L-shaped Decomposition of 2-stage SPs with Integer Recourse

Cor@l Seminar Series

Scott DeNegre
21 September 2006

References

- Caroe, C.C. and J. Tind, L-shaped decompostion of two-stage stochastic programs with integer recourse. Mathematical Programming, 83, 451464, 1998.
- Gomory, R.E., An algorithm for integer solutions to linear programs. In R.L. Graves and P.Wolfe, editors, Recent Advances in Mathematical Programming, 269-302. McGraw-Hill, New York, 1963.
- Nemhauser G.L. and L.A. Wolsey, Integer and Combinatorial Optimization. John Wiley \& Sons, Inc., New York, 1999.
- Wolsey, L.A., Integer programming duality: Price functions and sensitivity analysis. Mathematical Programming, 20, 173-195, 1981.

Outline

- Problem Introduction
- Generalized duality
- Generalize L-shaped decomposition
- Dual function generation algorithms
- Future work

2-stage Stochastic Programs with Integer Recourse

Consider the following stochastic problem

$$
\begin{equation*}
\min _{x \in X} c x+\mathbb{E}_{\xi} \min \left\{q y \mid T(\xi) x+W y \geq h(\xi), y \in \mathbb{Z}_{+}^{n_{2}}\right\} \tag{1}
\end{equation*}
$$

where ξ is a random variable having support $\Xi \subset \mathbb{R}^{k}$ and

$$
X=\left\{x \in \mathbb{R}_{+}^{n_{1}} \mid A x \geq b\right\}
$$

Comment 1. The part of the objective function and the constraints only related to the first stage decision variable x form a LP. This is only for simplicity.

Deterministic Equivalent

We make the following assumption

- The random variable ξ has a discrete distribution with finite support, say $\Xi=\left\{\xi^{1}, \ldots, \xi^{r}\right\}$ and $P\left(\xi=\xi^{j}\right)=p^{j}$.

Under this assumption, (1) is equivalent to

$$
\begin{array}{ll}
\min & c x+\sum_{j=1}^{r} p^{j} q y^{j} \\
\text { s.t. } & A x \geq b \tag{2}\\
& T(\xi) x+W y \geq h(\xi), \quad j=1, \ldots, r \\
& x \in \mathbb{R}_{+}^{n_{1}}, y \in \mathbb{Z}_{+}^{n_{2}}
\end{array}
$$

where the constraints have a dual blockangular structure or L-shaped form.
Comment 2. (2) has $n_{1}+r n_{2}$ variables.

Reformulation

Rewriting the problem in terms of only first stage variables yields:

$$
\begin{equation*}
\min \{c x+\mathcal{Q}(x) \mid x \in X\} \tag{3}
\end{equation*}
$$

where

$$
\mathcal{Q}(x):=\mathbb{E}_{\xi} \Phi(h(\xi)-T(\xi) x)=\sum_{j=1}^{r} p^{j} \Phi(h(\xi)-T(\xi) x)
$$

and Φ is the value function of the second stage problem

$$
\begin{equation*}
\Phi(d)=\min \left\{q y \mid W y \geq d, y \in \mathbb{Z}_{+}^{n_{2}}\right\}, d \in \mathbb{R}^{m_{2}} \tag{4}
\end{equation*}
$$

Comment 3. $\mathcal{Q}(x)$ is nonconvex and discontinuous.

Definition Review

- A function F is said to be nondecreasing if

$$
F(a) \leq F(b) \quad \forall a, b \in \mathbb{R}^{m}, a \leq b
$$

- A function F is said to be superadditive if

$$
F(a)+F(b) \leq F(a+b), \quad \forall a, b \in \mathbb{R}^{m}
$$

- The round-up $\lceil F\rceil$ is defined by $\lceil F\rceil(d)=\lceil F(d)\rceil$, where $\lceil F(d)\rceil$ is smallest integer larger than $F(d)$.

Generalized Dual

- Recall the second stage problem

$$
\Phi(d)=\min \left\{q y \mid W y \geq d, y \in \mathbb{Z}_{+}^{n_{2}}\right\}, d \in \mathbb{R}^{m_{2}}
$$

- Let $\overline{\mathcal{F}}$ be the set of all functions $F: \mathbb{R}^{m_{2}} \rightarrow \overline{\mathbb{R}}$ that satisfy $F(0)=0$ and are nondecreasing.
- Then, we can define the dual of the problem as

$$
\begin{array}{cl}
\max _{F} & F(d) \\
\text { s.t. } & F(W y) \leq q y, \quad \forall y \in \mathbb{Z}_{+}^{n_{2}} \\
& F \in \mathcal{F} \tag{6}
\end{array}
$$

where \mathcal{F} is a subset of $\overline{\mathcal{F}}$.

IP Duality and Farkas' Lemma

Theorem 1. [Weak Duality] $q y \leq F(d)$ for all feasible solutions y of (4) and all dual feasible functions F of (5).

Theorem 2. If the function class \mathcal{F} is suitably large then (4) is infeasible if and only if $\exists \hat{G} \in \mathcal{F}$ with $\hat{G}(W y) \leq 0$ for all $y \in \mathbb{Z}_{+}^{n_{2}}$ and $\hat{G}(d)>0$. The function \hat{G} is then called a dual ray. If (4) is feasible, then \hat{y} is optimal in (4) if and only if $\exists \hat{F} \in \mathcal{F}$ feasible in (5) such that $q \hat{y}=\hat{F}(d)$.

- This result is analogous to the Strong Duality Theorem and Farkas' Lemma for linear programming.

Generalized L-shaped Decomposition

- We rewrite (3) as

$$
\begin{equation*}
\min \{c x+\theta \mid \theta \geq \mathcal{Q}(x), x \in X\} \tag{7}
\end{equation*}
$$

and represent the constraint $\theta \geq \mathcal{Q}(x)$ by means of dual price functions.

- For each outcome $\xi^{j} \in \Xi$, we have a second stage problem

$$
\begin{equation*}
\min \left\{q y \mid W y \geq h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x, y \in \mathbb{Z}_{+}^{n_{2}}\right\} \tag{8}
\end{equation*}
$$

and associated dual

$$
\begin{equation*}
\max _{F}\left\{F\left(h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x\right) \mid F(W y) \leq q y, \quad \forall y \in \mathbb{Z}_{+}^{n_{2}}, F \in \mathcal{F}\right\} \tag{9}
\end{equation*}
$$

Feasiblity and Optimality Cuts

- We generate feasibility cuts of the form

$$
\hat{G}\left(h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x\right) \leq 0
$$

where \hat{G} is the optimal dual solution of the Phase I problem:

$$
\min \left\{e t \mid W y+I t \geq h\left(\xi^{j}\right)-T(\xi) x^{*}\right\}
$$

- By solving (9) with $x=x^{*}$ for each $\xi^{j} \in \Xi$, we generate optimality cuts of the form

$$
\theta \geq \sum_{j=1}^{r} p^{j} \hat{F}^{j}\left(h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x\right)
$$

where $\hat{F}^{j}, j=1, \ldots, r$ are optimal solutions of (9).

Relaxed Master Problem

At each iteration, we solve the current problem:

$$
\begin{array}{ll}
\min & c x+\theta \\
\mathrm{s.t} & 0 \geq \hat{G}_{k_{j}}\left(h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x\right), \quad k_{j}=1, \ldots, s(j), j=1, \ldots, r \\
& \theta \geq \sum_{j=1}^{r} p^{j} \hat{F}^{j}\left(h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x\right) \quad k=1, \ldots, t \tag{10}\\
& x \in X
\end{array}
$$

We denote solutions to 10 by $\left(x^{n}, \theta^{n}\right)$. The algorithm terminates when $c x^{n}+\theta^{n}=\bar{z}^{n}$, or (10) is infeasible.

Comment 4. (10) has $n_{1}+1$ variables, but a lot of constraints.

Cutting Plane Algorithm

Let \mathcal{F} be the set of nondecreasing superadditive functions such that $F(0)=$ 0 . Then, (9) is equivalent to

$$
\begin{align*}
\max & F\left(h\left(\xi^{j}\right)-T\left(\xi^{j}\right) x\right) \\
\text { s.t. } & F\left(w_{j}\right) \leq q_{j}, \quad j=1, \ldots, n_{2} \tag{11}\\
& F \in \mathcal{F}
\end{align*}
$$

In a cutting plane procedure

- Valid inequalities are successively generated and added to the constraint set
- LP relaxation are solved
- Process is repeated until current LP-solution is integral
- Cuts are of the form

$$
\sum_{j=1}^{n_{2}} F^{(l)}\left(w_{j}\right) y_{j} \geq F^{(l)}(q), l=1, \ldots, \tau
$$

Cutting Plane Algorithm (2)

At termination, we have the function

$$
F(d):=\sum_{i=1}^{m_{2}} u_{i} d_{i}+\sum_{i=1}^{\tau} u_{m_{2}+i} F^{(i)}(d)
$$

that is a feasible and optimal solution of (11), where dual variables

$$
\left(u_{1}, \ldots, u_{m_{2}}, u_{m_{2}+1}, \ldots, u_{m_{2}+r}\right)
$$

are obtained from the LP-solution.

Branch and Bound

Alternatively, we can solve the second stage problems using a branch-and-bound algorithm. In this case, we generate price functions of the form

$$
F(d):=\min _{i=1, \ldots, P}\left\{u^{i} d+b^{i}\right\}, u^{i}=\left(u_{1}^{i}, \ldots, u_{m_{2}}^{i}\right) \geq 0
$$

for some finite $P \in \mathbb{N}$.
We generate these functions by solving the dual of

$$
\min \left\{q y \mid W y \geq d, k^{i} \leq y \leq l^{i}\right\}
$$

for terminal node i and RHS d, given by

$$
\max \left\{u d+\underline{u} k^{i}-\bar{u} l^{i} \mid u W+\underline{u}-\bar{u} \leq q, u, \underline{u}, \bar{u} \geq 0\right\}
$$

and letting $f_{i}(d)=u^{i} d+\underline{u}^{i} k^{i}-\bar{u}^{i} l^{i}=u^{i} d+b^{i}$.

Stay Tuned...

- Apply a similar idea to the MIP Interdiction Problem (MIPINT):

$$
\begin{array}{ll}
\min _{x \in X} & c x+d y+\max _{y} h y \\
\text { subject to } & E y \leq g \tag{12}\\
& y \leq u(1-x) \\
& y \in Y_{I N T}
\end{array}
$$

where $X=\left\{x: A x \geq b, x \in \mathbb{B}^{n}\right\}$ and $Y_{I N T} \subseteq \mathbb{R}_{+}^{n}$ defines some integrality conditions on the lower-level variables.

- Using inner approximation, rather than outer approximation for lowerlevel problem
- Maybe a Dantzig-Wolfe-like scheme

