A Lagrangean based Branch-and-Cut algorithm for global optimization of MINLP with decomposable structures

Kumar Abhishek

Lehigh University

C@RAL Seminar Series

Feb, 2007

MINLP Formulation

$$
\begin{array}{cl}
z=\text { minimize } & s(x, y)+\sum_{n=1}^{N} r_{n}\left(u_{n}, v_{n}\right) \\
\text { subject to } & h_{n}\left(u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N, \\
& g_{n}\left(u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& h_{n}^{\prime}\left(x, y, u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N \\
& g_{n}^{\prime}\left(x, y, u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& x^{L} \leq x \leq x^{U} \\
& y \in\{0,1\}^{J} \\
& u_{n}^{L} \leq u_{n} \leq u_{n}^{U}, \quad n=1, \ldots, N \\
& v_{n} \in\{0,1\}^{m_{v_{n}}}, \quad n=1, \ldots, N \\
& x \in \mathbb{R}^{I}, u_{n} \in \mathbb{R}^{m_{u_{n}}}
\end{array}
$$

Model Reformulation

- Linking variables are x, and y and constraints are $h_{n}^{\prime}()$ and $g_{n}^{\prime}()$.
- Contraints $h_{n}(), g_{n}(), h_{n}^{\prime}()$ and $g_{n}^{\prime}()$ may be nonconvex.
- To decompose P, create identical copies of x and y.
- Given by $\left\{x^{1}, x^{2}, \ldots, x^{N}\right\}$ and $\left\{y^{1}, y^{2}, \ldots, y^{N}\right\}$.
- Linking variables are the same across all sub-models (non-anticipativity).
- $x_{1}=x_{2}=\ldots=x^{N}$
- $y_{1}=y_{2}=\ldots=y^{N}$
- Can be expressed in the model as:
- $x^{n}-x^{n+1}=0 \quad n=1, \ldots, N-1$.
- $y^{n}-y^{n+1}=0 \quad n=1, \ldots, N-1$.

$$
\begin{aligned}
z^{\mathrm{RP}}=\operatorname{minimize} & \sum_{n=1}^{N} w_{n} s\left(x^{n}, y^{n}\right)+\sum_{n=1}^{N} r_{n}\left(u_{n}, v_{n}\right) \\
\text { subject to } \quad & h_{n}\left(u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N \\
& g_{n}\left(u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& h_{n}^{\prime}\left(x^{n}, y^{n}, u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N \\
& g_{n}^{\prime}\left(x^{n}, y^{n}, u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& x^{n}-x^{n+1}=0, \quad n=1, \ldots, N-1 \\
& y^{n}-y^{n+1}=0, \quad n=1, \ldots, N-1 \\
& x^{L} \leq x^{n} \leq x^{U}, \quad y^{n} \in\{0,1\}^{J} \\
& u_{n}^{L} \leq u_{n} \leq u_{n}^{U}, \quad n=1, \ldots, N \\
& v_{n} \in\{0,1\}^{m_{v_{n}}}, \quad n=1, \ldots, N \\
& x^{n} \in \mathbb{R}^{I}, u_{n} \in \mathbb{R}^{m_{u_{n}}}
\end{aligned}
$$

Solution Methodology

General approach to globally optimize P :

- Do branch and bound
- Solve relaxations constructed by convexifying the nonconvex terms.
- Relaxations are generally weak.

Insight: Model is decomposable, can be used to derive tight bounds.

- Use Lagrangean decomposition to decompose P into N^{\prime} sub-problems.
- Use the solution of the sub-problems to obtain relaxation strengthing cuts.

Solution Methodology...

- Use branch-and-cut framework and solve problems at every node to global optimality.
- At a node, solve convex relaxation of original nonconvex model with added cuts.
- \Rightarrow tighter lower bounds.
- Obtain upper bounds by fixing binary variables and solving the nonconvex NLP to global optimality.

Lagrangean Relaxation:

$z^{\mathrm{LRP}}=\operatorname{minimize} \sum_{n=1}^{N} w_{n} s\left(x^{n}, y^{n}\right)+\sum_{n=1}^{N} r_{n}\left(u_{n}, v_{n}\right)+$

$$
\sum_{n=1}^{N-1}\left({\overline{\lambda_{n}}}^{x}\right)\left(x^{n}-x^{n+1}\right)+\sum_{n=1}^{N-1}\left({\overline{\lambda_{n}}}^{y}\right)\left(y^{n}-y^{n+1}\right)
$$

subject to

$$
\begin{align*}
& h_{n}\left(u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N, \tag{LRP}\\
& g_{n}\left(u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& h_{n}^{\prime}\left(x^{n}, y^{n}, u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N \\
& g_{n}^{\prime}\left(x^{n}, y^{n}, u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& x^{L} \leq x^{n} \leq x^{U}, \quad y^{n} \in\{0,1\}^{J} \\
& u_{n}^{L} \leq u_{n} \leq u_{n}^{U}, \quad n=1, \ldots, N \\
& v_{n} \in\{0,1\}^{m_{v_{n}}}, \quad n=1, \ldots, N \\
& x^{n} \in \mathbb{R}^{I}, u_{n} \in \mathbb{R}^{m_{u_{n}}}
\end{align*}
$$

Decompose LRP into sub-problems $S P_{n}, n=1, \ldots, N$:

$$
\begin{array}{ll}
z_{n}=\operatorname{minimize} & w_{n} s\left(x^{n}, y^{n}\right)+r_{n}\left(u_{n}, v_{n}\right)+ \\
& \left(\bar{\lambda}_{n}^{x}-\lambda_{n-1}^{-}\right)\left(x^{n}\right)+\left(\bar{\lambda}_{n}^{y}-\lambda_{n-1}^{-}\right)\left(y^{n}\right) \\
\text { subject to } \quad & h_{n}\left(u_{n}, v_{n}\right)=0 \tag{n}\\
& g_{n}\left(u_{n}, v_{n}\right) \leq 0 \\
& h_{n}^{\prime}\left(x^{n}, y^{n}, u_{n}, v_{n}\right)=0 \\
& g_{n}^{\prime}\left(x^{n}, y^{n}, u_{n}, v_{n}\right) \leq 0 \\
& x^{L} \leq x^{n} \leq x^{U}, \quad y^{n} \in\{0,1\}^{J} \\
& u_{n}^{L} \leq u_{n} \leq u_{n}^{U} \\
& v_{n} \in\{0,1\}^{m_{v_{n}}} \\
& x^{n} \in \mathbb{R}^{I}, u_{n} \in \mathbb{R}^{m_{u_{n}}}
\end{array}
$$

Using solution of Lagrangean sub-problems

- Solve each sub-problem $S P_{n}$ to global optimality for fixed λ.
- $\sum_{n=1}^{N} z_{n}^{*}=z^{L B}$ is a valid lower bound for P .
- Tightest possible lower bound obtained from the solution of the lagrangean dual:
- $z^{D}=\max _{\bar{\lambda}} z^{L B}$.
- Hard problem to solve...
- Instead, use a heuristic by Fisher(1981) to iterate with different values of Lagrange multipliers. Multiplier updating rules...
- Therefore, use $\sum_{n=1}^{N} z_{n}^{L^{*}}=z^{L B}$, where L^{*} is the highest valued lower bound on the global optimum of $S P_{n}$.

Using solution of Lagrangean sub-problems...

Optimality based cutting planes:

- Let z_{n}^{*} be the global optimum for $S P_{n}$.

$$
\begin{equation*}
z_{n}^{*} \leq w_{n} s(x, y)+r_{n}\left(u_{n}, v_{n}\right)+\left({\overline{\lambda_{n}}}^{x}-\lambda_{n-1}^{-}\right)(x)+\left({\overline{\lambda_{n}}}^{y}-\lambda_{n-1}^{-}\right)(y) \tag{n}
\end{equation*}
$$

Theorem

The cuts $C_{n}, n=1, \ldots, N$ are valid for RP, and therefore for P.

- In practice, z_{n}^{*} is replaced by $z_{n}^{L^{*}}$ in C_{n}.
- C_{n} is added to P .
$z^{P^{\prime}}=\operatorname{minimize} \quad s(x, y)+\sum_{n=1}^{N} r_{n}\left(u_{n}, v_{n}\right)$
subject to

$$
\begin{aligned}
& h_{n}\left(u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N, \\
& g_{n}\left(u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& h_{n}^{\prime}\left(x, y, u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N \\
& g_{n}^{\prime}\left(x, y, u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \\
& z_{n}^{*} \leq w_{n} s(x, y)+r_{n}\left(u_{n}, v_{n}\right)+ \\
& \left(\bar{\lambda}_{n}^{x}-\lambda_{n-1}^{-}\right)(x)+\left(\lambda_{n}^{y}-\lambda_{n-1}^{-}{ }^{y}\right)(y), \quad n=1, \ldots, N \\
& x^{L} \leq x \leq x^{U}, \quad y \in\{0,1\}^{J} \\
& u_{n}^{L} \leq u_{n} \leq u_{n}^{U}, \quad n=1, \ldots, N \\
& v_{n} \in\{0,1\}^{m_{v_{n}}}, \quad n=1, \ldots, N \\
& x \in \mathbb{R}^{I}, u_{n} \in \mathbb{R}^{m_{u_{n}}}
\end{aligned}
$$

convexify constraints.. \Rightarrow convex relaxation of P^{\prime} :
$z^{R}=\operatorname{minimize} \quad \bar{s}(x, y)+\sum_{n=1}^{N} \bar{r}_{n}\left(u_{n}, v_{n}\right)$
subject to $\quad \bar{h}_{n}\left(u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N$,

$$
\begin{equation*}
\bar{g}_{n}\left(u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N \tag{R}
\end{equation*}
$$

$$
\bar{h}_{n}^{\prime}\left(x, y, u_{n}, v_{n}\right)=0, \quad n=1, \ldots, N
$$

$$
\bar{g}_{n}^{\prime}\left(x, y, u_{n}, v_{n}\right) \leq 0, \quad n=1, \ldots, N
$$

$$
z_{n}^{*} \leq w_{n} \bar{s}(x, y)+\bar{r}_{n}\left(u_{n}, v_{n}\right)+
$$

$$
\left({\overline{\lambda_{n}}}^{x}-{\lambda_{n-1}^{-}}^{x}\right)(x)+\left({\overline{\lambda_{n}}}^{y}-\lambda_{n-1}^{-}{ }^{y}\right)(y), \quad n=1, \ldots, N
$$

$$
x^{L} \leq x \leq x^{U}, \quad y \in\{0,1\}^{J}
$$

$$
u_{n}^{L} \leq u_{n} \leq u_{n}^{U}, \quad n=1, \ldots, N
$$

$$
v_{n} \in\{0,1\}^{m_{v_{n}}}, \quad n=1, \ldots, N
$$

$$
x \in \mathbb{R}^{I}, u_{n} \in \mathbb{R}^{m_{u_{n}}}
$$

- For specific nonconvex terms, special convex estimators exist (Tawarmalani and Sahinidis, 2002).
- Solve R to obtain lower bounds.

Theorem

The lower bound obtained by solving R is at least as strong as the one obtained by solving a convex relaxation of P obtained by convexifying the nonconvex terms.

- Obtaining lower bound by this procedure is computationally expensive.
- But this reduces the number of nodes in the tree search significantly...
- Can decompose to $N^{\prime}<N$ sub-problems
- Branching in the algorithm is done on the linking variables x and y.
- CONOPT 3.0 and BARON 7.2.5 used for solving NLP problems.
- CPLEX 9.0 used for solving LP and MILP problems.
- DICOPT and BARON 7.2.5 used for solving MINLP problems.

