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Introduction

Computational grids are incresingly being used as cost
effective parallel computing platforms.

The development of branch and bound tree size estimation is
of fundamental importance.

How long MIP solvers will take before solving a problem?

We wish to be able to early predict whether or not it is
worthwhile to spend vast computing power attempting to
solve certain problems.
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Knuth Method

Estimate the size of a general backtrack tree.

Explore random paths until reaching a leaf node by selecting
nodes randomly according to uniform distrubution.

Average over number of trails (1000/10000) to get the
estimated tree size.

Offline.
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Knuth Equation

General Tree

N̂ = 1 + d1 + d1d2 + . . . +
df∏
i=1

Binary Tree

N̂ = 2df+1 − 1

N̂ : Estimated number of evaluated node

di : Number of children of selected node at depth i

df : Depth of a leaf node
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Limitation of Knuth

Tend to overestimated especially tall and skinny tree.

Cannot apply directly to branch and bound tree unless the
optimal solution is provided as a priori or the node selection is
depth-first.

Importance Sampling

The successor of a node is selected according to a weighted dis-
tribution instead of uniform.



lehigh-logo

Knuth Method with Importance Sampling

Online.

Kilby et al. apply Weighted Backtrack Estimator to estimate
SAT and TSP tree. (depth-first)

Estimated Number of Evaluated Nodes

N̂ =
∑

n∈P (f(n) ·N)∑
n∈P f(n)

P : Set of leaf nodes

f(n) : Weighting function

N = 2df+1 − 1
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Weighting Functions
Completely Balanced Tree

f(n) = 2−df

Probability of selecting either one of the children is equally
likely.
f(n) : Probability that a random search tree path reaches a
leaf node at depth df

f(n) : Probability we would have seen the path HAD we done
things ramdomly

General Tree

f(n) = f(L(n), U(n)) =
1

αLβU

L(n) : Number of lower bound fixing of variables in random
path
U(n) : Number of upper bound fixing of variables in random
path
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Computational Experiment

Test on 38 of MIPLIB3 instances with default MINTO.

Optimal solution is not known in advance.

Kill after 8 hours.

Estimate after 5 seconds of solution time and the number of
evaluated nodes is greater than 20 times the maximum depth.

Error factor, i.e. “the factor by which the predictor under or
over estimates the actual tree size.”, of 5 is acceptable.
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Computational Result

Completely Balanced Tree

f(n) = 2−df

16 instances are with error factor of 5.

3 instances have small error.

11 instances are unacceptable.

8 instances are not solved within 8 hours and the estimations
are all greater than the number of node evaluated at time
limit.
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Computational Result

General Tree

f(n) =
1

(2.1053)L(1.9048)U

16 instances are with error factor of 5.

1 instances has small error.

13 instances are unacceptable.

8 instances are not solved within 8 hours and the estimations
are all greater than the number of node evaluated at time
limit.
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Cornuejols Method

Online.

Implement as part of MIP solver.

Update the estimation as time elapses.

Consume a negligible amount of time compared to
branch-and-bound.
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γ-Sequence

i : Depth of node

wT (i) : Number of node at depth i (width)

γi = wT (i+1)
wT (i) : Change of width

Extrapolate the number of nodes at each depth from
γ-sequence using regression model.

Key Parameters

Depth, Last Full Level, Waist Level
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Definitions

T : Branch and bound tree

dT = max{i : wT (i) > 0} : Depth of the tree

lT = min{i : wT (i+1)
wT (i) < 2, 0 ≤ i ≤ dT } : Last full level

(complete binary tree)

bT = arg max{wT (i) : 0 ≤ i ≤ dT } : Waist of the tree

{wT (i) : 0 ≤ i ≤ dT } : Profile of the tree

nT =
∑dT

i=0 wT (i) : Number of nodes in T
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Algorithm

Run branch-and-bound algorithm to collect the number of
nodes at each depth, wT (i).
Stop when t > 5s and nT ≥ 20dT .

Find dT , lT , bT ie. depth, last full level, waist level.

Estimate the tree size.
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Linear Model for Estimating γ-Sequence

γi = wT (i+1)
wT (i) for 0 ≤ i ≤ dT .

wT (i) =
∏i−1

j=0 γj : Width of depth i

nT = 1 +
∑dT

i=1

∏i−1
j=0 γj : Number of nodes in T

Branch and bound tree has 3 stages: expand, waist, decay.

γ-sequence: 2 (last full level), 1 (waist), 0 (deepest level).

Assume that γ decreases linearly from 2 to 1 to 0.

The Model

γi =


2, 0 ≤ i ≤ lT − 1,

2− i−lT +1
bT−lT +1 , lT ≤ i ≤ bT − 1,

1− i−bT +1
dT−bT +1 , bT ≤ i ≤ dT .
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Computational Experiment

Test on 28 of MIPLIB3 instances with default CPLEX 8.0.

Kill after 10 hours.

15 instances are with error factor of 5.

8 instances are unacceptable.

5 instances are not solved within 10 hours. The estimations
for 4 of them are greater than the number of node evaluated
at time limit. The other is within the error factor.
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Conclusion and Future Direction

The estimation still need improvement/refinement to be able
to apply to general MIP instances.

Improve weighting function.

How to use information other than the depth of leaf node to
estimate e.g bounds.

What to do when the best UB is updated.

Incorporate the idea of expand, waist and decay.

Variance/Confidence Interval.

Test “harder instances” on parallel machines.


