i=1..p k=1..K
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Introduction
Some Points

]

Lagrangian relaxation and Dantzig Wolfe decomposition is used to find
better bounds for the MIP.

Lagrangian relaxation, Dantzig Wolfe decomposition, cutting plane,
variable redefinition can be used to get the same bound.

Cutting plane: convex hull of second system P is defined by finding the
facet defining inequalities of the system.

Master LP (from Dantzig Wolfe Decomp.) = dual formulation of the
Lagrangian dual that results from dualizing the A" x < 5"

Dantzig Wolfe decomposition leads to models with large number of
variables which requires column generation algorithm.

Variable redefinition: develop an alternative formulation Z for the
polyhedron P’.
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Introduction
Discretization vs. Convexification

o
o
o
o

The first DW example is convexification.
Cutting Strip problem uses discretization.
Convexification: \; > 0,

Discretization: A\, € {0, 1} if it is an extreme point, A\, € N if it is an
extreme ray.

Convexification: x = > s\, does not imply x is integer. To express
integrality, must return to original variables. Branching should be in
original variables.

Discretization: x = > _sA, results integer variables. Can do branching or
write cuts in terms of \,.

Both give the same LP relaxation of master.

@ Both has the same IP master if variables are binary.

Discretization # convexification if some variables are general integer.
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Introduction

Section 1 (Vanderbeck 2000): Decomposition of IP

@ General form of master problem.

@ > ), = 1 canbe changed with >~ A, < 1if 0 vector is a feasible
solution for the problem.

@ Independent subsystems: Dx < d — D*x < d“ k=1,..,K.

> N=Lk=1,.,K
q€Q(k)

@ Identical independent subsystems: Dx < d — D'x < d*,k=1,..,K, but
D'=D,d" =dfork=1.K.
> M=K

q€0
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Introduction
Equivalence Between Original and Master Formulation

Let P be the original problem, M be the master problem.
Both have the same set of feasible integer points.

Since the representation of solution is different in both formulations, a
solution x for P may not result a unique solution A for M.

Cases when the solutions do not corresponds to a unique solution is
given in the paper.

Zip(P) < Zip(M) < Zpp.
Zir(P) < Zrp(M) if subsystem does not have integrality property.

¢ © ¢

©

¢ ©

DECOMPOSITION



Introduction
Practical Issues with Column Generation

@ At each branch and bound node, a feasible LP solution is required.
Especially with branching it becomes difficult to maintain feasibility. One
way is to use artificial variables that will always result feasible solutions.

@ Designing branching rules: Branching rule must be incorporated into
subproblem (column generation problem).

@ RMP:Optimize RMP to get dual variables. Dual solution is not unique if
primal is degenerate. Dual variables effect the generated column.

@ Initialization is necessary with simplex and for other methods it can reduce
heading-in effect of initially producing bad duals which may cause irrelevant
columns.

@ Solution with primal, primal-dual simplex, barrier?

@ Simplex based column generation has tailing off effect (poor convergence).

DECOMPOSITION



	Introduction

