Integer Programming IE418

Lecture 18

Dr. Ted Ralphs

Reading for This Lecture

- Nemhauser and Wolsey Sections II.1.1-II.1.3, II.1.6
- Wolsey Chapter 8
- Valid Inequalities for Mixed Integer Linear Programs, G. Cornuejols (2006)

Valid Inequalities from Disjunctions

- We continue to focus primarily on the case of a pure integer program

$$
\begin{aligned}
z_{I P} & =\max \{c x \mid x \in S\} \\
S & =\left\{x \in \mathbb{Z}_{+}^{n} \mid A x \leq b\right\}
\end{aligned}
$$

- Valid inequalities for $\operatorname{conv}(S)$ can also be generated based on disjunctions.
- Let $\mathcal{P}_{i}=\left\{x \in \mathbb{R}_{+}^{n} \mid A^{i} x \leq b^{i}\right\}$ for $i=1, \ldots, k$ be such that $S \subseteq \cup_{i=1}^{k} \mathcal{P}_{i}$.
- Then inequalities valid for $\cup_{i=1}^{k} \mathcal{P}_{i}$ are also valid for $\operatorname{conv}(S)$.

The Union of Polyhedra

- Note that the convex hull of the union of polyhedra is not necessarily a polyhedron.
- Under mild conditions, we can characterize it, however.
- Let Y be the polyhedron described by the following constraints:

$$
\begin{aligned}
A^{i} x^{i} & \leq b^{i} y_{i} \forall i=1, \ldots, k \\
\sum_{i=1}^{k} x^{i} & =x \\
\sum_{i=1}^{k} y^{i} & =1 \\
y & \geq 0
\end{aligned}
$$

- Furthermore, for polyhedron \mathcal{P}_{i}, let $C_{i}=\left\{x: A^{i} x \leq 0\right.$ and let $\mathcal{P}_{i}=$ $Q_{i}+C_{i}$ where Q_{i} is a polytope.

The Convex Hull of the Union of Polyhedra

- Under the assumptions on the previous slide, we have the following result.

Proposition 1. If either $\cup \mathcal{P}_{i}=\emptyset$ or $C_{j} \subseteq \operatorname{cone}^{\cup_{i: ~}} \mathcal{P}_{i} \neq \emptyset$ C_{i} for all j such that $\mathcal{P}_{j}=\emptyset$, then the following sets are identical:

- $\overline{\operatorname{conv}}\left(\cup_{i=1}^{k} \mathcal{P}_{i}\right\}$
$-\operatorname{conv}\left(\cup Q_{i}\right)+\operatorname{cone}\left(\cup C_{i}\right)$
- $\operatorname{proj}_{x} Y$.
- Note that the assumptions of the proposition are necessary, but are automatically satisfied if
- $C^{i}=\{0\}$ whenever $\mathcal{P}^{i}=\emptyset$, or
- all the polyhedra have the same recession cone.

The Convex Hull of the Union of Polyhedra (cont.)

- Note also that if all the polyhedra have the same recession cones, then $\overline{\operatorname{conv}}\left(\cup_{i=1}^{k} \mathcal{P}_{i}\right)=\operatorname{conv}\left(\cup_{i=1}^{k} \mathcal{P}_{i}\right)$ and is the projection of

$$
\begin{aligned}
A^{i} x^{i} & \leq b^{i} y_{i} \forall i=1, \ldots, k \\
\sum_{i=1}^{k} x^{i} & =x \\
\sum_{i=1}^{k} y^{i} & =1 \\
y & \in\{0,1\}
\end{aligned}
$$

- This is the case when the polyhedra only differ in their right-hand sides, as is the case when branching on variables.

Valid Inequalities from Disjunctions

Another viewpoint for constructing valid inequalities based on disjunctions comes from the following result:

Proposition 2. If $\sum_{j=1}^{n} \pi_{j}^{1} \leq \pi_{0}^{1}$ is valid for $S_{1} \subseteq \mathbb{R}_{+}^{n}$ and $\sum_{j=1}^{n} \pi_{j}^{2} \leq \pi_{0}^{2}$ is valid for $S_{2} \subseteq \mathbb{R}_{+}^{n}$, then

$$
\sum_{j=1}^{n} \min \left(\pi_{j}^{1}, \pi_{j}^{2}\right) x \leq \max \left(\pi_{0}^{1}, \pi_{0}^{1}\right)
$$

$$
\text { for } x \in S_{1} \cup S_{2}
$$

In fact, all valid inequalities for the union of two polyhedra can be obtained in this way.

Proposition 3. If $\mathcal{P}^{i}=\left\{x \in \mathbb{R}_{+}^{n} \mid A^{i} x \leq b^{i}\right\}$ for $i=1,2$ are nonempty polyhedra, then $\left(\pi, \pi_{0}\right)$ is a valid inequality for $\operatorname{conv}\left(\mathcal{P}^{1} \cup \mathcal{P}^{2}\right)$ if and only if there exist $u^{1}, u^{2} \in \mathbb{R}^{m}$ such $\pi \leq u^{i} A^{i}$ and $\pi_{0} \geq u^{i} b^{i}$ for $i=1,2$.

Strengthening Gomory Cuts Using Disjunction

- Consider again the set of solutions to an IP with one equation.
- This time, we write S equivalently as

$$
S=\left\{x \in \mathbb{Z}_{+}^{n} \mid \sum_{j: f_{j} \leq f_{0}} f_{j} x_{j}+\sum_{j: f_{j}>f_{0}}\left(f_{j}-1\right) x_{j}=f_{0}+k \text { for some integer } \mathrm{k}\right\}
$$

- Since $k \leq-1$ or $k \geq 0$, we have the disjunction

$$
\sum_{j: f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}-\sum_{j: f_{j}>f_{0}} \frac{\left(1-f_{j}\right)}{f_{0}} x_{j} \geq 1
$$

OR

$$
-\sum_{j: f_{j} \leq f_{0}} \frac{f_{j}}{\left(1-f_{0}\right)} x_{j}+\sum_{j: f_{j}>f_{0}} \frac{\left(1-f_{j}\right)}{\left(1-f_{0}\right)} x_{j} \geq 1
$$

The Gomory Mixed Integer Cut

- Applying Proposition 2, we get

$$
\sum_{j: f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}+\sum_{j: f_{j}>f_{0}} \frac{\left(1-f_{j}\right)}{\left(1-f_{0}\right)} x_{j} \geq 1
$$

- This is called a Gomory mixed integer (GMI) cut.
- GMI cuts dominate the associated Gomory cut in general and can also be obtained easily from the tableau.
- In the case of the mixed integer set

$$
S=\left\{x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p} \mid \sum_{j=1}^{p} a_{j} x_{j}+\sum_{j=p+1}^{n} g_{j} x_{j}=a_{0}\right\}
$$

the GMI cut is
$\sum_{j: f_{j} \leq f_{0}} \frac{f_{j}}{f_{0}} x_{j}+\sum_{j: f_{j}>f_{0}} \frac{\left(1-f_{j}\right)}{\left(1-f_{0}\right)} x_{j}+\sum_{j: g_{j}>0} \frac{g_{j}}{f_{0}} x_{j}-\sum_{j: g_{j}<0} \frac{g_{j}}{\left(1-f_{0}\right)} x_{j} \geq 1$

The GMI closure

- A GMI cut with respect to a polyhedron \mathcal{P} is any cut that can be derived using the above procedure starting from any inequality valid for \mathcal{P}.
- The GMI closure is obtained by adding all GMI cuts to the description of \mathcal{P}.
- The GMI closure is a polyhedron, but optimizing over it is an $\mathcal{N} \mathcal{P}$-hard problem in general.
- It follows that determining whether there is a GMI cut violated by an arbitrary vector is an $\mathcal{N} \mathcal{P}$-complete problem.
- Nevertheless, we have just shown that separation of vectors that are basic feasible solutions to a given LP relaxation from the GMI closure can be accomplished in polynomial time.
- The GMI rank of both valid inequalities and polyhedra can be defined in a fashion similar to that of the C-G rank (more on this later).

Lift and Project

- Let's now consider $S=\mathcal{P} \cap \mathbb{B}^{n}$ and assume that the inequalities $x \leq 1$ are included among those in $A x \leq b$.
- Note that $\operatorname{conv}(S) \subseteq \operatorname{conv}\left(\mathcal{P}_{j}^{0} \cup \mathcal{P}_{j}^{1}\right)$ where $\mathcal{P}_{j}^{0}=\mathcal{P} \cap\left\{x \in \mathbb{R}^{n} \mid x_{j}=0\right\}$ and $\mathcal{P}_{j}^{1}=\mathcal{P} \cap\left\{x \in \mathbb{R}^{n} \mid x_{j}=1\right\}$ for some $j \in\{1, \ldots, n\}$.
- Applying Proposition 3, we see that the inequality $\left(\pi, \pi_{0}\right)$ is valid for $\mathcal{P}_{j}=\operatorname{conv}\left(\mathcal{P}_{j}^{0} \cup \mathcal{P}_{j}^{1}\right)$ if there exists $u^{i} \in \mathbb{R}_{+}^{m}, v^{i} \in \mathbb{R}_{+}^{n}$, and $w^{i} \in \mathbb{R}_{+}$for $i=0,1$ such that

$$
\begin{aligned}
\pi & \leq u^{0} A+v^{0}+w^{0} e_{j} \\
\pi & \leq u^{1} A+v^{1}-w^{1} e_{j} \\
\pi^{0} & \geq u^{0} b \\
\pi^{0} & \geq u^{1} b-w_{1}
\end{aligned}
$$

- Notice that this is a set of linear constraints, i.e., we could write a linear program to generate constraints based on this disjunction.

The Cut Generating LP

- This leads to the cut generating LP (CGLP), which generates the most violated inequality valid for \mathcal{P}_{j}.

$$
\min \quad \pi \hat{x}-\pi^{0}
$$

subject to

$$
\begin{aligned}
\pi & \leq u A+u^{0} e_{j}, \\
\pi & \leq v A-v^{0} e_{j}, \\
\pi^{0} & \geq u b \\
\pi^{0} & \geq v b-v_{0} \\
\sum_{i=1}^{m} u_{i}+u_{0}+\sum_{i=1}^{m} v_{i}+v_{0} & =1 \\
u, u_{0}, v, v_{0} & \geq 0
\end{aligned}
$$

- The last constraint is just for normalization.
- This shows that the separation problem for \mathcal{P}_{j} is polynomially solvable.

Gomory Cuts vs. Lift-and-Project Cuts

- Note that all Gomory cuts are lift-and-project cuts.
- In fact, there is a direct correspondence between basic feasible solutions of the CGLP and basic (possibly infeasible) solutions of the usual LP relaxation.
- By pivoting in the LP relaxation, we can implicitly solve the cut generating LP (see Balas and Perregaard).
- Thus, the procedure for generating lift-and-project cuts is almost exactly the same as that for generating Gomory cuts.

Another Derivation

- Consider the following procedure:

1: Select $j \in\{1, \ldots, n\}$.
2: Generate the nonlinear system $x_{j}(A x-b) \geq 0,\left(1-x_{j}\right)(A x-b) \geq 0$.
3: Linearize the system by substituting y_{i} for $x_{i} x_{j}, i \neq j$, and x_{j} for x_{j}^{2}. Call this polyhedron M_{j}.
4: Project M_{j} onto the x-space.

- In this case, the resulting polyhedron is again \mathcal{P}_{j}.
- This procedure can be strengthened in a number of different ways.

The Lift-and-Project Closure

- The lift-and-project closure is

$$
\mathcal{P}^{1}=\cap_{j=1}^{n} \mathcal{P}_{j}
$$

- We have just shown that optimization over the lift-and-project closure can be accomplished in polynomial time.
- Let \mathcal{P}^{k} be the lift-and-project closure of \mathcal{P}^{k-1} for $k>1$.
- The lift-and-project rank of \mathcal{P} is the smallest number k such that $\mathcal{P}^{k}=\operatorname{conv}(S)$.
- Surprisingly, the lift-and-project rank is bounded by n.
- Note that these results apply only to binary and mixed binary integer programs.

Split Inequalities

- Let $\pi \in \mathbb{Z}_{+}^{n}$ and $\pi_{0} \in \mathbb{Z}$ be given and define

$$
\begin{aligned}
\mathcal{P}^{1} & =\mathcal{P} \cap\left\{x \in \mathbb{R}^{n} \mid \pi x \leq \pi_{0}\right\} \\
\mathcal{P}^{2} & =\mathcal{P} \cap\left\{x \in \mathbb{R}^{n} \mid \pi x \geq \pi_{0}+1\right\}
\end{aligned}
$$

- Any inequality valid for $\operatorname{conv}\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ is valid for S and is called a split cut.
- The split closure is the set of points satisfying all possible split cuts and is a polyhedron.
- In fact, the split closure and the GMI closure discussed earlier are identical.
- We can define the split rank of an inequality and of a polyhedron as before.
- In the pure integer case, the split rank (and GMI rank) of \mathcal{P} is finite, but it may not be in the mixed case.
- In the mixed binary case, the split rank is bounded by n.

Valid Inequalities for Mixed-Integer Sets

- So far, we have been dealing almost exclusively with polyhedra in which all variables have to be integer.
- We want to develop a procedure analogous to C-G for mixed-integer sets.

Proposition 4. Let $T=\left\{x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p} \mid \sum_{j=1}^{p} a_{j} x_{j}+\right.$ $\left.\sum_{j=p+1}^{n} g_{j} y_{j} \leq b\right\}$, where $a_{j} \in \mathbb{Q}$ for $0 \leq j \leq p, g_{j} \in \mathbb{Q}$ for $p+1 \leq j \leq n$, and $b \in \mathbb{Q}$. Then the inequality

$$
\sum_{j=1}^{p}\left\lfloor a_{j}\right\rfloor x_{j}+\frac{1}{1-f_{0}} \sum_{j: g_{j}<0} g_{j} y_{j} \leq\lfloor b\rfloor
$$

- In fact, if $a_{j} \in \mathbb{Z}, \operatorname{gcd}\left\{a_{1}, \ldots, a_{n}\right\}=1$, and $b \notin \mathbb{Z}$, then the above inequality is facet-inducing for T.

Mixed-Integer Rounding Procedure

- Now consider the general mixed-integer set

$$
T=\left\{x \in \mathbb{Z}_{+}^{n}, y \in \mathbb{R}_{+}^{p} \mid A x+G y \leq b\right\}
$$

- Given two valid inequalities

$$
\sum_{j \in N} \pi_{j}^{i} x_{j}+\sum_{j \in J} \mu_{j}^{i} y_{j} \leq \pi_{0}^{i} \text { for } i=1,2,
$$

we can construct a third inequality

$$
\sum_{j \in N}\left\lfloor\pi_{j}^{2}-\pi_{j}^{1}\right\rfloor x_{j}+\frac{1}{1-f_{0}}\left(\sum_{j \in N} \pi_{j}^{1} x_{j}+\sum_{j \in J} \min \left(\mu_{j}^{1}, \mu_{j}^{2}\right) y_{j}-\pi_{0}^{1}\right) \leq\left\lfloor\pi_{0}^{2}-\pi_{0}^{1}\right\rfloor,
$$

where $\pi_{0}^{2}-\pi_{0}^{1}=\left\lfloor\pi_{0}^{2}-\pi_{0}^{1}\right\rfloor+f_{0}$.

