L-shaped Decomposition of 2-stage SPs with Integer Recourse

Cor@I Seminar Series

Scott DeNegre

21 September 2006

References

- Caroe, C.C. and J. Tind, L-shaped decomposition of two-stage stochastic programs with integer recourse. *Mathematical Programming*, 83, 451-464, 1998.
- Gomory, R.E., An algorithm for integer solutions to linear programs. In R.L. Graves and P.Wolfe, editors, *Recent Advances in Mathematical Programming*, 269-302. McGraw-Hill, New York, 1963.
- Nemhauser G.L. and L.A. Wolsey, *Integer and Combinatorial Optimization*. John Wiley & Sons, Inc., New York, 1999.
- Wolsey, L.A., Integer programming duality: Price functions and sensitivity analysis. *Mathematical Programming*, 20, 173-195, 1981.

Outline

- Problem Introduction
- Generalized duality
- Generalize L-shaped decomposition
- Dual function generation algorithms
- Future work

2-stage Stochastic Programs with Integer Recourse

Consider the following stochastic problem

$$\min_{x \in X} cx + \mathbb{E}_{\xi} \min\left\{qy|T(\xi)x + Wy \ge h(\xi), y \in \mathbb{Z}_+^{n_2}\right\}$$
(1)

where ξ is a random variable having support $\Xi \subset \mathbb{R}^k$ and

$$X = \{ x \in \mathbb{R}^{n_1} | Ax \ge b \}.$$

Comment 1. The part of the objective function and the constraints only related to the first stage decision variable x form a LP. This is only for simplicity.

Deterministic Equivalent

We make the following assumption

• The random variable ξ has a discrete distribution with finite support, say $\Xi = \{\xi^1, \dots, \xi^r\}$ and $P(\xi = \xi^j) = p^j$.

Under this assumption, (1) is equivalent to

min
$$cx + \sum_{j=1}^{r} p^{j} qy^{j}$$

s.t. $Ax \ge b$
 $T(\xi)x + Wy \ge h(\xi), \quad j = 1, \dots, r$
 $x \in \mathbb{R}^{n_{1}}_{+}, y \in \mathbb{Z}^{n_{2}}_{+}$ (2)

where the constraints have a dual blockangular structure or L-shaped form.

Comment 2. (2) has $n_1 + rn_2$ variables.

Reformulation

Rewriting the problem in terms of only first stage variables yields:

$$\min\{cx + \mathcal{Q}(x) | x \in X\}$$
(3)

where

$$\mathcal{Q}(x) := \mathbb{E}_{\xi} \Phi(h(\xi) - T(\xi)x) = \sum_{j=1}^{r} p^j \Phi(h(\xi) - T(\xi)x)$$

and Φ is the *value function* of the second stage problem

$$\Phi(d) = \min\{qy | Wy \ge d, y \in \mathbb{Z}_{+}^{n_2}\}, d \in \mathbb{R}^{m_2}.$$
(4)

Comment 3. Q(x) is nonconvex and discontinuous.

Definition Review

• A function F is said to be *nondecreasing* if

$$F(a) \le F(b) \quad \forall a, b \in \mathbb{R}^m, a \le b$$

• A function F is said to be *superadditive* if

$$F(a) + F(b) \le F(a+b), \quad \forall a, b \in \mathbb{R}^m$$

• The round-up $\lceil F \rceil$ is defined by $\lceil F \rceil(d) = \lceil F(d) \rceil$, where $\lceil F(d) \rceil$ is smallest integer larger than F(d).

Generalized Dual

• Recall the second stage problem

$$\Phi(d) = \min\{qy | Wy \ge d, y \in \mathbb{Z}_+^{n_2}\}, d \in \mathbb{R}^{m_2}.$$

- Let $\overline{\mathcal{F}}$ be the set of all functions $F : \mathbb{R}^{m_2} \to \overline{\mathbb{R}}$ that satisfy F(0) = 0 and are nondecreasing.
- Then, we can define the dual of the problem as

$$\begin{array}{ll}
\max_{F} & F(d) \\
\text{s.t.} & F(Wy) \leq qy, \quad \forall y \in \mathbb{Z}_{+}^{n_{2}} \\
& F \in \mathcal{F}
\end{array} \tag{5}$$

where \mathcal{F} is a subset of $\overline{\mathcal{F}}$.

7

IP Duality and Farkas' Lemma

Theorem 1. [Weak Duality] $qy \le F(d)$ for all feasible solutions y of (4) and all dual feasible functions F of (5).

Theorem 2. If the function class \mathcal{F} is suitably large then (4) is infeasible if and only if $\exists \hat{G} \in \mathcal{F}$ with $\hat{G}(Wy) \leq 0$ for all $y \in \mathbb{Z}_{+}^{n_2}$ and $\hat{G}(d) > 0$. The function \hat{G} is then called a dual ray. If (4) is feasible, then \hat{y} is optimal in (4) if and only if $\exists \hat{F} \in \mathcal{F}$ feasible in (5) such that $q\hat{y} = \hat{F}(d)$.

• This result is analogous to the Strong Duality Theorem and Farkas' Lemma for linear programming.

Generalized L-shaped Decomposition

• We rewrite (3) as

$$\min\{cx + \theta | \theta \ge \mathcal{Q}(x), x \in X\}$$
(7)

and represent the constraint $\theta \geq \mathcal{Q}(x)$ by means of dual price functions.

• For each outcome $\xi^j\in \Xi$, we have a second stage problem

$$\min\{qy|Wy \ge h(\xi^{j}) - T(\xi^{j})x, y \in \mathbb{Z}_{+}^{n_{2}}\}$$
(8)

and associated dual

$$\max_{F} \{ F(h(\xi^j) - T(\xi^j)x) | F(Wy) \le qy, \quad \forall y \in \mathbb{Z}_+^{n_2}, F \in \mathcal{F} \}.$$
(9)

Feasiblity and Optimality Cuts

• We generate feasibility cuts of the form

$$\hat{G}(h(\xi^j) - T(\xi^j)x) \le 0$$

where \hat{G} is the optimal dual solution of the Phase I problem:

$$\min\{et|Wy + It \ge h(\xi^j) - T(\xi)x^*\}$$

 By solving (9) with x = x^{*} for each ξ^j ∈ Ξ, we generate optimality cuts of the form

$$\theta \ge \sum_{j=1}^{r} p^j \hat{F}^j (h(\xi^j) - T(\xi^j)x)$$

where $\hat{F}^{j}, j = 1, ..., r$ are optimal solutions of (9).

Relaxed Master Problem

At each iteration, we solve the *current problem*:

$$\min \quad cx + \theta \\ \text{s.t} \quad 0 \ge \hat{G}_{k_j}(h(\xi^j) - T(\xi^j)x), \quad k_j = 1, \dots, s(j), j = 1, \dots, r \\ \theta \ge \sum_{j=1}^r p^j \hat{F}^j(h(\xi^j) - T(\xi^j)x) \quad k = 1, \dots, t \\ x \in X$$
 (10)

We denote solutions to 10 by (x^n, θ^n) . The algorithm terminates when $cx^n + \theta^n = \overline{z}^n$, or (10) is infeasible.

Comment 4. (10) has $n_1 + 1$ variables, but a lot of constraints.

Cutting Plane Algorithm

Let \mathcal{F} be the set of nondecreasing superadditive functions such that F(0) = 0. Then, (9) is equivalent to

$$\max \qquad F(h(\xi^{j}) - T(\xi^{j})x) \\ \text{s.t.} \qquad F(w_{j}) \le q_{j}, \quad j = 1, \dots, n_{2} \\ F \in \mathcal{F}$$
 (11)

In a cutting plane procedure

- Valid inequalities are successively generated and added to the constraint set
- LP relaxation are solved
- Process is repeated until current LP-solution is integral
- Cuts are of the form

$$\sum_{j=1}^{n_2} F^{(l)}(w_j) y_j \ge F^{(l)}(q), \ l = 1, \dots, \tau$$

Cutting Plane Algorithm (2)

At termination, we have the function

$$F(d) := \sum_{i=1}^{m_2} u_i d_i + \sum_{i=1}^{\tau} u_{m_2+i} F^{(i)}(d)$$

that is a feasible and optimal solution of (11), where dual variables

$$(u_1, \ldots, u_{m_2}, u_{m_2+1}, \ldots, u_{m_2+r})$$

are obtained from the LP-solution.

Branch and Bound

Alternatively, we can solve the second stage problems using a branchand-bound algorithm. In this case, we generate price functions of the form

$$F(d) := \min_{i=1,\dots,P} \{ u^i d + b^i \}, \ u^i = (u_1^i, \dots, u_{m_2}^i) \ge 0$$

for some finite $P \in \mathbb{N}$.

We generate these functions by solving the dual of

$$\min\{qy \mid Wy \ge d, k^i \le y \le l^i\},\$$

for terminal node i and RHS d, given by

$$\max\{ud + \underline{u}k^{i} - \overline{u}l^{i} \mid uW + \underline{u} - \overline{u} \leq q, u, \underline{u}, \overline{u} \geq 0\}$$

and letting $f_i(d) = u^i d + \underline{u}^i k^i - \overline{u}^i l^i = u^i d + b^i$.

Stay Tuned...

• Apply a similar idea to the MIP Interdiction Problem (MIPINT):

$$\min_{x \in X} cx + dy + \max_{y} hy$$
subject to
$$Ey \le g$$

$$y \le u(1 - x)$$

$$y \in Y_{INT}$$
(12)

where $X = \{x : Ax \ge b, x \in \mathbb{B}^n\}$ and $Y_{INT} \subseteq \mathbb{R}^n_+$ defines some integrality conditions on the lower-level variables.

- Using inner approximation, rather than outer approximation for lowerlevel problem
 - Maybe a Dantzig-Wolfe-like scheme