A Different Perspective on Perspective Cuts

Jeff Linderoth
Unemployed
linderot@cs.wisc.edu

Oktay Günlük

Mathematical Sciences Department IBM T.J. Watson Research Center
gunluk@us.ibm.com

MIP 2007
Centre de recherches mathématiques Université de Montréal

August 1, 2007

Indicator MINLPs

- We focus on (convex) MINLPs that are driven by 0-1 indicator variables $z_{\mathfrak{i}}, \mathfrak{i} \in \mathcal{I}$
- Each indicator variable i controls a collection of variables V_{i}
- If $z_{i}=0$, the components of x controlled by z_{i} must collapse to a point: $z_{i}=0 \Rightarrow x_{V_{i}}=\hat{x}_{V_{i}}$
- WLOG $\hat{X}_{V_{i}}=0$ from now on
- If $z_{i}=1$, the components of x controlled by z_{i} belong to a convex set $z_{i}=1 \Rightarrow x_{V_{i}} \in \Gamma_{i}$
- Γ_{i} is specified by (convex) nonlinear inequality constraints and bounds on the variables

$$
\Gamma_{i} \stackrel{\text { def }}{=}\left\{x_{V_{i}} \mid f_{k}\left(x_{V_{i}}\right) \leq 0 \forall k \in K_{i}, l \leq x_{V_{i}} \leq u\right\} .
$$

Indicator MINLPs

$$
\begin{array}{crl}
\min & c^{\top} x+d^{\top} z & \\
\text { s.t. } & g_{\mathfrak{m}}(x, z) \leq 0 \quad \forall \mathfrak{m} \in M \\
& z_{i} f_{k}\left(x_{V_{i}}\right) \leq 0 \quad \forall i \in \mathcal{I} \quad \forall k \in K_{i} \\
& \ell_{j} z_{i} \leq x_{j} \leq u_{j} z_{i} \quad \forall i \in \mathcal{I} \quad \forall j \in V_{i} \\
& x \in X \quad z \in Z \cap \mathbb{B}^{p},
\end{array}
$$

- X, Z polyhedral sets
- Typically, $g_{\mathfrak{m}}(x, z)=\bar{g}_{\mathfrak{m}}(x)+a_{m}^{\top} z$ is linear in z, or even $a_{m}=0$.

Indicator MINLPs

$$
\begin{aligned}
& \min \quad c^{\top} x+d^{\top} z \\
& \text { s.t. } \quad g_{\mathfrak{m}}(x, z) \leq 0 \quad \forall m \in M \\
& z_{i} f_{k}\left(x_{V_{i}}\right) \leq 0 \quad \forall i \in \mathcal{I} \quad \forall k \in K_{i} \\
& \ell_{j} z_{i} \leq x_{j} \leq u_{j} z_{i} \quad \forall i \in \mathcal{I} \forall j \in V_{i} \\
& x \in X \quad z \in Z \cap \mathbb{B}^{p} \text {, }
\end{aligned}
$$

- X, Z polyhedral sets
- Typically, $g_{\mathfrak{m}}(x, z)=\bar{g}_{\mathfrak{m}}(x)+a_{m}^{\top} z$ is linear in z, or even $a_{m}=0$.
- If $z \in Z \cap \mathbb{B}^{p}$ is fixed, then the problem is convex.

Indicators Everywhere

Process Flow Applications

$$
\text { - } z=0 \Rightarrow x_{1}=x_{2}=x_{3}=x_{4}=0
$$

- $z=1 \Rightarrow f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leq 0$

Indicators Everywhere

Process Flow Applications

$$
\text { - } z=0 \Rightarrow x_{1}=x_{2}=x_{3}=x_{4}=0
$$

- $z=1 \Rightarrow f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leq 0$

Separable Function Epigraphs

$$
\begin{gathered}
y_{i} \geq f_{i}\left(x_{i}\right) \forall i \in \mathcal{I} \\
\ell z_{i} \leq x_{i} \leq u z_{i} \forall i \in \mathcal{I}
\end{gathered}
$$

Indicators Everywhere

Process Flow Applications

$$
\text { - } z=0 \Rightarrow x_{1}=x_{2}=x_{3}=x_{4}=0
$$

- $z=1 \Rightarrow f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \leq 0$

Separable Function Epigraphs

$$
\begin{gathered}
y_{i} \geq f_{i}\left(x_{i}\right) \forall i \in \mathcal{I} \\
\ell z_{i} \leq x_{i} \leq u z_{i} \forall i \in \mathcal{I}
\end{gathered}
$$

- Note that here I am already lying
- $z=0$ does not imply $y=0$
- Nevertheless, results apply to epigraph-type indicator MINLP

A Very Simple Example

$$
R \stackrel{\text { def }}{=}\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\}
$$

A Very Simple Example

$$
R \stackrel{\text { def }}{=}\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\}
$$

- $z=0 \Rightarrow x=0, y \geq 0$
- $z=1 \Rightarrow x \leq u, y \geq x^{2}$

A Very Simple Example

$$
R \stackrel{\text { def }}{=}\left\{(x, y, z) \in \mathbb{R}^{2} \times \mathbb{B} \mid y \geq x^{2}, 0 \leq x \leq u z\right\}
$$

- $z=0 \Rightarrow x=0, y \geq 0$
- $z=1 \Rightarrow x \leq u, y \geq x^{2}$

Deep Insights

- $\operatorname{conv}(R) \equiv$ line connecting $(0,0,0)$ to $y=x^{2}$ in the $z=1$ plane

Characterization of Convex Hull

- Work out the algebra to get:

Deep Theorem \#1

$$
\operatorname{conv}(R)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y z \geq x^{2}, 0 \leq x \leq u z, 0 \leq z \leq 1, y \geq 0\right\}
$$

Characterization of Convex Hull

- Work out the algebra to get:

Deep Theorem \#1

$$
\operatorname{conv}(R)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y z \geq x^{2}, 0 \leq x \leq u z, 0 \leq z \leq 1, y \geq 0\right\}
$$

$$
x^{2} \leq y z, y, z \geq 0 \equiv
$$

Characterization of Convex Hull

- Work out the algebra to get:

Deep Theorem \#1

$$
\operatorname{conv}(R)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y z \geq x^{2}, 0 \leq x \leq u z, 0 \leq z \leq 1, y \geq 0\right\}
$$

$$
x^{2} \leq y z, y, z \geq 0 \equiv
$$

Second Order Cone Programming

- There are effective and robust algorithms for optimizing linear objectives over conv(R)

Higher Dimensions

- Using an extended formulation, we can describe the convex hull of a higher-dimensional analogue of R :

$$
Q \stackrel{\text { def }}{=}\left\{(w, x, z) \in \mathbb{R}^{1+n} \times \mathbb{B}^{n} \mid w \geq \sum_{i=1}^{n} q_{i} x_{i}^{2}, u_{i} z_{i} \geq x_{i} \geq 0, \forall i\right\}
$$

Higher Dimensions

- Using an extended formulation, we can describe the convex hull of a higher-dimensional analogue of R :

$$
\mathrm{Q} \stackrel{\text { def }}{=}\left\{(w, x, z) \in \mathbb{R}^{1+n} \times \mathbb{B}^{n} \mid w \geq \sum_{i=1}^{n} q_{i} x_{i}^{2}, u_{i} z_{i} \geq x_{i} \geq 0, \forall i\right\}
$$

- First we write an extended formulation of Q , introducing variables y_{i} :

$$
\begin{aligned}
\bar{Q} \stackrel{\text { def }}{=}\left\{(w, x, y, z) \in \mathbb{R}^{1+3 n} \mid w \geq \sum_{i} q_{i} y_{i},\left(x_{i}, y_{i}, z_{i}\right) \in R_{i}, \forall i\right\} \\
R_{i} \stackrel{\text { def }}{=}\left\{\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{2} \times \mathbb{B} \mid y_{i} \geq x_{i}^{2}, 0 \leq x_{i} \leq u_{i} z_{i}\right\}
\end{aligned}
$$

Extended Formulations

- $\overline{\mathrm{Q}}$ is indeed an extended formulation in the sense that projecting out the y variables from \bar{Q} gives $\mathrm{Q}: \operatorname{Proj}_{(w, x, z)} \overline{\mathrm{Q}}=\mathrm{Q}$.

Extended Formulations

- $\overline{\mathrm{Q}}$ is indeed an extended formulation in the sense that projecting out the y variables from \bar{Q} gives $\mathrm{Q}: \operatorname{Proj}_{(w, x, z)} \overline{\mathrm{Q}}=\mathrm{Q}$.
- The convex hull of \bar{Q} is obtained by replacing R_{i} with its convex hull description $\operatorname{conv}\left(R_{i}\right)$:

$$
\begin{aligned}
& \operatorname{conv}(\overline{\mathrm{Q}})=\{w \in \mathbb{R}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}: w \\
&\left.\left(x_{i}, y_{i}, z_{i}\right) \in \operatorname{conv}\left(R_{i}\right), \quad i=1,2, \ldots, n\right\}
\end{aligned}
$$

Extended Formulations

- $\overline{\mathrm{Q}}$ is indeed an extended formulation in the sense that projecting out the y variables from \bar{Q} gives $\mathrm{Q}: \operatorname{Proj}_{(w, x, z)} \overline{\mathrm{Q}}=\mathrm{Q}$.
- The convex hull of \bar{Q} is obtained by replacing R_{i} with its convex hull description $\operatorname{conv}\left(R_{i}\right)$:

$$
\begin{aligned}
& \operatorname{conv}(\bar{Q})=\{w \in \mathbb{R}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}, z \in \mathbb{R}^{n}: w \geq \sum_{i} q_{i} y_{i} \\
&\left.\left(x_{i}, y_{i}, z_{i}\right) \in \operatorname{conv}\left(R_{i}\right), \quad i=1,2, \ldots, n\right\} .
\end{aligned}
$$

- Again, the description of $\operatorname{conv}(\overline{\mathrm{Q}})$ is SOC-representable.
- You get one rotated cone for each i

Descriptions in the Original Space

- We can also write also write a convex hull description in the original space of variables, by projecting out y :

$$
\begin{align*}
\mathrm{Q}^{c}= & \left\{(w, x, z) \in \mathbb{R}^{1+n+n}:\right. \\
w \prod_{i \in S} z_{i} \geq & \sum_{i \in S}\left(q_{i} x_{i}^{2} \prod_{l \in S \backslash\{i\}} z_{l}\right) \quad S \subseteq\{1,2, \ldots, n\} \\
& \left.u_{i} z_{i} \geq x_{i} \geq 0, \quad x_{i} \geq 0, \quad i=1,2, \ldots, n\right\}
\end{align*}
$$

Descriptions in the Original Space

- We can also write also write a convex hull description in the original space of variables, by projecting out y :

$$
\begin{align*}
\mathrm{Q}^{c}= & \left\{(w, x, z) \in \mathbb{R}^{1+n+n}:\right. \\
w \prod_{i \in S} z_{i} \geq & \sum_{i \in S}\left(q_{i} x_{i}^{2} \prod_{l \in S \backslash\{i\}} z_{l}\right) \quad S \subseteq\{1,2, \ldots, n\} \\
& \left.u_{i} z_{i} \geq x_{i} \geq 0, \quad x_{i} \geq 0, \quad i=1,2, \ldots, n\right\} \tag{П}
\end{align*}
$$

Theorem

$$
\operatorname{Proj}_{(w, x, z)}\left(\bar{Q}^{c}\right)=Q^{c}=\operatorname{conv}(Q) .
$$

Descriptions in the Original Space

- We can also write also write a convex hull description in the original space of variables, by projecting out y :

$$
\begin{align*}
\mathrm{Q}^{c}= & \left\{(w, x, z) \in \mathbb{R}^{1+n+n}:\right. \\
w \prod_{i \in S} z_{i} \geq & \sum_{i \in S}\left(q_{i} x_{i}^{2} \prod_{l \in S \backslash\{i\}} z_{l}\right) \quad S \subseteq\{1,2, \ldots, n\} \\
& \left.u_{i} z_{i} \geq x_{i} \geq 0, \quad x_{i} \geq 0, \quad i=1,2, \ldots, n\right\} \tag{П}
\end{align*}
$$

Theorem

$$
\operatorname{Proj}_{(w, x, z)}\left(\bar{Q}^{c}\right)=Q^{c}=\operatorname{conv}(Q) .
$$

- Q^{c} consists of an exponential number of nonlinear inequalities.

Extending the Intuition

- To deal with general convex sets, let $W=W^{1} \cup W^{0}$:

$$
\begin{aligned}
& W^{0}=\left\{(x, z) \in \mathbb{R}^{n+1} \mid x=0, z=0\right\} \\
& W^{1}=\left\{(x, z) \in \mathbb{R}^{n+1} \mid f_{k}(x) \leq 0 \text { for } k \in K, u \geq x \geq 0, z=1\right\}
\end{aligned}
$$

- Write an extended formulation (XF) for $\operatorname{conv}(W)$

$$
\begin{aligned}
& \left\{\left(x, x_{0}, x_{1}, z, z_{0}, z_{1}, \alpha\right) \in \mathbb{R}^{3 n+4} \mid 1 \geq \alpha \geq 0, x^{0}=0, z^{0}=0\right. \\
& x=\alpha x^{1}+(1-\alpha) x^{0}, z=\alpha z^{1}+(1-\alpha) z^{0}, \\
& \quad f_{i}\left(x^{1}\right) \leq 0 \text { for } i \in I, u \geq x^{1} \geq 0, z^{1}=1
\end{aligned}
$$

Simplify, Simplify, Simplify

- Substitute out x^{0}, z^{0} and z^{1} : They are fixed in (XF)
- $z=\alpha$ after these substitutions, so substitute it out as well.
- $x=\alpha x^{1}=z x^{1}$, so we can eliminate χ^{1} by replacing it with x / z provided that $z>0$.

Simplify, Simplify, Simplify

- Substitute out χ^{0}, z^{0} and z^{1} : They are fixed in (XF)
- $z=\alpha$ after these substitutions, so substitute it out as well.
- $x=\alpha x^{1}=z x^{1}$, so we can eliminate x^{1} by replacing it with x / z provided that $z>0$.

Lemma

If W^{1} is convex, then $\operatorname{conv}(W)=W^{-} \cup W^{0}$, where

$$
W^{-}=\left\{(x, z) \in \mathbb{R}^{n+1} \mid f_{k}(x / z) \leq 0 \forall k \in K, u z \geq x \geq 0,1 \geq z>0\right\}
$$

Simplify, Simplify, Simplify

- Substitute out x^{0}, z^{0} and z^{1} : They are fixed in (XF)
- $z=\alpha$ after these substitutions, so substitute it out as well.
- $x=\alpha x^{1}=z x^{1}$, so we can eliminate x^{1} by replacing it with x / z provided that $z>0$.

Lemma

If W^{1} is convex, then $\operatorname{conv}(W)=W^{-} \cup W^{0}$, where

$$
W^{-}=\left\{(x, z) \in \mathbb{R}^{n+1} \mid f_{k}(x / z) \leq 0 \forall k \in K, u z \geq x \geq 0,1 \geq z>0\right\}
$$

Lemma Extension

$$
\operatorname{conv}(W)=\operatorname{closure}\left(W^{-}\right)
$$

Convexify, Convexify, Convexify

- Note: $f_{k}(x / z)$ is not necessarily convex, even if $f_{k}(x)$ is.
- However, $z f_{k}(x / z)$ is convex if $f_{k}(x)$ is.
- Multiplying both sides of the inequality by $z>0$ doesn't change the set W^{-}:
$W^{-}=\left\{(x, z) \in \mathbb{R}^{n+1} \mid z f_{k}(x / z) \leq 0 \forall k \in K, u z \geq x \geq 0,1 \geq z>0\right\}$
- You can, if you wish, multiply by $z^{\text {p }}$

Giving You Some Perspective

- For a convex function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$, the function

$$
\mathcal{P}(f(z, x))=z f(x / z)
$$

is known as the perspective function of f

- The epigraph of $\mathcal{P}(f(z, x))$ is a cone pointed at the origin whose lower shape is $f(x)$

Giving You Some Perspective

- For a convex function $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$, the function

$$
\mathcal{P}(f(z, x))=z f(x / z)
$$

is known as the perspective function of f

- The epigraph of $\mathcal{P}(f(z, x))$ is a cone pointed at the origin whose lower shape is $f(x)$

Exploiting Your Perspective

- If z_{i} is an indicator that the (nonlinear, convex) inequality $\mathrm{f}(\mathrm{x}) \leq 0$ must hold, (otherwise $x=0$), replace the inequality with its perspective version:

$$
z_{i} f\left(x / z_{i}\right) \leq 0
$$

- The resulting (convex) inequality is a much tighter relaxation of the feasible region.

An Axioma Connection

Stubbs (1996)

- In his Ph.D. thesis, Stubbs gives (without proof) $\operatorname{conv}(\overline{\mathrm{Q}})$, our original (high-dimensional) set

An Axioma Connection

Stubbs (1996)

- In his Ph.D. thesis, Stubbs gives (without proof) $\operatorname{conv}(\overline{\mathrm{Q}})$, our original (high-dimensional) set

Ceria and Soares (1999)

- Describe $K=\cup_{i \in M} K_{i}$, with $K_{i}=\left\{x \mid f_{i}(x) \leq 0\right\}$ in a higher-dimensional space.
- $x \in \operatorname{conv}(\mathrm{~K}) \Leftrightarrow$

$$
x=\sum_{i \in M} \lambda_{i} x_{i}, \mathcal{P}\left(f_{i}\left(\lambda_{i}, x_{i}\right)\right) \leq 0, \lambda \in \Delta_{|M|}
$$

Other Smart People

Frangioni and Gentile (2006)

- Study: $y \geq f(x), x \leq u z$, give perspective cut:
$y \geq f(x)+\nabla f(x)^{\top}(x-\hat{x})-\left(\hat{x}^{\top} \nabla f(\hat{x})+f(\hat{x})\right)(z-1)$
- This is first-order Taylor expansion of perspective $z f(x / z)+y \leq 0$ about ($\hat{x}, f(\hat{x}), 1)$
- Feasible inequality by convexity of $f(x)$

Other Smart People

Frangioni and Gentile (2006)

- Study: $y \geq f(x), x \leq u z$, give perspective cut:

$$
y \geq f(x)+\nabla f(x)^{\top}(x-\hat{x})-\left(\hat{x}^{\top} \nabla f(\hat{x})+f(\hat{x})\right)(z-1)
$$

- This is first-order Taylor expansion of perspective $z f(x / z)+y \leq 0$ about ($\hat{x}, f(\hat{x}), 1)$
- Feasible inequality by convexity of $f(x)$

Aktürk, Atamtürk, and Gürel (2007)

- Apply perspective reformulation (of epigraph indicator MINLP) to nonlinear machine scheduling problem
- Explain that formulations are representable as SOCP.

Facility Location

- M: Facilities
- N: Customers
- $x_{i j}$: percentage of customer i 's demand served from facility j
- $z_{i}=1 \Leftrightarrow$ facility \mathfrak{i} is opened
- Fixed cost for opening facility i
- Quadratic cost for serving j from i
- Problem studied by Günlük, Lee, and Weismantel ('07), and classes of strong cutting planes derived

Separable Quadratic UFL—Formulation

$$
z^{*} \stackrel{\text { def }}{=} \min \sum_{i \in M} c_{i} z_{i}+\sum_{i \in M} \sum_{j \in N} q_{i j} x_{i j}^{2}
$$

subject to

$$
\begin{aligned}
x_{i j} & \leq z_{i} \quad \forall i \in M, \forall j \in N \\
\sum_{i \in M} x_{i j} & =1 \quad \forall j \in N \\
x_{i j} & \geq 0 \quad \forall i \in M, \forall j \in N \\
z_{i} & \in\{0,1\} \quad \forall i \in M
\end{aligned}
$$

Separable Quadratic UFL—Formulation

$$
z^{*} \stackrel{\text { def }}{=} \min \sum_{i \in M} c_{i} z_{i}+\sum_{i \in M} \sum_{j \in N} q_{i j} y_{i j}
$$

subject to

$$
\begin{aligned}
x_{i j} & \leq z_{i} \quad \forall i \in M, \forall j \in N \\
\sum_{i \in M} x_{i j} & =1 \quad \forall j \in N \\
x_{i j} & \geq 0 \quad \forall i \in M, \forall j \in N \\
z_{i} & \in\{0,1\} \quad \forall i \in M \\
x_{i j}^{2}-y_{i j} & \leq 0 \quad \forall i \in M, \forall j \in N
\end{aligned}
$$

Separable Quadratic UFL—Formulation

$$
z^{*} \stackrel{\text { def }}{=} \min \sum_{i \in M} c_{i} z_{i}+\sum_{i \in M} \sum_{j \in N} q_{i j} y_{i j}
$$

subject to

$$
\begin{aligned}
x_{i j} & \leq z_{i} \quad \forall i \in M, \forall j \in N \\
\sum_{i \in M} x_{i j} & =1 \quad \forall j \in N \\
x_{i j} & \geq 0 \quad \forall i \in M, \forall j \in N \\
z_{i} & \in\{0,1\} \quad \forall i \in M \\
x_{i j}^{2}-z_{i} y_{i j} & \leq 0 \quad \forall i \in M, \forall j \in N
\end{aligned}
$$

Strength of Relaxations

- z_{R} : Value of NLP relaxation
- $z_{\text {GLW }}$: Value of NLP relaxation after GLW cuts
- z_{p} : Value of perspective relaxation
- z^{*} : Optimal solution value

Strength of Relaxations

- z_{R} : Value of NLP relaxation
- $z_{\text {GLW }}$: Value of NLP relaxation after GLW cuts
- z_{P} : Value of perspective relaxation
- z^{*} : Optimal solution value

$\|M\|$	N	z_{R}	z_{GLW}	z_{P}	z^{*}
10	30	140.6	326.4		348.7
15	50	141.3	312.2		384.1
20	65	122.5	248.7		289.3
25	80	121.3	260.1		315.8
30	100	128.0	327.0		393.2

Strength of Relaxations

- z_{R} : Value of NLP relaxation
- $z_{\text {GLW }}$: Value of NLP relaxation after GLW cuts
- z_{p} : Value of perspective relaxation
- z^{*} : Optimal solution value

$\|M\|$	N	z_{R}	z_{GLW}	z_{P}	z^{*}
10	30	140.6	326.4	346.5	348.7
15	50	141.3	312.2	380.0	384.1
20	65	122.5	248.7	288.9	289.3
25	80	121.3	260.1	314.8	315.8
30	100	128.0	327.0	391.7	393.2

Design of Uncongested Network

- Capacitated directed network: $\mathrm{G}=(\mathrm{N}, \mathrm{A})$
- Set of commodities: K
- Node demands: b_{i}^{k}
$\forall i \in N, \forall k \in K$
- Each arc $(\mathbf{i}, \mathfrak{j}) \in A$ has
- Fixed cost: c_{ij}
- Capacity: $u_{i j}$

- Queueing weight: r_{ij}

Design of Uncongested Network

- Capacitated directed network: $\mathrm{G}=(\mathrm{N}, \mathcal{A})$
- Set of commodities: K
- Node demands: b_{i}^{k}
$\forall i \in N, \forall k \in K$
- Each arc $(\mathbf{i}, \mathfrak{j}) \in A$ has
- Fixed cost: $\mathfrak{c}_{i j}$
- Capacity: \mathbf{u}_{ij}

- Queueing weight: r_{ij}
- $z_{i j} \in\{0,1\}$: Indicates whether arc $(i, j) \in A$ is opened.
- $x_{i j}^{k}$: The quantity of commodity k routed on $\operatorname{arc}(i, j)$

Network Design

- Let $f_{i j} \stackrel{\text { def }}{=} \sum_{k \in K} x_{i j}^{k}$ be the flow on arc (i, j).
- A measure of queueing delay is: $\begin{aligned} \rho(f) \stackrel{\text { def }}{=} \sum_{(i, j) \in A} r_{i j} \frac{f_{i j}}{1-f_{i j} / u_{i j}}\end{aligned}$

Network Design

- Let $f_{i j} \stackrel{\text { def }}{=} \sum_{k \in K} x_{i j}^{k}$ be the flow on arc (i, j).
- A measure of queueing delay is:

$$
\rho(f) \stackrel{\text { def }}{=} \sum_{(i, j) \in A} r_{i j} \frac{f_{i j}}{1-f_{i j} / u_{i j}}
$$

Our Network Design Problem

Design network to keep total queueing delay less than a given value β, and this is to be accomplished at minimum cost.

Network Design Formulation

$$
\begin{aligned}
\min \sum_{(i, j) \in A} c_{i j} z_{i j} & \\
\text { s.t. } \quad \sum_{(j, i) \in A} x_{i j}^{k}-\sum_{(i, j) \in A} x_{i j}^{k} & =b_{i}^{k} \quad \forall i \in N, \forall k \in K \\
\sum_{k \in K} x_{i j}^{k}-f_{i j} & =0 \quad \forall(i, j) \in A \\
f_{i j} & \leq u_{i j} z_{i j} \quad \forall(i, j) \in A \\
y_{i j} & \geq \frac{r_{i j} f_{i j}}{1-f_{i j} / u_{i j}} \quad \forall(i, j) \in A \\
\sum_{(i, j) \in A} y_{i j} & \leq \beta
\end{aligned}
$$

Perspective Formulations and Cones

- Consider the nonlinear inequality:

$$
y \geq \frac{r f}{1-f / u} \Leftrightarrow r u f \leq y(u-f)
$$

Perspective Formulations and Cones

- Consider the nonlinear inequality:

$$
y \geq \frac{r f}{1-f / u} \Leftrightarrow r u f \leq y(u-f)
$$

- Since $z_{i j}=0 \Rightarrow f_{i j}=0$, we can write the perspective reformulation:

$$
y / z \geq \frac{\mathrm{rf} / \mathrm{z}}{1-\mathrm{f} / z u} \Leftrightarrow \mathrm{ruzf} \leq y(u z-\mathrm{f})
$$

Perspective Formulations and Cones

- Consider the nonlinear inequality:

$$
y \geq \frac{r f}{1-f / u} \Leftrightarrow \operatorname{ruf} \leq y(u-f)
$$

- Since $z_{i j}=0 \Rightarrow f_{i j}=0$, we can write the perspective reformulation:

$$
y / z \geq \frac{r f / z}{1-\mathrm{f} / z u} \Leftrightarrow r u z f \leq y(u z-f)
$$

Cones Are Everywhere!

- The inequalities ruf $\leq y(u-f)$ and $u r f z \leq y(u z-f)$ are SOC-representable:

$$
\begin{aligned}
\operatorname{ruf} \leq y(u-f) & \Leftrightarrow r f^{2} \leq(y-r f)(u-f) \\
\operatorname{ruf} z \leq y(u z-f) & \Leftrightarrow r f^{2} \leq(y-r f)(u z-f)
\end{aligned}
$$

since $y \geq r f, u \geq f, u z \geq f$

ATL Network

Results (Under Construction)

- ZIB SNDLIB instance: ATL.
- $|\mathrm{N}|=|K|=15,|A|=22$
- Instance solved using (beta) version of Mosek (v5) conic MIP solver
- No fancy cutting planes (cut-set inequalities) added

Results (Under Construction)

- ZIB SNDLIB instance: ATL.

ATL Network

- $|\mathrm{N}|=|\mathrm{K}|=15,|A|=22$
- Instance solved using (beta) version of Mosek (v5) conic MIP solver
- No fancy cutting planes (cut-set inequalities) added

Results

	Nodes	Time
No Perspective	3686	517.1
W/Perspective	414	52.5

Conclusions

Jeff Linderoth Gives Really Stupid Talks Jeff Linderoth Gives Really Stupid talks

Other Conclusions

- Strong reformulations for MINLPs are likely to be just as important as they are for MILPs
- Strong formulations for MINLPs may require nonlinear inequalities. (Duh!)
- Much of the work we present here has (recently) found its way into the literature.

Other Conclusions

- Strong reformulations for MINLPs are likely to be just as important as they are for MILPs
- Strong formulations for MINLPs may require nonlinear inequalities. (Duh!)
- Much of the work we present here has (recently) found its way into the literature.

Our "contributions"

- Give convex hull for the union of a (general) bounded convex set and a point
- Give description in original space of variables
- Exploit SOC-representability of strong reformulations to solve instances much more effectively

