Solving Symmetric Integer Programs

Jim Ostrowski
ISE Department COR@L Lab
Lehigh University
jao204@lehigh.edu

COR@L
COMPUTATIONALOPTIMIZATIONY
RESEARCHATLEHIGH

Some Preliminaries

- For a set $S \subseteq I^{n}$, the orbit of S with respect to Γ is the set of all subsets of I^{n} to which S can be sent by permutations in Γ :

$$
\operatorname{orb}(S, \Gamma) \stackrel{\text { def }}{=}\left\{S^{\prime} \subseteq I^{n} \mid \exists \pi \in \Gamma \text { such that } S^{\prime}=\pi(S)\right\}
$$

- I care (mostly) about orbits of sets of cardinality one, corresponding to decision variables x_{j}
- By definition, if $\mathfrak{j} \in \operatorname{orb}(\{k\}, \Gamma)$, then $k \in \operatorname{orb}(\{j\}, \Gamma)$, i.e. the variable x_{j} and x_{k} share the same orbit. Therefore, the union of the orbits

$$
\mathcal{O}(\Gamma) \stackrel{\text { def }}{=} \bigcup_{\mathfrak{j}=1}^{n} \operatorname{orb}(\{\mathfrak{j}\}, \Gamma)
$$

forms a partition of $I^{n}=\{1,2, \ldots, n\}$, which we refer to as the orbits of Γ.

- The orbits encode which variables are "equivalent" with respegt $\boldsymbol{R} @ \boldsymbol{L}$ the symmetry Γ.

Constraint Orbital Branching-The Whole Idea

- Let $O \in \mathcal{C}(A)$ be an orbit of the symmetry group of A representing constraints, h any element in O .
- Surely we can branch on the disjunction

$$
c_{h} x=b \vee\left\{c_{j} x \geq b+1 \mid \forall j \in O\right\}
$$

Basic Idea

- So now I have subproblems with equalities in them...
- Use them!
- Create a relaxation to the subproblem by removing all variables not included in a chosen equality constraint and remove all constraints which include a removed variable.
- Find the collection of all non-isomorphic solutions to the relaxation.
- Use these solutions as partial solutions to the original subproblem, branch on these solutions.

Steiner Triple Systems

- Let X be a set of $v \geq 3$ elements.
- B is collection of 3 elements subsets of X s.t. every pair of elements of X is found in exactly one element of B.
- $S_{3}=\{\{1,2,3\}\}$
- $S_{7}=$
$\{\{1,2,4\},\{2,3,5\},\{3,4,6\},\{4,5,7\},\{5,6,1\},\{6,7,2\},\{7,1,3\}\}$
- A Steiner Triple System exists if $v=1,3 \bmod (6)$.

Growing Triple Systems

- Lets build S_{9} using $S_{3}=\{\{1,2,3\}\}$.

Growing Triple Systems

- Lets build S_{9} using $S_{3}=\{\{1,2,3\}\}$.
- First, start with $3 S_{3}$'s, $X_{1}=\{1,2,3\}, X_{2}=\{4,5,6\}, X_{3}=\{7,8,9\}$ and their corresponding triple $\{\{1,2,3\}\},\{\{4,5,6\}\},\{\{7,8,9\}\}$
- Link "like elements" with sets $\{1,4,7\},\{2,5,8\},\{3,6,9\}$ (i.e. form a set with all the first elements of each X , second elements, ...).
- Link remaining elements using solution to S_{3}. Using $\{\{1,2,3\}\}$, create sets by choosing the first element from set X_{i}, the second element from set $X_{j}(j \neq i)$, and the third element from set $X_{k}(k \neq i, j)$.

Growing Triple Systems

$$
\left.\begin{array}{cccccccccc}
1_{\mathrm{s}_{1}} & 2_{\mathrm{s}_{1}} & 3_{\mathrm{s}_{1}} & 1_{\mathrm{s}_{2}} & 2_{\mathrm{s}_{2}} & 3_{\mathrm{s}_{2}} & 1_{\mathrm{s}_{3}} & 2_{\mathrm{s}_{3}} & 3_{\mathrm{s}_{3}} \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

A Hard Integer Program

$$
\begin{gathered}
\min \sum_{i=1}^{7} x_{i} \\
\text { s.t. } x_{1}+x_{2}+x_{4} \geq 1 \\
x_{2}+x_{3}+x_{5} \geq 1 \\
x_{3}+x_{4}+x_{6} \geq 1 \\
x_{4}+x_{5}+x_{7} \geq 1 \\
x_{1}+x_{5}+x_{6} \geq 1 \\
x_{2}+x_{6}+x_{7} \geq 1 \\
x_{7}+x_{1}+x_{3} \geq 1 \\
x \in\{0,1\}^{n}
\end{gathered}
$$

A Hard Integer Program

- For sts7, for every triple $\{a, b, c\}$ in S_{7}, create a constraint

$$
x_{a}+x_{b}+x_{c} \geq 1
$$

- These problems are very difficult.
- The smallest unsolved instance has only 135 variables
- Why are these problems so difficult?
- These problems have a large degree of symmetry, but that is not all.
- The LP relaxation of sts135 is 45 , the smallest known feasible solution has value 103.
- A large gap between the relaxation and the optimal solution make integer programs very hard to solve.

Improving the Gap

- sts 135 was created by using 3 sts 45 problems (implying there is symmetry present in the problem)
- The optimal solution of sts 45 is 30 , so...

Improving the Gap

- sts 135 was created by using 3 sts 45 problems (implying there is symmetry present in the problem)
- The optimal solution of sts 45 is 30 , so...
- We kow that $\sum_{i=1}^{45} x_{i} \geq 30, \sum_{i=46}^{90} x_{i} \geq 30$, and $\sum_{i=91}^{135} x_{i} \geq 30$
- Adding these inequalities increases the LP relaxtion to 90 .
- Nice, but we can do better!

Exploiting Symmetry of Constriants

- Similar to variables, constraints can be symmetric.
- We can use orbital branching to "branch" on the constraints.

COMPUTATIONAL OPTLMIZATIONY
RESEARCHATLEHIGH

Exploiting Symmetry of Constriants

- Similar to variables, constraints can be symmetric.
- We can use orbital branching to "branch" on the constraints.
- So... Either $\sum_{i=1}^{45} x_{i}=30$ or $\sum_{i=1}^{45} x_{i} \geq 31, \sum_{i=46}^{90} x_{i} \geq 31$, and $\sum_{i=91}^{135} x_{i} \geq 31$
- So what good does this do?

But Wait, There is More!

- How many sts45's are in an sts135?
- The constraint $\sum_{i=1}^{45} x_{i} \geq 30$ is also equivalent to the constraints:

COMPUTATIONAL OPTIMILATIONY
RESEARCHATLEHIGH

$$
\begin{aligned}
& \sum_{i=1}^{15} x_{i}+\sum_{i=46}^{60} x_{i}+\sum_{i=91}^{105} x_{i} \geq 30 \\
& \sum_{i=1}^{15} x_{i}+\sum_{i=61}^{75} x_{i}+\sum_{i=121}^{135} x_{i} \geq 30 \\
& \sum_{i=1}^{15} x_{i}+\sum_{i=76}^{90} x_{i}+\sum_{i=106}^{120} x_{i} \geq 30 \\
& \sum_{i=16}^{30} x_{i}+\sum_{i=46}^{60} x_{i}+\sum_{i=121}^{135} x_{i} \geq 30 \\
& \sum_{i=16}^{30} x_{i}+\sum_{i=61}^{75} x_{i}+\sum_{i=106}^{120} x_{i} \geq 30 \\
& \sum_{i=16}^{30} x_{i}+\sum_{i=76}^{90} x_{i}+\sum_{i=91}^{105} x_{i} \geq 30
\end{aligned}
$$

Exploiting Symmetry of Constriants

- Using orbital branching we can generate all non-isomorphic solutions to sts45 with value 30
- (There is only 1 of them)
- The subproblem formed by setting $\sum_{i=1}^{45} x_{i}=30$ can solved by fixing the first 45 variables to correspond to the solution of sts 45 .
- Lather, rinse, repeat...
- Keep branching on constraints until we increase rhs to 34
- Why? With the rhs of 35 , the LP relaxation is 105 , so these problems cannot contain a solution of size 103 or better

How many subproblems are there

- There are...
- 2 solutions of sts 45 of value 30

COMPUTATIONALOPTIMIZATIONY
RESEARCHATLEHIGH

How many subproblems are there

- There are...
- 2 solutions of sts 45 of value 30
- 246 solutions of sts 45 of value 31

How many subproblems are there

- There are...
- 2 solutions of sts 45 of value 30
- 246 solutions of sts 45 of value 31
- 9497 solutions of sts 45 of value 32

COR@L

How many subproblems are there

- There are...
- 2 solutions of sts 45 of value 30
- 246 solutions of sts 45 of value 31
- 9497 solutions of sts 45 of value 32
- 61539 solutions of sts45 of value 33

COR@L

How many subproblems are there

- There are...
- 2 solutions of sts 45 of value 30
- 246 solutions of sts 45 of value 31
- 9497 solutions of sts 45 of value 32
- 61539 solutions of sts45 of value 33
- 122972 solutions of sts 45 of value 34
- ... CRAP! ...

COR@L

But are all of them non-isomorphic?

- NO! By checking for isomorphism we can remove...

COR@L

But are all of them non-isomorphic?

- NO! By checking for isomorphism we can remove...
- 13 of the solutions for sts45 of values $30-32 \ldots$
- Yippee, I saved 2 hours of computation time!!!

COR@L

But are all of them non-isomorphic?

- NO! By checking for isomorphism we can remove...
- 13 of the solutions for sts45 of values 30-32...
- Yippee, I saved 2 hours of computation time!!!
- I can do much, much better!

Exploiting Symmetry of Constriants

- Pros: Each subproblem will have 45 variables fixed and are much easier to solve.
- This can be done easily in parallel, different computers can solve different subproblems independently of each other.
- Cons: In order to solve sts135 we need to generate all non-isomorphic solutions to sts45 with values 30-34
- There can be a whole lot of these.
- Generating these may take awhile.

