Branching for Branch and Price Algorithm

ISE Department COR@L Lab Lehigh University zelihaakca@lehigh.edu

▲ @ → ▲ Ξ

01/26/07

DECOMPOSITION

Practical Issues: Branching Rules

- Branching must not destroy the structure of the subproblem.
- Branching should result child nodes that represent balanced sets of solutions which leads tighter bounds at each node.
- Original variable *x* is integer then, $\sum_{q \in Q} q\lambda_q$ be integer.
- Typically, branching on individual master variable λ_q results unbalanced tree and significant subproblem modifications.

Branching Rules and Cuts for Branch and Price Algorithm

- Branching on and writing cuts in terms of master problem variables (λ).
- Implicit branching through pricing problem.
- Branching on and writing cuts in terms of original variables (*x*).

Master Problem

MP

$$\min \sum_{q \in Q} c_q \lambda_q$$
s.t.
$$\sum_{q \in Q} A_q \lambda_q \ge b \quad (\pi)$$

$$\sum_{q \in Q} \lambda_q \le K \quad (v)$$

$$\lambda_q \ge 0 \quad \forall q \in Q$$

Pricing Problem

$$\begin{array}{l} \min \ cy - \pi Ay + v \\ Dy \geq d \\ y \in \mathbb{N}^{\ltimes} \end{array}$$

DECOMPOSITION

2

イロト イポト イモト イモト

- Branching on fractional λ_q is not appropriate. Because:
 - significant changes for sub problem,
 - unbalanced branch and bound tree.
- If master problem solution $\lambda = (\lambda_1, ..., \lambda_{|Q|})$ is fractional, then there exists $\hat{Q} \subseteq Q$ such that

$$\sum_{q \in \hat{Q}} \lambda_q = \alpha, \ lpha$$
 is fractional.

• Then we can write the branching rule:

$$\sum_{q \in \hat{Q}} \lambda_q \leq \lfloor \alpha \rfloor \text{ or } \sum_{q \in \hat{Q}} \lambda_q \geq \lceil \alpha \rceil$$

イロト イポト イヨト イヨ

Branching on λ : Cont.

Generic master formulation with branching rules:

$$\begin{split} \min \sum_{q \in \mathcal{Q}} c_q \lambda_q \\ \text{s.t.} \\ \sum_{q \in \mathcal{Q}} A_q \lambda_q \geq b \quad (\pi) \\ \sum_{q \in \mathcal{Q}} \lambda_q \leq K^j \text{ for } j \in G^u \quad (\mu_j) \\ \sum_{q \in \mathcal{Q}} \lambda_q \geq L^j \text{ for } j \in H^u \quad (v_j) \\ \lambda_q \geq 0 \forall q \in \mathcal{Q} \end{split}$$

Reduced cost of the column:

$$\bar{c_q} = c_q - \sum_{i=1}^m \pi_i a_{iq} + \sum_{j \in G^u} \mu_j g_j(q) - \sum_{j \in H^u} v_j h_j(q)$$

g_j(q) = 1 if column q has a nonzero coefficient in the row j ∈ G^u.
 h_j(q) = 1 if column q has a nonzero coefficient in the row j ∈ H^u.

DECOMPOSITION

Designing Branching Rules: Cont.

Column Generation Subproblem:

min
$$cy - \pi Ay + \mu g - vh$$

 $Dy \ge d$
 $g = g(y)$
 $h = h(y)$
 $y \in \mathbb{N}^{\ltimes}$
 $g \in \{0, 1\}^{|G^{u}|}$
 $h \in \{0, 1\}^{|H^{u}|}$

• g = g(y), h = h(y) are boolean functions: g=TRUE (=1) if generated column *y* will have a positive coefficient in the corresponding branching constraint.

(4回) 4 回) 4 回)

Branching Based on Partitioning Q with a Hyperplane

Proposition

Given a feasible solution λ for master problem that is not integral, there exists a hyperplane $(\gamma, \gamma_0) \in \mathbb{Z}^{n+1}$ such that $\sum_{q \in \mathcal{Q}: \gamma_q \geq \gamma_0} \lambda_q$ is fractional.

• If master problem solution $\lambda = (\lambda_1, .., \lambda_{|Q|})$ is fractional, then there exists $(\gamma, \gamma_0) \in \mathbb{Z}^{n+1}$ such that

$$\sum_{q \in \mathcal{Q}: \gamma q \geq \gamma_0} \lambda_q = \alpha, \ \ \alpha \text{ is fractional.}$$

• The branching rule is

$$\sum_{q \in \mathcal{Q}: \gamma q \geq \gamma_0} \lambda_q \leq \lfloor \alpha \rfloor \text{ or } \sum_{q \in \mathcal{Q}: \gamma q \geq \gamma_0} \lambda_q \geq \lceil \alpha \rceil$$

イロト イポト イヨト イヨト

Subproblem Modification

Let μ_j be the dual variable for $\sum_{q \in Q: \gamma q \ge \gamma_0} \lambda_q \le \lfloor \alpha \rfloor$:

• Reduced cost of a column changed to:

$$\bar{c_q} = c_q - \sum_{i=1}^m \pi_i a_{iq} + \mu_j g_j(q)$$

where $g_j = 1$ if column q satisfy $\gamma q \geq \gamma_0$.

- The objective function of subproblem is updated with $+\mu_j g_j$.
- Since it is unattractive for objective function, it is enough to put a constraint to force $g_i = 1$ when necessary.
- Constraint should be added to the subproblem to force $g_j = 1$ when the column, q satisfy $\gamma q \geq \gamma_0$.

$$(\gamma_{max}^j - \gamma_0^j + 1)g_j \ge \gamma^j q - \gamma_0^j + 1$$

where $\gamma_{max}^{j} = max_{q \in Q} \gamma^{j} q$

- 4 同下 4 ヨト 4 ヨト

Subproblem Modification: Cont.

Let v_j be the dual variable for $\sum_{q \in Q: \gamma q \ge \gamma_0} \lambda_q \ge \lceil \alpha \rceil$:

• Reduced cost of a column changed to:

$$\bar{c_q} = c_q - \sum_{i=1}^m \pi_i a_{iq} - v_j h_j(q)$$

where $h_j = 1$ if column q satisfy $\gamma q \geq \gamma_0$.

- The objective function of subproblem is updated with $-v_jh_j$.
- Since it is attractive for objective function, it is enough to put a constraint to force $h_i = 0$ when necessary.
- Constraint should be added to the subproblem to force $h_j = 0$ when the column, q satisfy $\gamma q < \gamma_0$.

$$(\gamma_0^j - \gamma_{\min}^j)h_j \leq \gamma^j q - \gamma_{\min}^j$$

where $\gamma_{min}^{j} = min_{q \in Q} \gamma^{j} q$

- 4 同下 4 ヨト 4 ヨト

Comments About the Rule

- Any fractional solution can be cut off.
- Number of possible sets is finite, the rule is finite.
- Complete branching rule.
- Not easy to find a hyperplane. Theoretical.
- In practice, consider hyperplanes with $\gamma = e^i$, but it does not guarantee the existence of hyperplanes.

Implicit Branching Through Pricing Problem

- Subproblem finds shortest path from an origin (s) to a destination (t) with minimum cost.
- Columns in master problem represent paths (arc incidence vectors).
- Solution of master problem is a combination of these paths satisfying the constraints.
- Let $q \in \{0, 1\}^n$ be the column vector where *n* is the number of arcs in the network. If the solution to the master problem is not integral, then there exists an arc *k* such that the flow along the arc

$$\sum_{q \in Q: q^k = 1} = \lambda_q$$

is fractional.

Branching on the Pricing Problem

Branch 1

Flow on arc $k = (a \rightarrow b)$ is equal to 1.

- Master Problem: set $\lambda_q = 0$ for all $\{q \in Q\}$ if λ_q should be zero if arc k is in the solution.
- Pricing Problem: delete all arcs into *b* and from *a* except arc $a \rightarrow b$.

Branch 2

Flow on arc $k = (a \rightarrow b)$ is equal to 0.

- Master Problem: set $\lambda_q = 0$ for all $\{q \in Q : q^k = 1\}$.
- Pricing Problem: delete arc k.

Example from Cutting Strip Problem

- z_i^k = number of strips of width w_i cut from sheet k.
- $z_i^k = \sum_{q \in Q(k)} q_i^k \lambda_q$.
- Let z_i^k be fractional and $\lceil z_i^k \rceil = v$.

Force

$$\sum_{q \in \mathcal{Q}(k): q_i^k \ge v} \lambda_q \in \{0, 1\}$$

- In any cutting pattern for sheet k, there must be at least v strips of width w_i.
- In master problem, remove columns that do not satisfy the rule.
- In pricing problem, set a lower bound for q_i^k .
- Generic constraints are explained in Vanderbeck (2000).

・ 同 ト ・ ヨ ト ・ ヨ

Example from Cutting Strip Problem: Cont.

Symmetric Structure

• Forcing the rule for sheet $k_1 \rightarrow$ result columns for other sheets that do not satisfy the rule.

Force:

 $\sum_{q \in \mathcal{Q}: q_i \geq v} \lambda_q \;\; \text{integer} \;\;$

Choosing v

.

- Poorly chosen v results uneven partition of the solution space.
- Partition interval $[0, q_i^{max}]$ where q_i^{max} is the maximum value of q_i in any pattern.

イロト イポト イヨト イヨト

Branching on Original Variables

Poggi and Uchoa (2003)¹ introduce explicit master:

Reformulation	Explicit Master	Pricing Problem
min cx	min cx	$\min - \pi x - v$
x' - x = 0	$Q\lambda - x = 0$ (π)	$Dx \leq d$
Ax = b	$1\lambda = 1$ (v)	$x \in \mathbb{Z}^n_+$
$Dx' \leq d$	$Ax = b \ (\mu)$	
$x', x \in \mathbb{Z}^n_+$	$\lambda, x > 0$	

- Size of explicit master is larger than DW master.
- LP relaxations are equal.
- Dual variable μ corresponds to Ax = b is not used in pricing problem.
- Cuts in terms of x variables can easily be added to system Ax = b.

1.Poggi de Aragao, M., Uchoa, E.: Integer program reformulation for robust branch-and-cut-and-price. In: Annals of Mathematical Programming in Rio. Buzios, Brazil, 2003, pp.56.

Assume we have N subproblems. Possible strategies:

- Solve *N* problems pick the best improving column to enter RMP.
- Add all columns with negative reduced cost to the RMP.
- Solve *N* problems sequentially, e.g. solve 1, then 2, ..., solve N.
- Solve the subproblems by selecting randomly.
- Solve subproblem heuristically to generate quick columns.
- Use column pool to keep generated columns.
- Delete columns with positive reduced cost from RMP.