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Overview

e Multi-stage stochastic linear programs (MSLP) are difficult.

o They are cast as large-scale optimization problems.
e There is no viable software tools for solving large-scale MSLP instances.

o Grid is a very powerful computational platform but needs to be used
wisely.

@ This research focus on implementing parallel nested decomposition
algorithm on a computational Grid.
o We developed an MSLP solver MW-AND based on a
nested-decomposition (ND) algorithm,
o We discuss the challenges and the approaches.
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@ Preliminaries
e Multi-stage Stochastic Linear Program
o Nested Decomposition Algorithm
e Grid Computing
@ Challenges and Approaches
o CDF Framework
e Asynchronicity
e Sequencing
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Preliminaries Multi-stage Stochastic Linear Program

MSLP
We make decisions everyday

@ Under uncertainty;

@ Not all at the same time.

Multi-stage Stochastic Programming

How to make a good decision (x1) now by taking into account all future
uncertainty?
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Preliminaries Multi-stage Stochastic Linear Program

Multi-stage Scenario Tree

@ MN: Set of nodes in the tree

@ p(n): Unique predecessor of node n in
the tree

@ S(n): Set of successor nodes of n

@ Ppnm: Conditional probability that the
random events leading from node n to
node m occurs
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Preliminaries Multi-stage Stochastic Linear Program

Multi-stage Scenario Tree

o MN: Set of nodes in the tree

@ p(n): Unique predecessor of node n in
the tree

@ S(n): Set of successor nodes of n

@ Ppnm: Conditional probability that the
random events leading from node n to
node m occurs

@ z,: Decision taken at node n

@ (Qn(-): Recourse function at node n

meS(n)
Q1) = D> DumQm(a1) Expected Recourse function at node n
meS(1)
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Multi-stage Stochastic Linear Program

Recursive Model

|

min  cix1 + Qi(z1)

st. Wizi = ha,
1 = 0
where
Qn(mn)déf Z ﬁanm(mn)v Vn eN,
mES(n)
and

def o
Q’n(xp(n)) = ZTQO {CZ:'Tn i Qn(xn) ‘ Wntrn = hn — Tnxp(n)} 5
Vn e N'\ {1}.
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Multi-stage Stochastic Linear Program

Recursive Model

|

min  cix1 + Qi(z1)
st. Wizi = hl,
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where (Implicit)

(9)% xn)d—ef Z DrmQm(zn), Yn €N,

meS(n)
and (Recursive)

def . T _p
Qul@ptny) 2 i {Ton + Qn(@n) | Wtn = hn = Tutpm }

Vn e N\ {1}.

@ Bad news: Q;(-) is extremely difficult to evaluate;

e Good news: Evaluation of Q,(-) can be broken down into smaller
function evaluation Q,(+).

@ Better news: @, (-) is convex function. (So is Q,(:))
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Evaluation of Q,(+)
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Evaluation of Q,(+)

A Inexact evaluation: Q,(-) > M¥%(")
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Evaluation of Q,(+)

A Exact evaluation: O, () = ME(")

Tn
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Nested Decomposition Algorithm
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Feasibility Cuts

Optimality Cuts
o Clustering

T

New lteration

@ A lot of freedom when choosing the directions. (FFFB, FF, FB, etc.)
o Natural to parallelize.

Jerry Shen (Lehigh University) Solving MSLP on the Grid INFORMS 2006 8 /20



Nested Decomposition Algorithm

Policy

Feasibility Cuts

Optimality Cuts
o Clustering

New lteration

@ A lot of freedom when choosing the directions. (FFFB, FF, FB, etc.)

o Natural to parallelize.
@ Synchronously

Jerry Shen (Lehigh University) Solving MSLP on the Grid INFORMS 2006 8 /20



Nested Decomposition Algorithm

Policy

Feasibility Cuts

Optimality Cuts
o Clustering

New lteration

@ A lot of freedom when choosing the directions. (FFFB, FF, FB, etc.)

o Natural to parallelize.

@ Synchronously
@ Asynchronously
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Grid Computing

e Condor (http://www.cs.wisc.edu/condor)
o User need not have an account or access to the machines
e Machine owner specifies conditions under which jobs are allowed to run
e Condor use matchmaking to schedule jobs among the pool
e Jobs can be check-pointed and migrated
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Grid Computing

e Condor (http://www.cs.wisc.edu/condor)
o User need not have an account or access to the machines
e Machine owner specifies conditions under which jobs are allowed to run
e Condor use matchmaking to schedule jobs among the pool
e Jobs can be check-pointed and migrated

o MW (http://www.cs.wisc.edu/condor/MW)

Master assigns tasks to the workers

Workers execute tasks and report results to the master
Workers need not to communicate with each other
Simple and Fault-Tolerant

A set of C++ abstract base classes
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A solver for large-scale MSLP instances
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We want

A solver for large-scale MSLP instances

@ Correctness
o To ensure algorithm termination and convergence.
@ Flexibility
e To easily allow testing different sequencing mechanisms.

o To allow different aggregations and/or buffering of nodes and model
functions.

© Efficiency

e To allow acting in asynchronous manner.
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We want

A solver for large-scale MSLP instances

@ Correctness
o To ensure algorithm termination and convergence.
@ Flexibility
e To easily allow testing different sequencing mechanisms.

o To allow different aggregations and/or buffering of nodes and model
functions.

© Efficiency

e To allow acting in asynchronous manner.

MW-AND with CDF
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CDF Framework — Node Status

@ lIteration Counter k,
o Child Counter ¢F»

o Cut Counter ¢f»
o CDF Status: ST, = (COLOR, DIRECTION, FLAG)

@ Red: Node has finished computation.
COLOR @ Yellow: Node is ready for computation.

@ Green: Node is under process.

@ — Forward: Forward job is under process or information will
be passed from parent

DIRECTION
@ — Backward: Backward job is under process or information
will be passed from children
: kn
FLAG @ * Star: Exact evaluation (ME(-) = Qn(z5™))

@  Null: Inexact evaluation (MK () < Q. (z5"))
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CDF Framework — Trigger Signals

Signal Destination Command

Start p(n) = n Start to evaluate Q,(,,)(+) under policy :CI;E’T(S)
Update p(n) —n Update model M ,(,,)(-) given policy x];fy(;)‘)
Restart n — p(n) find a new policy ;rp(’fl"))

Done n — p(n) new model updated, but M,,,)(*) < Qp y ()
End n — p(n) new model updated, and /\/l n)( ) = Qom)()
Terminate | n — Siblings | Do not evaluate Q,(,,)(-) under policy xﬁ(nr)”
Go n — Siblings Join the task and go to the Grid

Table: Type of Signals.
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Challenge (Synchronicity is BAD in the Grid!)

Asset5 (Asynchronicity level = 1,0, Target # processors = 80}
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Asynchronicity

Challenge: What is a proper level of asynchronicity?

Asynchronicity Level
e High:
e High utilization of the resources

o Less accurate recourse function evaluation at each iteration
e More iterations required

o Low:

e More accurate recourse function evaluation at each iteration
o Lower overall parallel performance

Jerry Shen (Lehigh University) Solving MSLP on the Grid INFORMS 2006



Asynchronicity

Challenge: What is a proper level of asynchronicity?

Asynchronicity Level
e High:
e High utilization of the resources

o Less accurate recourse function evaluation at each iteration
e More iterations required

o Low:

e More accurate recourse function evaluation at each iteration
o Lower overall parallel performance

Approach: Dynamic asynchronicity level
@ Stage-dependent (test the impact of asynchronicity level to different
stages)
@ Resource-dependent (enable more accurate evaluation when resources
are limited)
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Ell

Asynchronicity is a must
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Challenges and Approaches  Sequencing

Sequencing Mechanism
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Challenges and Approaches Sequencing

Sequencing Mechanism
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Challenges and Approaches  Sequencing

Sequencing Mechanism

Challenge: To ensure non-blocking behavior of the algorithm

Sequencing Method

@ Algorithm may be blocking even though the asynchronicity level is
set to high.

@ More flexibility is preferred.
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Challenges and Approaches  Sequencing

Sequencing Mechanism

Challenge: To ensure non-blocking behavior of the algorithm

Sequencing Method

@ Algorithm may be blocking even though the asynchronicity level is
set to high.

@ More flexibility is preferred.

Approach: Dynamic double layer sequencing protocol
o First layer: main iteration, suggest FFFB

@ Second layer: fine tune, (whenever resource is available)
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Challenges and Approaches Cut Management

Data Management

Challenge: To handle the massive amounts of cuts that the algorithm
generated
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Challenges and Approaches Cut Management

Data Management
Challenge: To handle the massive amounts of cuts that the algorithm

generated

Large amount of data — Cuts
@ Required memory to store the cuts may be huge
e For example: 27,000 nodes in period T'— 1, each node has 20 cuts,
Zn, € R, requires > 400MB to store cuts.

19 / 20
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Challenges and Approaches Cut Management

Data Management
Challenge: To handle the massive amounts of cuts that the algorithm

generated

Large amount of data — Cuts
@ We can not store cuts on the workers as we do not have control over
workers, and do not know when the worker will be leaving;
@ Master memorizes all the cuts, and will be very busy handling these
cuts as the number increases.
@ We must do our best to compress or reduce the amount of data. )
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Challenges and Approaches Cut Management

Data Management

Challenge: To handle the massive amounts of cuts that the algorithm
generated

Large amount of data — Cuts

@ We can not store cuts on the workers as we do not have control over
workers, and do not know when the worker will be leaving;

@ Master memorizes all the cuts, and will be very busy handling these
cuts as the number increases.

@ We must do our best to compress or reduce the amount of data.

Approach: Cut Management

@ Cut Hashing: To quickly sort and locate identical cuts
Cut Sharing: To allow information sharing among nodes;
Cut Purging: To reduce the number of inactive or loose cuts;
Cut Aggregation: To generate aggregated cuts by clustering the
nodes.
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