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Overview

Multi-stage stochastic linear programs (MSLP) are difficult.

They are cast as large-scale optimization problems.
There is no viable software tools for solving large-scale MSLP instances.

Grid is a very powerful computational platform but needs to be used
wisely.

This research focus on implementing parallel nested decomposition
algorithm on a computational Grid.

We developed an MSLP solver MW-AND based on a
nested-decomposition (ND) algorithm,
We discuss the challenges and the approaches.
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Preliminaries Multi-stage Stochastic Linear Program

MSLP

We make decisions everyday

Under uncertainty;

Not all at the same time.
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Multi-stage Stochastic Programming

How to make a good decision (x1) now by taking into account all future
uncertainty?
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Preliminaries Multi-stage Stochastic Linear Program

Multi-stage Scenario Tree

ρ(n) n

S(n)

m
p̂nm

N : Set of nodes in the tree

ρ(n): Unique predecessor of node n in
the tree

S(n): Set of successor nodes of n

p̂nm: Conditional probability that the
random events leading from node n to
node m occurs

xn: Decision taken at node n

Qn(·): Recourse function at node n

Qn(xn) =
∑

m∈S(n)

p̂nmQm(xn):

Expected Recourse function at node n
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Preliminaries Multi-stage Stochastic Linear Program

Multi-stage Stochastic Linear Program
Recursive Model

min cT
1 x1 + Q1(x1)

s.t. W1x1 = h1,
x1 ≥ 0,

where
Qn(xn)

def
=

X
m∈S(n)

p̂nmQm(xn), ∀n ∈ N ,

and
Qn(xρ(n))

def
= min

xn≥0

n
cT

nxn +Qn(xn) | Wnxn = hn − Tnxρ(n)

o
,

∀n ∈ N \ {1}.

Bad news: Q1(·) is extremely difficult to evaluate;

Good news: Evaluation of Qn(·) can be broken down into smaller
function evaluation Qn(·).
Better news: Qn(·) is convex function. (So is Qn(·))
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Preliminaries Multi-stage Stochastic Linear Program

Evaluation of Qn(·)

xn

Qn(·)
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Preliminaries Multi-stage Stochastic Linear Program

Evaluation of Qn(·)

xn

Qn(·)

xk
n

Inexact evaluation: Qn(·) >Mk
n(·)
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Preliminaries Multi-stage Stochastic Linear Program

Evaluation of Qn(·)

xn

Qn(·)

Exact evaluation: Qn(·) = Mk
n(·)
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Preliminaries Nested Decomposition Algorithm

Nested Decomposition Algorithm

Policy

Feasibility Cuts

Optimality Cuts

Clustering

New Iteration

A lot of freedom when choosing the directions. (FFFB, FF, FB, etc.)

Natural to parallelize.

Synchronously
Asynchronously
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Preliminaries Grid Computing

Is Parallel Enough?

How large is the problem?

100 children at each node

6 stages
→ Last stage scenarios = 1010

How many computers do we need?

As many as possible. Even yours when you are at INFORMS.

Answer: Grid Computing
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Preliminaries Grid Computing

Grid Computing

Tools

Condor (http://www.cs.wisc.edu/condor)

User need not have an account or access to the machines
Machine owner specifies conditions under which jobs are allowed to run
Condor use matchmaking to schedule jobs among the pool
Jobs can be check-pointed and migrated

MW (http://www.cs.wisc.edu/condor/MW)

Master assigns tasks to the workers
Workers execute tasks and report results to the master
Workers need not to communicate with each other
Simple and Fault-Tolerant
A set of C++ abstract base classes
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Challenges and Approaches

We want

A solver for large-scale MSLP instances

1 Correctness

To ensure algorithm termination and convergence.

2 Flexibility

To easily allow testing different sequencing mechanisms.
To allow different aggregations and/or buffering of nodes and model
functions.

3 Efficiency

To allow acting in asynchronous manner.

MW-AND with CDF
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Challenges and Approaches CDF Framework

CDF Framework – Node Status

Iteration Counter kn

Child Counter φkn
n

Cut Counter ψkn
n

CDF Status: STn = (COLOR, DIRECTION, FLAG)

COLOR

Red: Node has finished computation.

Yellow: Node is ready for computation.

Green: Node is under process.

DIRECTION

→ Forward: Forward job is under process or information will
be passed from parent

← Backward: Backward job is under process or information
will be passed from children

FLAG
∗ Star: Exact evaluation (Mk

n(·) = Qn(xkn
n ))

∅ Null: Inexact evaluation (Mk
n(·) < Qn(xkn

n ))
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Challenges and Approaches CDF Framework

CDF Framework – Trigger Signals

Signal Destination Command

Start ρ(n) → n Start to evaluate Qρ(n)(·) under policy x
kρ(n)

ρ(n)

Update ρ(n) → n Update model Mρ(n)(·) given policy x
kρ(n)

ρ(n)

Restart n → ρ(n) find a new policy x
kρ(n)

ρ(n)

Done n → ρ(n) new model updated, but Mρ(n)(·) < Qρ(n)(·)
End n → ρ(n) new model updated, and Mρ(n)(·) = Qρ(n)(·)
Terminate n → Siblings Do not evaluate Qρ(n)(·) under policy x

kρ(n)

ρ(n)

Go n → Siblings Join the task and go to the Grid

Table: Type of Signals.
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Challenges and Approaches Asynchronicity

Challenge (Synchronicity is BAD in the Grid!)
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Challenges and Approaches Asynchronicity

Asynchronicity

Challenge: What is a proper level of asynchronicity?

Asynchronicity Level

High:

High utilization of the resources
Less accurate recourse function evaluation at each iteration
More iterations required

Low:

More accurate recourse function evaluation at each iteration
Lower overall parallel performance

Approach: Dynamic asynchronicity level

Stage-dependent (test the impact of asynchronicity level to different
stages)

Resource-dependent (enable more accurate evaluation when resources
are limited)

Jerry Shen (Lehigh University) Solving MSLP on the Grid INFORMS 2006 15 / 20
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Challenges and Approaches Asynchronicity

Asynchronicity is a must
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Challenges and Approaches Sequencing

Sequencing Mechanism
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Challenges and Approaches Sequencing

Sequencing Mechanism

Challenge: To ensure non-blocking behavior of the algorithm

Sequencing Method

Algorithm may be blocking even though the asynchronicity level is
set to high.

More flexibility is preferred.

Approach: Dynamic double layer sequencing protocol

First layer: main iteration, suggest FFFB

Second layer: fine tune, (whenever resource is available)
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Challenges and Approaches Cut Management

Data Management

Challenge: To handle the massive amounts of cuts that the algorithm
generated

Large amount of data – Cuts

Required memory to store the cuts may be huge

For example: 27,000 nodes in period T − 1, each node has 20 cuts,
xn ∈ <100, requires ≥ 400MB to store cuts.
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Large amount of data – Cuts

We can not store cuts on the workers as we do not have control over
workers, and do not know when the worker will be leaving;

Master memorizes all the cuts, and will be very busy handling these
cuts as the number increases.

We must do our best to compress or reduce the amount of data.

Approach: Cut Management

Cut Hashing: To quickly sort and locate identical cuts

Cut Sharing: To allow information sharing among nodes;

Cut Purging: To reduce the number of inactive or loose cuts;

Cut Aggregation: To generate aggregated cuts by clustering the
nodes.
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